1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/GuardUtils.h" 58 #include <cassert> 59 #include <deque> 60 #include <memory> 61 #include <utility> 62 63 using namespace llvm; 64 using namespace llvm::PatternMatch; 65 66 #define DEBUG_TYPE "early-cse" 67 68 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 69 STATISTIC(NumCSE, "Number of instructions CSE'd"); 70 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 71 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 72 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 73 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 74 75 DEBUG_COUNTER(CSECounter, "early-cse", 76 "Controls which instructions are removed"); 77 78 static cl::opt<unsigned> EarlyCSEMssaOptCap( 79 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 80 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 81 "for faster compile. Caps the MemorySSA clobbering calls.")); 82 83 static cl::opt<bool> EarlyCSEDebugHash( 84 "earlycse-debug-hash", cl::init(false), cl::Hidden, 85 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 86 "function is well-behaved w.r.t. its isEqual predicate")); 87 88 //===----------------------------------------------------------------------===// 89 // SimpleValue 90 //===----------------------------------------------------------------------===// 91 92 namespace { 93 94 /// Struct representing the available values in the scoped hash table. 95 struct SimpleValue { 96 Instruction *Inst; 97 98 SimpleValue(Instruction *I) : Inst(I) { 99 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 100 } 101 102 bool isSentinel() const { 103 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 104 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 105 } 106 107 static bool canHandle(Instruction *Inst) { 108 // This can only handle non-void readnone functions. 109 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 110 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 111 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 112 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 113 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 114 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 115 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 116 isa<InsertValueInst>(Inst); 117 } 118 }; 119 120 } // end anonymous namespace 121 122 namespace llvm { 123 124 template <> struct DenseMapInfo<SimpleValue> { 125 static inline SimpleValue getEmptyKey() { 126 return DenseMapInfo<Instruction *>::getEmptyKey(); 127 } 128 129 static inline SimpleValue getTombstoneKey() { 130 return DenseMapInfo<Instruction *>::getTombstoneKey(); 131 } 132 133 static unsigned getHashValue(SimpleValue Val); 134 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 135 }; 136 137 } // end namespace llvm 138 139 /// Match a 'select' including an optional 'not's of the condition. 140 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 141 Value *&B, 142 SelectPatternFlavor &Flavor) { 143 // Return false if V is not even a select. 144 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 145 return false; 146 147 // Look through a 'not' of the condition operand by swapping A/B. 148 Value *CondNot; 149 if (match(Cond, m_Not(m_Value(CondNot)))) { 150 Cond = CondNot; 151 std::swap(A, B); 152 } 153 154 // Set flavor if we find a match, or set it to unknown otherwise; in 155 // either case, return true to indicate that this is a select we can 156 // process. 157 if (auto *CmpI = dyn_cast<ICmpInst>(Cond)) 158 Flavor = matchDecomposedSelectPattern(CmpI, A, B, A, B).Flavor; 159 else 160 Flavor = SPF_UNKNOWN; 161 162 return true; 163 } 164 165 static unsigned getHashValueImpl(SimpleValue Val) { 166 Instruction *Inst = Val.Inst; 167 // Hash in all of the operands as pointers. 168 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 169 Value *LHS = BinOp->getOperand(0); 170 Value *RHS = BinOp->getOperand(1); 171 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 172 std::swap(LHS, RHS); 173 174 return hash_combine(BinOp->getOpcode(), LHS, RHS); 175 } 176 177 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 178 // Compares can be commuted by swapping the comparands and 179 // updating the predicate. Choose the form that has the 180 // comparands in sorted order, or in the case of a tie, the 181 // one with the lower predicate. 182 Value *LHS = CI->getOperand(0); 183 Value *RHS = CI->getOperand(1); 184 CmpInst::Predicate Pred = CI->getPredicate(); 185 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 186 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 187 std::swap(LHS, RHS); 188 Pred = SwappedPred; 189 } 190 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 191 } 192 193 // Hash general selects to allow matching commuted true/false operands. 194 SelectPatternFlavor SPF; 195 Value *Cond, *A, *B; 196 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 197 // Hash min/max/abs (cmp + select) to allow for commuted operands. 198 // Min/max may also have non-canonical compare predicate (eg, the compare for 199 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 200 // compare. 201 // TODO: We should also detect FP min/max. 202 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 203 SPF == SPF_UMIN || SPF == SPF_UMAX) { 204 if (A > B) 205 std::swap(A, B); 206 return hash_combine(Inst->getOpcode(), SPF, A, B); 207 } 208 if (SPF == SPF_ABS || SPF == SPF_NABS) { 209 // ABS/NABS always puts the input in A and its negation in B. 210 return hash_combine(Inst->getOpcode(), SPF, A, B); 211 } 212 213 // Hash general selects to allow matching commuted true/false operands. 214 215 // If we do not have a compare as the condition, just hash in the condition. 216 CmpInst::Predicate Pred; 217 Value *X, *Y; 218 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 219 return hash_combine(Inst->getOpcode(), Cond, A, B); 220 221 // Similar to cmp normalization (above) - canonicalize the predicate value: 222 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 223 if (CmpInst::getInversePredicate(Pred) < Pred) { 224 Pred = CmpInst::getInversePredicate(Pred); 225 std::swap(A, B); 226 } 227 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 228 } 229 230 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 231 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 232 233 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 234 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 235 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 236 237 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 238 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 239 IVI->getOperand(1), 240 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 241 242 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 243 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 244 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst)) && 245 "Invalid/unknown instruction"); 246 247 // Mix in the opcode. 248 return hash_combine( 249 Inst->getOpcode(), 250 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 251 } 252 253 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 254 #ifndef NDEBUG 255 // If -earlycse-debug-hash was specified, return a constant -- this 256 // will force all hashing to collide, so we'll exhaustively search 257 // the table for a match, and the assertion in isEqual will fire if 258 // there's a bug causing equal keys to hash differently. 259 if (EarlyCSEDebugHash) 260 return 0; 261 #endif 262 return getHashValueImpl(Val); 263 } 264 265 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 266 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 267 268 if (LHS.isSentinel() || RHS.isSentinel()) 269 return LHSI == RHSI; 270 271 if (LHSI->getOpcode() != RHSI->getOpcode()) 272 return false; 273 if (LHSI->isIdenticalToWhenDefined(RHSI)) 274 return true; 275 276 // If we're not strictly identical, we still might be a commutable instruction 277 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 278 if (!LHSBinOp->isCommutative()) 279 return false; 280 281 assert(isa<BinaryOperator>(RHSI) && 282 "same opcode, but different instruction type?"); 283 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 284 285 // Commuted equality 286 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 287 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 288 } 289 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 290 assert(isa<CmpInst>(RHSI) && 291 "same opcode, but different instruction type?"); 292 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 293 // Commuted equality 294 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 295 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 296 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 297 } 298 299 // Min/max/abs can occur with commuted operands, non-canonical predicates, 300 // and/or non-canonical operands. 301 // Selects can be non-trivially equivalent via inverted conditions and swaps. 302 SelectPatternFlavor LSPF, RSPF; 303 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 304 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 305 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 306 if (LSPF == RSPF) { 307 // TODO: We should also detect FP min/max. 308 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 309 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 310 return ((LHSA == RHSA && LHSB == RHSB) || 311 (LHSA == RHSB && LHSB == RHSA)); 312 313 if (LSPF == SPF_ABS || LSPF == SPF_NABS) { 314 // Abs results are placed in a defined order by matchSelectPattern. 315 return LHSA == RHSA && LHSB == RHSB; 316 } 317 318 // select Cond, A, B <--> select not(Cond), B, A 319 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 320 return true; 321 } 322 323 // If the true/false operands are swapped and the conditions are compares 324 // with inverted predicates, the selects are equal: 325 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 326 // 327 // This also handles patterns with a double-negation in the sense of not + 328 // inverse, because we looked through a 'not' in the matching function and 329 // swapped A/B: 330 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 331 // 332 // This intentionally does NOT handle patterns with a double-negation in 333 // the sense of not + not, because doing so could result in values 334 // comparing 335 // as equal that hash differently in the min/max/abs cases like: 336 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 337 // ^ hashes as min ^ would not hash as min 338 // In the context of the EarlyCSE pass, however, such cases never reach 339 // this code, as we simplify the double-negation before hashing the second 340 // select (and so still succeed at CSEing them). 341 if (LHSA == RHSB && LHSB == RHSA) { 342 CmpInst::Predicate PredL, PredR; 343 Value *X, *Y; 344 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 345 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 346 CmpInst::getInversePredicate(PredL) == PredR) 347 return true; 348 } 349 } 350 351 return false; 352 } 353 354 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 355 // These comparisons are nontrivial, so assert that equality implies 356 // hash equality (DenseMap demands this as an invariant). 357 bool Result = isEqualImpl(LHS, RHS); 358 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 359 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 360 return Result; 361 } 362 363 //===----------------------------------------------------------------------===// 364 // CallValue 365 //===----------------------------------------------------------------------===// 366 367 namespace { 368 369 /// Struct representing the available call values in the scoped hash 370 /// table. 371 struct CallValue { 372 Instruction *Inst; 373 374 CallValue(Instruction *I) : Inst(I) { 375 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 376 } 377 378 bool isSentinel() const { 379 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 380 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 381 } 382 383 static bool canHandle(Instruction *Inst) { 384 // Don't value number anything that returns void. 385 if (Inst->getType()->isVoidTy()) 386 return false; 387 388 CallInst *CI = dyn_cast<CallInst>(Inst); 389 if (!CI || !CI->onlyReadsMemory()) 390 return false; 391 return true; 392 } 393 }; 394 395 } // end anonymous namespace 396 397 namespace llvm { 398 399 template <> struct DenseMapInfo<CallValue> { 400 static inline CallValue getEmptyKey() { 401 return DenseMapInfo<Instruction *>::getEmptyKey(); 402 } 403 404 static inline CallValue getTombstoneKey() { 405 return DenseMapInfo<Instruction *>::getTombstoneKey(); 406 } 407 408 static unsigned getHashValue(CallValue Val); 409 static bool isEqual(CallValue LHS, CallValue RHS); 410 }; 411 412 } // end namespace llvm 413 414 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 415 Instruction *Inst = Val.Inst; 416 // Hash all of the operands as pointers and mix in the opcode. 417 return hash_combine( 418 Inst->getOpcode(), 419 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 420 } 421 422 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 423 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 424 if (LHS.isSentinel() || RHS.isSentinel()) 425 return LHSI == RHSI; 426 return LHSI->isIdenticalTo(RHSI); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // EarlyCSE implementation 431 //===----------------------------------------------------------------------===// 432 433 namespace { 434 435 /// A simple and fast domtree-based CSE pass. 436 /// 437 /// This pass does a simple depth-first walk over the dominator tree, 438 /// eliminating trivially redundant instructions and using instsimplify to 439 /// canonicalize things as it goes. It is intended to be fast and catch obvious 440 /// cases so that instcombine and other passes are more effective. It is 441 /// expected that a later pass of GVN will catch the interesting/hard cases. 442 class EarlyCSE { 443 public: 444 const TargetLibraryInfo &TLI; 445 const TargetTransformInfo &TTI; 446 DominatorTree &DT; 447 AssumptionCache &AC; 448 const SimplifyQuery SQ; 449 MemorySSA *MSSA; 450 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 451 452 using AllocatorTy = 453 RecyclingAllocator<BumpPtrAllocator, 454 ScopedHashTableVal<SimpleValue, Value *>>; 455 using ScopedHTType = 456 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 457 AllocatorTy>; 458 459 /// A scoped hash table of the current values of all of our simple 460 /// scalar expressions. 461 /// 462 /// As we walk down the domtree, we look to see if instructions are in this: 463 /// if so, we replace them with what we find, otherwise we insert them so 464 /// that dominated values can succeed in their lookup. 465 ScopedHTType AvailableValues; 466 467 /// A scoped hash table of the current values of previously encountered 468 /// memory locations. 469 /// 470 /// This allows us to get efficient access to dominating loads or stores when 471 /// we have a fully redundant load. In addition to the most recent load, we 472 /// keep track of a generation count of the read, which is compared against 473 /// the current generation count. The current generation count is incremented 474 /// after every possibly writing memory operation, which ensures that we only 475 /// CSE loads with other loads that have no intervening store. Ordering 476 /// events (such as fences or atomic instructions) increment the generation 477 /// count as well; essentially, we model these as writes to all possible 478 /// locations. Note that atomic and/or volatile loads and stores can be 479 /// present the table; it is the responsibility of the consumer to inspect 480 /// the atomicity/volatility if needed. 481 struct LoadValue { 482 Instruction *DefInst = nullptr; 483 unsigned Generation = 0; 484 int MatchingId = -1; 485 bool IsAtomic = false; 486 487 LoadValue() = default; 488 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 489 bool IsAtomic) 490 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 491 IsAtomic(IsAtomic) {} 492 }; 493 494 using LoadMapAllocator = 495 RecyclingAllocator<BumpPtrAllocator, 496 ScopedHashTableVal<Value *, LoadValue>>; 497 using LoadHTType = 498 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 499 LoadMapAllocator>; 500 501 LoadHTType AvailableLoads; 502 503 // A scoped hash table mapping memory locations (represented as typed 504 // addresses) to generation numbers at which that memory location became 505 // (henceforth indefinitely) invariant. 506 using InvariantMapAllocator = 507 RecyclingAllocator<BumpPtrAllocator, 508 ScopedHashTableVal<MemoryLocation, unsigned>>; 509 using InvariantHTType = 510 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 511 InvariantMapAllocator>; 512 InvariantHTType AvailableInvariants; 513 514 /// A scoped hash table of the current values of read-only call 515 /// values. 516 /// 517 /// It uses the same generation count as loads. 518 using CallHTType = 519 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 520 CallHTType AvailableCalls; 521 522 /// This is the current generation of the memory value. 523 unsigned CurrentGeneration = 0; 524 525 /// Set up the EarlyCSE runner for a particular function. 526 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 527 const TargetTransformInfo &TTI, DominatorTree &DT, 528 AssumptionCache &AC, MemorySSA *MSSA) 529 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 530 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 531 532 bool run(); 533 534 private: 535 unsigned ClobberCounter = 0; 536 // Almost a POD, but needs to call the constructors for the scoped hash 537 // tables so that a new scope gets pushed on. These are RAII so that the 538 // scope gets popped when the NodeScope is destroyed. 539 class NodeScope { 540 public: 541 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 542 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 543 : Scope(AvailableValues), LoadScope(AvailableLoads), 544 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 545 NodeScope(const NodeScope &) = delete; 546 NodeScope &operator=(const NodeScope &) = delete; 547 548 private: 549 ScopedHTType::ScopeTy Scope; 550 LoadHTType::ScopeTy LoadScope; 551 InvariantHTType::ScopeTy InvariantScope; 552 CallHTType::ScopeTy CallScope; 553 }; 554 555 // Contains all the needed information to create a stack for doing a depth 556 // first traversal of the tree. This includes scopes for values, loads, and 557 // calls as well as the generation. There is a child iterator so that the 558 // children do not need to be store separately. 559 class StackNode { 560 public: 561 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 562 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 563 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 564 DomTreeNode::iterator end) 565 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 566 EndIter(end), 567 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 568 AvailableCalls) 569 {} 570 StackNode(const StackNode &) = delete; 571 StackNode &operator=(const StackNode &) = delete; 572 573 // Accessors. 574 unsigned currentGeneration() { return CurrentGeneration; } 575 unsigned childGeneration() { return ChildGeneration; } 576 void childGeneration(unsigned generation) { ChildGeneration = generation; } 577 DomTreeNode *node() { return Node; } 578 DomTreeNode::iterator childIter() { return ChildIter; } 579 580 DomTreeNode *nextChild() { 581 DomTreeNode *child = *ChildIter; 582 ++ChildIter; 583 return child; 584 } 585 586 DomTreeNode::iterator end() { return EndIter; } 587 bool isProcessed() { return Processed; } 588 void process() { Processed = true; } 589 590 private: 591 unsigned CurrentGeneration; 592 unsigned ChildGeneration; 593 DomTreeNode *Node; 594 DomTreeNode::iterator ChildIter; 595 DomTreeNode::iterator EndIter; 596 NodeScope Scopes; 597 bool Processed = false; 598 }; 599 600 /// Wrapper class to handle memory instructions, including loads, 601 /// stores and intrinsic loads and stores defined by the target. 602 class ParseMemoryInst { 603 public: 604 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 605 : Inst(Inst) { 606 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 607 if (TTI.getTgtMemIntrinsic(II, Info)) 608 IsTargetMemInst = true; 609 } 610 611 bool isLoad() const { 612 if (IsTargetMemInst) return Info.ReadMem; 613 return isa<LoadInst>(Inst); 614 } 615 616 bool isStore() const { 617 if (IsTargetMemInst) return Info.WriteMem; 618 return isa<StoreInst>(Inst); 619 } 620 621 bool isAtomic() const { 622 if (IsTargetMemInst) 623 return Info.Ordering != AtomicOrdering::NotAtomic; 624 return Inst->isAtomic(); 625 } 626 627 bool isUnordered() const { 628 if (IsTargetMemInst) 629 return Info.isUnordered(); 630 631 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 632 return LI->isUnordered(); 633 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 634 return SI->isUnordered(); 635 } 636 // Conservative answer 637 return !Inst->isAtomic(); 638 } 639 640 bool isVolatile() const { 641 if (IsTargetMemInst) 642 return Info.IsVolatile; 643 644 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 645 return LI->isVolatile(); 646 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 647 return SI->isVolatile(); 648 } 649 // Conservative answer 650 return true; 651 } 652 653 bool isInvariantLoad() const { 654 if (auto *LI = dyn_cast<LoadInst>(Inst)) 655 return LI->hasMetadata(LLVMContext::MD_invariant_load); 656 return false; 657 } 658 659 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 660 return (getPointerOperand() == Inst.getPointerOperand() && 661 getMatchingId() == Inst.getMatchingId()); 662 } 663 664 bool isValid() const { return getPointerOperand() != nullptr; } 665 666 // For regular (non-intrinsic) loads/stores, this is set to -1. For 667 // intrinsic loads/stores, the id is retrieved from the corresponding 668 // field in the MemIntrinsicInfo structure. That field contains 669 // non-negative values only. 670 int getMatchingId() const { 671 if (IsTargetMemInst) return Info.MatchingId; 672 return -1; 673 } 674 675 Value *getPointerOperand() const { 676 if (IsTargetMemInst) return Info.PtrVal; 677 return getLoadStorePointerOperand(Inst); 678 } 679 680 bool mayReadFromMemory() const { 681 if (IsTargetMemInst) return Info.ReadMem; 682 return Inst->mayReadFromMemory(); 683 } 684 685 bool mayWriteToMemory() const { 686 if (IsTargetMemInst) return Info.WriteMem; 687 return Inst->mayWriteToMemory(); 688 } 689 690 private: 691 bool IsTargetMemInst = false; 692 MemIntrinsicInfo Info; 693 Instruction *Inst; 694 }; 695 696 bool processNode(DomTreeNode *Node); 697 698 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 699 const BasicBlock *BB, const BasicBlock *Pred); 700 701 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 702 if (auto *LI = dyn_cast<LoadInst>(Inst)) 703 return LI; 704 if (auto *SI = dyn_cast<StoreInst>(Inst)) 705 return SI->getValueOperand(); 706 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 707 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 708 ExpectedType); 709 } 710 711 /// Return true if the instruction is known to only operate on memory 712 /// provably invariant in the given "generation". 713 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 714 715 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 716 Instruction *EarlierInst, Instruction *LaterInst); 717 718 void removeMSSA(Instruction *Inst) { 719 if (!MSSA) 720 return; 721 if (VerifyMemorySSA) 722 MSSA->verifyMemorySSA(); 723 // Removing a store here can leave MemorySSA in an unoptimized state by 724 // creating MemoryPhis that have identical arguments and by creating 725 // MemoryUses whose defining access is not an actual clobber. The phi case 726 // is handled by MemorySSA when passing OptimizePhis = true to 727 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 728 // by MemorySSA's getClobberingMemoryAccess. 729 MSSAUpdater->removeMemoryAccess(Inst, true); 730 } 731 }; 732 733 } // end anonymous namespace 734 735 /// Determine if the memory referenced by LaterInst is from the same heap 736 /// version as EarlierInst. 737 /// This is currently called in two scenarios: 738 /// 739 /// load p 740 /// ... 741 /// load p 742 /// 743 /// and 744 /// 745 /// x = load p 746 /// ... 747 /// store x, p 748 /// 749 /// in both cases we want to verify that there are no possible writes to the 750 /// memory referenced by p between the earlier and later instruction. 751 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 752 unsigned LaterGeneration, 753 Instruction *EarlierInst, 754 Instruction *LaterInst) { 755 // Check the simple memory generation tracking first. 756 if (EarlierGeneration == LaterGeneration) 757 return true; 758 759 if (!MSSA) 760 return false; 761 762 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 763 // read/write memory, then we can safely return true here. 764 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 765 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 766 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 767 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 768 // with the default optimization pipeline. 769 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 770 if (!EarlierMA) 771 return true; 772 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 773 if (!LaterMA) 774 return true; 775 776 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 777 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 778 // EarlierInst and LaterInst and neither can any other write that potentially 779 // clobbers LaterInst. 780 MemoryAccess *LaterDef; 781 if (ClobberCounter < EarlyCSEMssaOptCap) { 782 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 783 ClobberCounter++; 784 } else 785 LaterDef = LaterMA->getDefiningAccess(); 786 787 return MSSA->dominates(LaterDef, EarlierMA); 788 } 789 790 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 791 // A location loaded from with an invariant_load is assumed to *never* change 792 // within the visible scope of the compilation. 793 if (auto *LI = dyn_cast<LoadInst>(I)) 794 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 795 return true; 796 797 auto MemLocOpt = MemoryLocation::getOrNone(I); 798 if (!MemLocOpt) 799 // "target" intrinsic forms of loads aren't currently known to 800 // MemoryLocation::get. TODO 801 return false; 802 MemoryLocation MemLoc = *MemLocOpt; 803 if (!AvailableInvariants.count(MemLoc)) 804 return false; 805 806 // Is the generation at which this became invariant older than the 807 // current one? 808 return AvailableInvariants.lookup(MemLoc) <= GenAt; 809 } 810 811 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 812 const BranchInst *BI, const BasicBlock *BB, 813 const BasicBlock *Pred) { 814 assert(BI->isConditional() && "Should be a conditional branch!"); 815 assert(BI->getCondition() == CondInst && "Wrong condition?"); 816 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 817 auto *TorF = (BI->getSuccessor(0) == BB) 818 ? ConstantInt::getTrue(BB->getContext()) 819 : ConstantInt::getFalse(BB->getContext()); 820 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 821 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 822 return BOp->getOpcode() == Opcode; 823 return false; 824 }; 825 // If the condition is AND operation, we can propagate its operands into the 826 // true branch. If it is OR operation, we can propagate them into the false 827 // branch. 828 unsigned PropagateOpcode = 829 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 830 831 bool MadeChanges = false; 832 SmallVector<Instruction *, 4> WorkList; 833 SmallPtrSet<Instruction *, 4> Visited; 834 WorkList.push_back(CondInst); 835 while (!WorkList.empty()) { 836 Instruction *Curr = WorkList.pop_back_val(); 837 838 AvailableValues.insert(Curr, TorF); 839 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 840 << Curr->getName() << "' as " << *TorF << " in " 841 << BB->getName() << "\n"); 842 if (!DebugCounter::shouldExecute(CSECounter)) { 843 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 844 } else { 845 // Replace all dominated uses with the known value. 846 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 847 BasicBlockEdge(Pred, BB))) { 848 NumCSECVP += Count; 849 MadeChanges = true; 850 } 851 } 852 853 if (MatchBinOp(Curr, PropagateOpcode)) 854 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 855 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 856 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 857 WorkList.push_back(OPI); 858 } 859 860 return MadeChanges; 861 } 862 863 bool EarlyCSE::processNode(DomTreeNode *Node) { 864 bool Changed = false; 865 BasicBlock *BB = Node->getBlock(); 866 867 // If this block has a single predecessor, then the predecessor is the parent 868 // of the domtree node and all of the live out memory values are still current 869 // in this block. If this block has multiple predecessors, then they could 870 // have invalidated the live-out memory values of our parent value. For now, 871 // just be conservative and invalidate memory if this block has multiple 872 // predecessors. 873 if (!BB->getSinglePredecessor()) 874 ++CurrentGeneration; 875 876 // If this node has a single predecessor which ends in a conditional branch, 877 // we can infer the value of the branch condition given that we took this 878 // path. We need the single predecessor to ensure there's not another path 879 // which reaches this block where the condition might hold a different 880 // value. Since we're adding this to the scoped hash table (like any other 881 // def), it will have been popped if we encounter a future merge block. 882 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 883 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 884 if (BI && BI->isConditional()) { 885 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 886 if (CondInst && SimpleValue::canHandle(CondInst)) 887 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 888 } 889 } 890 891 /// LastStore - Keep track of the last non-volatile store that we saw... for 892 /// as long as there in no instruction that reads memory. If we see a store 893 /// to the same location, we delete the dead store. This zaps trivial dead 894 /// stores which can occur in bitfield code among other things. 895 Instruction *LastStore = nullptr; 896 897 // See if any instructions in the block can be eliminated. If so, do it. If 898 // not, add them to AvailableValues. 899 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 900 Instruction *Inst = &*I++; 901 902 // Dead instructions should just be removed. 903 if (isInstructionTriviallyDead(Inst, &TLI)) { 904 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 905 if (!DebugCounter::shouldExecute(CSECounter)) { 906 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 907 continue; 908 } 909 if (!salvageDebugInfo(*Inst)) 910 replaceDbgUsesWithUndef(Inst); 911 removeMSSA(Inst); 912 Inst->eraseFromParent(); 913 Changed = true; 914 ++NumSimplify; 915 continue; 916 } 917 918 // Skip assume intrinsics, they don't really have side effects (although 919 // they're marked as such to ensure preservation of control dependencies), 920 // and this pass will not bother with its removal. However, we should mark 921 // its condition as true for all dominated blocks. 922 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 923 auto *CondI = 924 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 925 if (CondI && SimpleValue::canHandle(CondI)) { 926 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst 927 << '\n'); 928 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 929 } else 930 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 931 continue; 932 } 933 934 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 935 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 936 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 937 continue; 938 } 939 940 // We can skip all invariant.start intrinsics since they only read memory, 941 // and we can forward values across it. For invariant starts without 942 // invariant ends, we can use the fact that the invariantness never ends to 943 // start a scope in the current generaton which is true for all future 944 // generations. Also, we dont need to consume the last store since the 945 // semantics of invariant.start allow us to perform DSE of the last 946 // store, if there was a store following invariant.start. Consider: 947 // 948 // store 30, i8* p 949 // invariant.start(p) 950 // store 40, i8* p 951 // We can DSE the store to 30, since the store 40 to invariant location p 952 // causes undefined behaviour. 953 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 954 // If there are any uses, the scope might end. 955 if (!Inst->use_empty()) 956 continue; 957 auto *CI = cast<CallInst>(Inst); 958 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); 959 // Don't start a scope if we already have a better one pushed 960 if (!AvailableInvariants.count(MemLoc)) 961 AvailableInvariants.insert(MemLoc, CurrentGeneration); 962 continue; 963 } 964 965 if (isGuard(Inst)) { 966 if (auto *CondI = 967 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 968 if (SimpleValue::canHandle(CondI)) { 969 // Do we already know the actual value of this condition? 970 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 971 // Is the condition known to be true? 972 if (isa<ConstantInt>(KnownCond) && 973 cast<ConstantInt>(KnownCond)->isOne()) { 974 LLVM_DEBUG(dbgs() 975 << "EarlyCSE removing guard: " << *Inst << '\n'); 976 removeMSSA(Inst); 977 Inst->eraseFromParent(); 978 Changed = true; 979 continue; 980 } else 981 // Use the known value if it wasn't true. 982 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 983 } 984 // The condition we're on guarding here is true for all dominated 985 // locations. 986 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 987 } 988 } 989 990 // Guard intrinsics read all memory, but don't write any memory. 991 // Accordingly, don't update the generation but consume the last store (to 992 // avoid an incorrect DSE). 993 LastStore = nullptr; 994 continue; 995 } 996 997 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 998 // its simpler value. 999 if (Value *V = SimplifyInstruction(Inst, SQ)) { 1000 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V 1001 << '\n'); 1002 if (!DebugCounter::shouldExecute(CSECounter)) { 1003 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1004 } else { 1005 bool Killed = false; 1006 if (!Inst->use_empty()) { 1007 Inst->replaceAllUsesWith(V); 1008 Changed = true; 1009 } 1010 if (isInstructionTriviallyDead(Inst, &TLI)) { 1011 removeMSSA(Inst); 1012 Inst->eraseFromParent(); 1013 Changed = true; 1014 Killed = true; 1015 } 1016 if (Changed) 1017 ++NumSimplify; 1018 if (Killed) 1019 continue; 1020 } 1021 } 1022 1023 // If this is a simple instruction that we can value number, process it. 1024 if (SimpleValue::canHandle(Inst)) { 1025 // See if the instruction has an available value. If so, use it. 1026 if (Value *V = AvailableValues.lookup(Inst)) { 1027 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V 1028 << '\n'); 1029 if (!DebugCounter::shouldExecute(CSECounter)) { 1030 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1031 continue; 1032 } 1033 if (auto *I = dyn_cast<Instruction>(V)) 1034 I->andIRFlags(Inst); 1035 Inst->replaceAllUsesWith(V); 1036 removeMSSA(Inst); 1037 Inst->eraseFromParent(); 1038 Changed = true; 1039 ++NumCSE; 1040 continue; 1041 } 1042 1043 // Otherwise, just remember that this value is available. 1044 AvailableValues.insert(Inst, Inst); 1045 continue; 1046 } 1047 1048 ParseMemoryInst MemInst(Inst, TTI); 1049 // If this is a non-volatile load, process it. 1050 if (MemInst.isValid() && MemInst.isLoad()) { 1051 // (conservatively) we can't peak past the ordering implied by this 1052 // operation, but we can add this load to our set of available values 1053 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1054 LastStore = nullptr; 1055 ++CurrentGeneration; 1056 } 1057 1058 if (MemInst.isInvariantLoad()) { 1059 // If we pass an invariant load, we know that memory location is 1060 // indefinitely constant from the moment of first dereferenceability. 1061 // We conservatively treat the invariant_load as that moment. If we 1062 // pass a invariant load after already establishing a scope, don't 1063 // restart it since we want to preserve the earliest point seen. 1064 auto MemLoc = MemoryLocation::get(Inst); 1065 if (!AvailableInvariants.count(MemLoc)) 1066 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1067 } 1068 1069 // If we have an available version of this load, and if it is the right 1070 // generation or the load is known to be from an invariant location, 1071 // replace this instruction. 1072 // 1073 // If either the dominating load or the current load are invariant, then 1074 // we can assume the current load loads the same value as the dominating 1075 // load. 1076 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1077 if (InVal.DefInst != nullptr && 1078 InVal.MatchingId == MemInst.getMatchingId() && 1079 // We don't yet handle removing loads with ordering of any kind. 1080 !MemInst.isVolatile() && MemInst.isUnordered() && 1081 // We can't replace an atomic load with one which isn't also atomic. 1082 InVal.IsAtomic >= MemInst.isAtomic() && 1083 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1084 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1085 InVal.DefInst, Inst))) { 1086 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 1087 if (Op != nullptr) { 1088 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 1089 << " to: " << *InVal.DefInst << '\n'); 1090 if (!DebugCounter::shouldExecute(CSECounter)) { 1091 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1092 continue; 1093 } 1094 if (!Inst->use_empty()) 1095 Inst->replaceAllUsesWith(Op); 1096 removeMSSA(Inst); 1097 Inst->eraseFromParent(); 1098 Changed = true; 1099 ++NumCSELoad; 1100 continue; 1101 } 1102 } 1103 1104 // Otherwise, remember that we have this instruction. 1105 AvailableLoads.insert( 1106 MemInst.getPointerOperand(), 1107 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1108 MemInst.isAtomic())); 1109 LastStore = nullptr; 1110 continue; 1111 } 1112 1113 // If this instruction may read from memory or throw (and potentially read 1114 // from memory in the exception handler), forget LastStore. Load/store 1115 // intrinsics will indicate both a read and a write to memory. The target 1116 // may override this (e.g. so that a store intrinsic does not read from 1117 // memory, and thus will be treated the same as a regular store for 1118 // commoning purposes). 1119 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 1120 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1121 LastStore = nullptr; 1122 1123 // If this is a read-only call, process it. 1124 if (CallValue::canHandle(Inst)) { 1125 // If we have an available version of this call, and if it is the right 1126 // generation, replace this instruction. 1127 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 1128 if (InVal.first != nullptr && 1129 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1130 Inst)) { 1131 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 1132 << " to: " << *InVal.first << '\n'); 1133 if (!DebugCounter::shouldExecute(CSECounter)) { 1134 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1135 continue; 1136 } 1137 if (!Inst->use_empty()) 1138 Inst->replaceAllUsesWith(InVal.first); 1139 removeMSSA(Inst); 1140 Inst->eraseFromParent(); 1141 Changed = true; 1142 ++NumCSECall; 1143 continue; 1144 } 1145 1146 // Otherwise, remember that we have this instruction. 1147 AvailableCalls.insert( 1148 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 1149 continue; 1150 } 1151 1152 // A release fence requires that all stores complete before it, but does 1153 // not prevent the reordering of following loads 'before' the fence. As a 1154 // result, we don't need to consider it as writing to memory and don't need 1155 // to advance the generation. We do need to prevent DSE across the fence, 1156 // but that's handled above. 1157 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 1158 if (FI->getOrdering() == AtomicOrdering::Release) { 1159 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 1160 continue; 1161 } 1162 1163 // write back DSE - If we write back the same value we just loaded from 1164 // the same location and haven't passed any intervening writes or ordering 1165 // operations, we can remove the write. The primary benefit is in allowing 1166 // the available load table to remain valid and value forward past where 1167 // the store originally was. 1168 if (MemInst.isValid() && MemInst.isStore()) { 1169 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1170 if (InVal.DefInst && 1171 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 1172 InVal.MatchingId == MemInst.getMatchingId() && 1173 // We don't yet handle removing stores with ordering of any kind. 1174 !MemInst.isVolatile() && MemInst.isUnordered() && 1175 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1176 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1177 InVal.DefInst, Inst))) { 1178 // It is okay to have a LastStore to a different pointer here if MemorySSA 1179 // tells us that the load and store are from the same memory generation. 1180 // In that case, LastStore should keep its present value since we're 1181 // removing the current store. 1182 assert((!LastStore || 1183 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1184 MemInst.getPointerOperand() || 1185 MSSA) && 1186 "can't have an intervening store if not using MemorySSA!"); 1187 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 1188 if (!DebugCounter::shouldExecute(CSECounter)) { 1189 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1190 continue; 1191 } 1192 removeMSSA(Inst); 1193 Inst->eraseFromParent(); 1194 Changed = true; 1195 ++NumDSE; 1196 // We can avoid incrementing the generation count since we were able 1197 // to eliminate this store. 1198 continue; 1199 } 1200 } 1201 1202 // Okay, this isn't something we can CSE at all. Check to see if it is 1203 // something that could modify memory. If so, our available memory values 1204 // cannot be used so bump the generation count. 1205 if (Inst->mayWriteToMemory()) { 1206 ++CurrentGeneration; 1207 1208 if (MemInst.isValid() && MemInst.isStore()) { 1209 // We do a trivial form of DSE if there are two stores to the same 1210 // location with no intervening loads. Delete the earlier store. 1211 // At the moment, we don't remove ordered stores, but do remove 1212 // unordered atomic stores. There's no special requirement (for 1213 // unordered atomics) about removing atomic stores only in favor of 1214 // other atomic stores since we were going to execute the non-atomic 1215 // one anyway and the atomic one might never have become visible. 1216 if (LastStore) { 1217 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1218 assert(LastStoreMemInst.isUnordered() && 1219 !LastStoreMemInst.isVolatile() && 1220 "Violated invariant"); 1221 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1222 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1223 << " due to: " << *Inst << '\n'); 1224 if (!DebugCounter::shouldExecute(CSECounter)) { 1225 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1226 } else { 1227 removeMSSA(LastStore); 1228 LastStore->eraseFromParent(); 1229 Changed = true; 1230 ++NumDSE; 1231 LastStore = nullptr; 1232 } 1233 } 1234 // fallthrough - we can exploit information about this store 1235 } 1236 1237 // Okay, we just invalidated anything we knew about loaded values. Try 1238 // to salvage *something* by remembering that the stored value is a live 1239 // version of the pointer. It is safe to forward from volatile stores 1240 // to non-volatile loads, so we don't have to check for volatility of 1241 // the store. 1242 AvailableLoads.insert( 1243 MemInst.getPointerOperand(), 1244 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1245 MemInst.isAtomic())); 1246 1247 // Remember that this was the last unordered store we saw for DSE. We 1248 // don't yet handle DSE on ordered or volatile stores since we don't 1249 // have a good way to model the ordering requirement for following 1250 // passes once the store is removed. We could insert a fence, but 1251 // since fences are slightly stronger than stores in their ordering, 1252 // it's not clear this is a profitable transform. Another option would 1253 // be to merge the ordering with that of the post dominating store. 1254 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1255 LastStore = Inst; 1256 else 1257 LastStore = nullptr; 1258 } 1259 } 1260 } 1261 1262 return Changed; 1263 } 1264 1265 bool EarlyCSE::run() { 1266 // Note, deque is being used here because there is significant performance 1267 // gains over vector when the container becomes very large due to the 1268 // specific access patterns. For more information see the mailing list 1269 // discussion on this: 1270 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1271 std::deque<StackNode *> nodesToProcess; 1272 1273 bool Changed = false; 1274 1275 // Process the root node. 1276 nodesToProcess.push_back(new StackNode( 1277 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1278 CurrentGeneration, DT.getRootNode(), 1279 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1280 1281 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1282 1283 // Process the stack. 1284 while (!nodesToProcess.empty()) { 1285 // Grab the first item off the stack. Set the current generation, remove 1286 // the node from the stack, and process it. 1287 StackNode *NodeToProcess = nodesToProcess.back(); 1288 1289 // Initialize class members. 1290 CurrentGeneration = NodeToProcess->currentGeneration(); 1291 1292 // Check if the node needs to be processed. 1293 if (!NodeToProcess->isProcessed()) { 1294 // Process the node. 1295 Changed |= processNode(NodeToProcess->node()); 1296 NodeToProcess->childGeneration(CurrentGeneration); 1297 NodeToProcess->process(); 1298 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1299 // Push the next child onto the stack. 1300 DomTreeNode *child = NodeToProcess->nextChild(); 1301 nodesToProcess.push_back( 1302 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1303 AvailableCalls, NodeToProcess->childGeneration(), 1304 child, child->begin(), child->end())); 1305 } else { 1306 // It has been processed, and there are no more children to process, 1307 // so delete it and pop it off the stack. 1308 delete NodeToProcess; 1309 nodesToProcess.pop_back(); 1310 } 1311 } // while (!nodes...) 1312 1313 return Changed; 1314 } 1315 1316 PreservedAnalyses EarlyCSEPass::run(Function &F, 1317 FunctionAnalysisManager &AM) { 1318 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1319 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1320 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1321 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1322 auto *MSSA = 1323 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1324 1325 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1326 1327 if (!CSE.run()) 1328 return PreservedAnalyses::all(); 1329 1330 PreservedAnalyses PA; 1331 PA.preserveSet<CFGAnalyses>(); 1332 PA.preserve<GlobalsAA>(); 1333 if (UseMemorySSA) 1334 PA.preserve<MemorySSAAnalysis>(); 1335 return PA; 1336 } 1337 1338 namespace { 1339 1340 /// A simple and fast domtree-based CSE pass. 1341 /// 1342 /// This pass does a simple depth-first walk over the dominator tree, 1343 /// eliminating trivially redundant instructions and using instsimplify to 1344 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1345 /// cases so that instcombine and other passes are more effective. It is 1346 /// expected that a later pass of GVN will catch the interesting/hard cases. 1347 template<bool UseMemorySSA> 1348 class EarlyCSELegacyCommonPass : public FunctionPass { 1349 public: 1350 static char ID; 1351 1352 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1353 if (UseMemorySSA) 1354 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1355 else 1356 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1357 } 1358 1359 bool runOnFunction(Function &F) override { 1360 if (skipFunction(F)) 1361 return false; 1362 1363 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1364 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1365 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1366 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1367 auto *MSSA = 1368 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1369 1370 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1371 1372 return CSE.run(); 1373 } 1374 1375 void getAnalysisUsage(AnalysisUsage &AU) const override { 1376 AU.addRequired<AssumptionCacheTracker>(); 1377 AU.addRequired<DominatorTreeWrapperPass>(); 1378 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1379 AU.addRequired<TargetTransformInfoWrapperPass>(); 1380 if (UseMemorySSA) { 1381 AU.addRequired<MemorySSAWrapperPass>(); 1382 AU.addPreserved<MemorySSAWrapperPass>(); 1383 } 1384 AU.addPreserved<GlobalsAAWrapperPass>(); 1385 AU.addPreserved<AAResultsWrapperPass>(); 1386 AU.setPreservesCFG(); 1387 } 1388 }; 1389 1390 } // end anonymous namespace 1391 1392 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1393 1394 template<> 1395 char EarlyCSELegacyPass::ID = 0; 1396 1397 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1398 false) 1399 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1400 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1401 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1402 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1403 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1404 1405 using EarlyCSEMemSSALegacyPass = 1406 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1407 1408 template<> 1409 char EarlyCSEMemSSALegacyPass::ID = 0; 1410 1411 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1412 if (UseMemorySSA) 1413 return new EarlyCSEMemSSALegacyPass(); 1414 else 1415 return new EarlyCSELegacyPass(); 1416 } 1417 1418 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1419 "Early CSE w/ MemorySSA", false, false) 1420 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1421 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1422 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1423 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1424 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1425 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1426 "Early CSE w/ MemorySSA", false, false) 1427