1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 DEBUG_COUNTER(CSECounter, "early-cse", 73 "Controls which instructions are removed"); 74 75 static cl::opt<unsigned> EarlyCSEMssaOptCap( 76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 78 "for faster compile. Caps the MemorySSA clobbering calls.")); 79 80 static cl::opt<bool> EarlyCSEDebugHash( 81 "earlycse-debug-hash", cl::init(false), cl::Hidden, 82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 83 "function is well-behaved w.r.t. its isEqual predicate")); 84 85 //===----------------------------------------------------------------------===// 86 // SimpleValue 87 //===----------------------------------------------------------------------===// 88 89 namespace { 90 91 /// Struct representing the available values in the scoped hash table. 92 struct SimpleValue { 93 Instruction *Inst; 94 95 SimpleValue(Instruction *I) : Inst(I) { 96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 97 } 98 99 bool isSentinel() const { 100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 102 } 103 104 static bool canHandle(Instruction *Inst) { 105 // This can only handle non-void readnone functions. 106 // Also handled are constrained intrinsic that look like the types 107 // of instruction handled below (UnaryOperator, etc.). 108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 109 if (Function *F = CI->getCalledFunction()) { 110 switch ((Intrinsic::ID)F->getIntrinsicID()) { 111 case Intrinsic::experimental_constrained_fadd: 112 case Intrinsic::experimental_constrained_fsub: 113 case Intrinsic::experimental_constrained_fmul: 114 case Intrinsic::experimental_constrained_fdiv: 115 case Intrinsic::experimental_constrained_frem: 116 case Intrinsic::experimental_constrained_fptosi: 117 case Intrinsic::experimental_constrained_sitofp: 118 case Intrinsic::experimental_constrained_fptoui: 119 case Intrinsic::experimental_constrained_uitofp: 120 case Intrinsic::experimental_constrained_fcmp: 121 case Intrinsic::experimental_constrained_fcmps: { 122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 123 if (CFP->getExceptionBehavior() && 124 CFP->getExceptionBehavior() == fp::ebStrict) 125 return false; 126 // Since we CSE across function calls we must not allow 127 // the rounding mode to change. 128 if (CFP->getRoundingMode() && 129 CFP->getRoundingMode() == RoundingMode::Dynamic) 130 return false; 131 return true; 132 } 133 } 134 } 135 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && 136 // FIXME: Currently the calls which may access the thread id may 137 // be considered as not accessing the memory. But this is 138 // problematic for coroutines, since coroutines may resume in a 139 // different thread. So we disable the optimization here for the 140 // correctness. However, it may block many other correct 141 // optimizations. Revert this one when we detect the memory 142 // accessing kind more precisely. 143 !CI->getFunction()->isPresplitCoroutine(); 144 } 145 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 146 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 147 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 148 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 149 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 150 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 151 } 152 }; 153 154 } // end anonymous namespace 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<SimpleValue> { 159 static inline SimpleValue getEmptyKey() { 160 return DenseMapInfo<Instruction *>::getEmptyKey(); 161 } 162 163 static inline SimpleValue getTombstoneKey() { 164 return DenseMapInfo<Instruction *>::getTombstoneKey(); 165 } 166 167 static unsigned getHashValue(SimpleValue Val); 168 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 169 }; 170 171 } // end namespace llvm 172 173 /// Match a 'select' including an optional 'not's of the condition. 174 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 175 Value *&B, 176 SelectPatternFlavor &Flavor) { 177 // Return false if V is not even a select. 178 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 179 return false; 180 181 // Look through a 'not' of the condition operand by swapping A/B. 182 Value *CondNot; 183 if (match(Cond, m_Not(m_Value(CondNot)))) { 184 Cond = CondNot; 185 std::swap(A, B); 186 } 187 188 // Match canonical forms of min/max. We are not using ValueTracking's 189 // more powerful matchSelectPattern() because it may rely on instruction flags 190 // such as "nsw". That would be incompatible with the current hashing 191 // mechanism that may remove flags to increase the likelihood of CSE. 192 193 Flavor = SPF_UNKNOWN; 194 CmpInst::Predicate Pred; 195 196 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 197 // Check for commuted variants of min/max by swapping predicate. 198 // If we do not match the standard or commuted patterns, this is not a 199 // recognized form of min/max, but it is still a select, so return true. 200 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 201 return true; 202 Pred = ICmpInst::getSwappedPredicate(Pred); 203 } 204 205 switch (Pred) { 206 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 207 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 208 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 209 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 210 // Non-strict inequalities. 211 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 212 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 213 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 214 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 215 default: break; 216 } 217 218 return true; 219 } 220 221 static unsigned getHashValueImpl(SimpleValue Val) { 222 Instruction *Inst = Val.Inst; 223 // Hash in all of the operands as pointers. 224 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 225 Value *LHS = BinOp->getOperand(0); 226 Value *RHS = BinOp->getOperand(1); 227 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 228 std::swap(LHS, RHS); 229 230 return hash_combine(BinOp->getOpcode(), LHS, RHS); 231 } 232 233 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 234 // Compares can be commuted by swapping the comparands and 235 // updating the predicate. Choose the form that has the 236 // comparands in sorted order, or in the case of a tie, the 237 // one with the lower predicate. 238 Value *LHS = CI->getOperand(0); 239 Value *RHS = CI->getOperand(1); 240 CmpInst::Predicate Pred = CI->getPredicate(); 241 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 242 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 243 std::swap(LHS, RHS); 244 Pred = SwappedPred; 245 } 246 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 247 } 248 249 // Hash general selects to allow matching commuted true/false operands. 250 SelectPatternFlavor SPF; 251 Value *Cond, *A, *B; 252 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 253 // Hash min/max (cmp + select) to allow for commuted operands. 254 // Min/max may also have non-canonical compare predicate (eg, the compare for 255 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 256 // compare. 257 // TODO: We should also detect FP min/max. 258 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 259 SPF == SPF_UMIN || SPF == SPF_UMAX) { 260 if (A > B) 261 std::swap(A, B); 262 return hash_combine(Inst->getOpcode(), SPF, A, B); 263 } 264 265 // Hash general selects to allow matching commuted true/false operands. 266 267 // If we do not have a compare as the condition, just hash in the condition. 268 CmpInst::Predicate Pred; 269 Value *X, *Y; 270 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 271 return hash_combine(Inst->getOpcode(), Cond, A, B); 272 273 // Similar to cmp normalization (above) - canonicalize the predicate value: 274 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 275 if (CmpInst::getInversePredicate(Pred) < Pred) { 276 Pred = CmpInst::getInversePredicate(Pred); 277 std::swap(A, B); 278 } 279 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 280 } 281 282 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 283 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 284 285 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 286 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 287 288 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 289 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 290 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 291 292 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 293 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 294 IVI->getOperand(1), 295 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 296 297 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 298 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 299 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 300 isa<FreezeInst>(Inst)) && 301 "Invalid/unknown instruction"); 302 303 // Handle intrinsics with commutative operands. 304 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 305 // 2 operands are commutative. 306 auto *II = dyn_cast<IntrinsicInst>(Inst); 307 if (II && II->isCommutative() && II->arg_size() == 2) { 308 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 309 if (LHS > RHS) 310 std::swap(LHS, RHS); 311 return hash_combine(II->getOpcode(), LHS, RHS); 312 } 313 314 // gc.relocate is 'special' call: its second and third operands are 315 // not real values, but indices into statepoint's argument list. 316 // Get values they point to. 317 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 318 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 319 GCR->getBasePtr(), GCR->getDerivedPtr()); 320 321 // Mix in the opcode. 322 return hash_combine( 323 Inst->getOpcode(), 324 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 325 } 326 327 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 328 #ifndef NDEBUG 329 // If -earlycse-debug-hash was specified, return a constant -- this 330 // will force all hashing to collide, so we'll exhaustively search 331 // the table for a match, and the assertion in isEqual will fire if 332 // there's a bug causing equal keys to hash differently. 333 if (EarlyCSEDebugHash) 334 return 0; 335 #endif 336 return getHashValueImpl(Val); 337 } 338 339 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 340 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 341 342 if (LHS.isSentinel() || RHS.isSentinel()) 343 return LHSI == RHSI; 344 345 if (LHSI->getOpcode() != RHSI->getOpcode()) 346 return false; 347 if (LHSI->isIdenticalToWhenDefined(RHSI)) 348 return true; 349 350 // If we're not strictly identical, we still might be a commutable instruction 351 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 352 if (!LHSBinOp->isCommutative()) 353 return false; 354 355 assert(isa<BinaryOperator>(RHSI) && 356 "same opcode, but different instruction type?"); 357 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 358 359 // Commuted equality 360 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 361 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 362 } 363 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 364 assert(isa<CmpInst>(RHSI) && 365 "same opcode, but different instruction type?"); 366 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 367 // Commuted equality 368 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 369 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 370 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 371 } 372 373 // TODO: Extend this for >2 args by matching the trailing N-2 args. 374 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 375 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 376 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 377 LII->isCommutative() && LII->arg_size() == 2) { 378 return LII->getArgOperand(0) == RII->getArgOperand(1) && 379 LII->getArgOperand(1) == RII->getArgOperand(0); 380 } 381 382 // See comment above in `getHashValue()`. 383 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 384 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 385 return GCR1->getOperand(0) == GCR2->getOperand(0) && 386 GCR1->getBasePtr() == GCR2->getBasePtr() && 387 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 388 389 // Min/max can occur with commuted operands, non-canonical predicates, 390 // and/or non-canonical operands. 391 // Selects can be non-trivially equivalent via inverted conditions and swaps. 392 SelectPatternFlavor LSPF, RSPF; 393 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 394 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 395 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 396 if (LSPF == RSPF) { 397 // TODO: We should also detect FP min/max. 398 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 399 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 400 return ((LHSA == RHSA && LHSB == RHSB) || 401 (LHSA == RHSB && LHSB == RHSA)); 402 403 // select Cond, A, B <--> select not(Cond), B, A 404 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 405 return true; 406 } 407 408 // If the true/false operands are swapped and the conditions are compares 409 // with inverted predicates, the selects are equal: 410 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 411 // 412 // This also handles patterns with a double-negation in the sense of not + 413 // inverse, because we looked through a 'not' in the matching function and 414 // swapped A/B: 415 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 416 // 417 // This intentionally does NOT handle patterns with a double-negation in 418 // the sense of not + not, because doing so could result in values 419 // comparing 420 // as equal that hash differently in the min/max cases like: 421 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 422 // ^ hashes as min ^ would not hash as min 423 // In the context of the EarlyCSE pass, however, such cases never reach 424 // this code, as we simplify the double-negation before hashing the second 425 // select (and so still succeed at CSEing them). 426 if (LHSA == RHSB && LHSB == RHSA) { 427 CmpInst::Predicate PredL, PredR; 428 Value *X, *Y; 429 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 430 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 431 CmpInst::getInversePredicate(PredL) == PredR) 432 return true; 433 } 434 } 435 436 return false; 437 } 438 439 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 440 // These comparisons are nontrivial, so assert that equality implies 441 // hash equality (DenseMap demands this as an invariant). 442 bool Result = isEqualImpl(LHS, RHS); 443 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 444 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 445 return Result; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // CallValue 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 454 /// Struct representing the available call values in the scoped hash 455 /// table. 456 struct CallValue { 457 Instruction *Inst; 458 459 CallValue(Instruction *I) : Inst(I) { 460 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 461 } 462 463 bool isSentinel() const { 464 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 465 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 466 } 467 468 static bool canHandle(Instruction *Inst) { 469 // Don't value number anything that returns void. 470 if (Inst->getType()->isVoidTy()) 471 return false; 472 473 CallInst *CI = dyn_cast<CallInst>(Inst); 474 if (!CI || !CI->onlyReadsMemory() || 475 // FIXME: Currently the calls which may access the thread id may 476 // be considered as not accessing the memory. But this is 477 // problematic for coroutines, since coroutines may resume in a 478 // different thread. So we disable the optimization here for the 479 // correctness. However, it may block many other correct 480 // optimizations. Revert this one when we detect the memory 481 // accessing kind more precisely. 482 CI->getFunction()->isPresplitCoroutine()) 483 return false; 484 return true; 485 } 486 }; 487 488 } // end anonymous namespace 489 490 namespace llvm { 491 492 template <> struct DenseMapInfo<CallValue> { 493 static inline CallValue getEmptyKey() { 494 return DenseMapInfo<Instruction *>::getEmptyKey(); 495 } 496 497 static inline CallValue getTombstoneKey() { 498 return DenseMapInfo<Instruction *>::getTombstoneKey(); 499 } 500 501 static unsigned getHashValue(CallValue Val); 502 static bool isEqual(CallValue LHS, CallValue RHS); 503 }; 504 505 } // end namespace llvm 506 507 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 508 Instruction *Inst = Val.Inst; 509 510 // Hash all of the operands as pointers and mix in the opcode. 511 return hash_combine( 512 Inst->getOpcode(), 513 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 514 } 515 516 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 517 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 518 if (LHS.isSentinel() || RHS.isSentinel()) 519 return LHSI == RHSI; 520 521 return LHSI->isIdenticalTo(RHSI); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // EarlyCSE implementation 526 //===----------------------------------------------------------------------===// 527 528 namespace { 529 530 /// A simple and fast domtree-based CSE pass. 531 /// 532 /// This pass does a simple depth-first walk over the dominator tree, 533 /// eliminating trivially redundant instructions and using instsimplify to 534 /// canonicalize things as it goes. It is intended to be fast and catch obvious 535 /// cases so that instcombine and other passes are more effective. It is 536 /// expected that a later pass of GVN will catch the interesting/hard cases. 537 class EarlyCSE { 538 public: 539 const TargetLibraryInfo &TLI; 540 const TargetTransformInfo &TTI; 541 DominatorTree &DT; 542 AssumptionCache &AC; 543 const SimplifyQuery SQ; 544 MemorySSA *MSSA; 545 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 546 547 using AllocatorTy = 548 RecyclingAllocator<BumpPtrAllocator, 549 ScopedHashTableVal<SimpleValue, Value *>>; 550 using ScopedHTType = 551 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 552 AllocatorTy>; 553 554 /// A scoped hash table of the current values of all of our simple 555 /// scalar expressions. 556 /// 557 /// As we walk down the domtree, we look to see if instructions are in this: 558 /// if so, we replace them with what we find, otherwise we insert them so 559 /// that dominated values can succeed in their lookup. 560 ScopedHTType AvailableValues; 561 562 /// A scoped hash table of the current values of previously encountered 563 /// memory locations. 564 /// 565 /// This allows us to get efficient access to dominating loads or stores when 566 /// we have a fully redundant load. In addition to the most recent load, we 567 /// keep track of a generation count of the read, which is compared against 568 /// the current generation count. The current generation count is incremented 569 /// after every possibly writing memory operation, which ensures that we only 570 /// CSE loads with other loads that have no intervening store. Ordering 571 /// events (such as fences or atomic instructions) increment the generation 572 /// count as well; essentially, we model these as writes to all possible 573 /// locations. Note that atomic and/or volatile loads and stores can be 574 /// present the table; it is the responsibility of the consumer to inspect 575 /// the atomicity/volatility if needed. 576 struct LoadValue { 577 Instruction *DefInst = nullptr; 578 unsigned Generation = 0; 579 int MatchingId = -1; 580 bool IsAtomic = false; 581 582 LoadValue() = default; 583 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 584 bool IsAtomic) 585 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 586 IsAtomic(IsAtomic) {} 587 }; 588 589 using LoadMapAllocator = 590 RecyclingAllocator<BumpPtrAllocator, 591 ScopedHashTableVal<Value *, LoadValue>>; 592 using LoadHTType = 593 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 594 LoadMapAllocator>; 595 596 LoadHTType AvailableLoads; 597 598 // A scoped hash table mapping memory locations (represented as typed 599 // addresses) to generation numbers at which that memory location became 600 // (henceforth indefinitely) invariant. 601 using InvariantMapAllocator = 602 RecyclingAllocator<BumpPtrAllocator, 603 ScopedHashTableVal<MemoryLocation, unsigned>>; 604 using InvariantHTType = 605 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 606 InvariantMapAllocator>; 607 InvariantHTType AvailableInvariants; 608 609 /// A scoped hash table of the current values of read-only call 610 /// values. 611 /// 612 /// It uses the same generation count as loads. 613 using CallHTType = 614 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 615 CallHTType AvailableCalls; 616 617 /// This is the current generation of the memory value. 618 unsigned CurrentGeneration = 0; 619 620 /// Set up the EarlyCSE runner for a particular function. 621 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 622 const TargetTransformInfo &TTI, DominatorTree &DT, 623 AssumptionCache &AC, MemorySSA *MSSA) 624 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 625 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 626 627 bool run(); 628 629 private: 630 unsigned ClobberCounter = 0; 631 // Almost a POD, but needs to call the constructors for the scoped hash 632 // tables so that a new scope gets pushed on. These are RAII so that the 633 // scope gets popped when the NodeScope is destroyed. 634 class NodeScope { 635 public: 636 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 637 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 638 : Scope(AvailableValues), LoadScope(AvailableLoads), 639 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 640 NodeScope(const NodeScope &) = delete; 641 NodeScope &operator=(const NodeScope &) = delete; 642 643 private: 644 ScopedHTType::ScopeTy Scope; 645 LoadHTType::ScopeTy LoadScope; 646 InvariantHTType::ScopeTy InvariantScope; 647 CallHTType::ScopeTy CallScope; 648 }; 649 650 // Contains all the needed information to create a stack for doing a depth 651 // first traversal of the tree. This includes scopes for values, loads, and 652 // calls as well as the generation. There is a child iterator so that the 653 // children do not need to be store separately. 654 class StackNode { 655 public: 656 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 657 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 658 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 659 DomTreeNode::const_iterator end) 660 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 661 EndIter(end), 662 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 663 AvailableCalls) 664 {} 665 StackNode(const StackNode &) = delete; 666 StackNode &operator=(const StackNode &) = delete; 667 668 // Accessors. 669 unsigned currentGeneration() const { return CurrentGeneration; } 670 unsigned childGeneration() const { return ChildGeneration; } 671 void childGeneration(unsigned generation) { ChildGeneration = generation; } 672 DomTreeNode *node() { return Node; } 673 DomTreeNode::const_iterator childIter() const { return ChildIter; } 674 675 DomTreeNode *nextChild() { 676 DomTreeNode *child = *ChildIter; 677 ++ChildIter; 678 return child; 679 } 680 681 DomTreeNode::const_iterator end() const { return EndIter; } 682 bool isProcessed() const { return Processed; } 683 void process() { Processed = true; } 684 685 private: 686 unsigned CurrentGeneration; 687 unsigned ChildGeneration; 688 DomTreeNode *Node; 689 DomTreeNode::const_iterator ChildIter; 690 DomTreeNode::const_iterator EndIter; 691 NodeScope Scopes; 692 bool Processed = false; 693 }; 694 695 /// Wrapper class to handle memory instructions, including loads, 696 /// stores and intrinsic loads and stores defined by the target. 697 class ParseMemoryInst { 698 public: 699 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 700 : Inst(Inst) { 701 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 702 IntrID = II->getIntrinsicID(); 703 if (TTI.getTgtMemIntrinsic(II, Info)) 704 return; 705 if (isHandledNonTargetIntrinsic(IntrID)) { 706 switch (IntrID) { 707 case Intrinsic::masked_load: 708 Info.PtrVal = Inst->getOperand(0); 709 Info.MatchingId = Intrinsic::masked_load; 710 Info.ReadMem = true; 711 Info.WriteMem = false; 712 Info.IsVolatile = false; 713 break; 714 case Intrinsic::masked_store: 715 Info.PtrVal = Inst->getOperand(1); 716 // Use the ID of masked load as the "matching id". This will 717 // prevent matching non-masked loads/stores with masked ones 718 // (which could be done), but at the moment, the code here 719 // does not support matching intrinsics with non-intrinsics, 720 // so keep the MatchingIds specific to masked instructions 721 // for now (TODO). 722 Info.MatchingId = Intrinsic::masked_load; 723 Info.ReadMem = false; 724 Info.WriteMem = true; 725 Info.IsVolatile = false; 726 break; 727 } 728 } 729 } 730 } 731 732 Instruction *get() { return Inst; } 733 const Instruction *get() const { return Inst; } 734 735 bool isLoad() const { 736 if (IntrID != 0) 737 return Info.ReadMem; 738 return isa<LoadInst>(Inst); 739 } 740 741 bool isStore() const { 742 if (IntrID != 0) 743 return Info.WriteMem; 744 return isa<StoreInst>(Inst); 745 } 746 747 bool isAtomic() const { 748 if (IntrID != 0) 749 return Info.Ordering != AtomicOrdering::NotAtomic; 750 return Inst->isAtomic(); 751 } 752 753 bool isUnordered() const { 754 if (IntrID != 0) 755 return Info.isUnordered(); 756 757 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 758 return LI->isUnordered(); 759 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 760 return SI->isUnordered(); 761 } 762 // Conservative answer 763 return !Inst->isAtomic(); 764 } 765 766 bool isVolatile() const { 767 if (IntrID != 0) 768 return Info.IsVolatile; 769 770 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 771 return LI->isVolatile(); 772 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 773 return SI->isVolatile(); 774 } 775 // Conservative answer 776 return true; 777 } 778 779 bool isInvariantLoad() const { 780 if (auto *LI = dyn_cast<LoadInst>(Inst)) 781 return LI->hasMetadata(LLVMContext::MD_invariant_load); 782 return false; 783 } 784 785 bool isValid() const { return getPointerOperand() != nullptr; } 786 787 // For regular (non-intrinsic) loads/stores, this is set to -1. For 788 // intrinsic loads/stores, the id is retrieved from the corresponding 789 // field in the MemIntrinsicInfo structure. That field contains 790 // non-negative values only. 791 int getMatchingId() const { 792 if (IntrID != 0) 793 return Info.MatchingId; 794 return -1; 795 } 796 797 Value *getPointerOperand() const { 798 if (IntrID != 0) 799 return Info.PtrVal; 800 return getLoadStorePointerOperand(Inst); 801 } 802 803 Type *getValueType() const { 804 // TODO: handle target-specific intrinsics. 805 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 806 switch (II->getIntrinsicID()) { 807 case Intrinsic::masked_load: 808 return II->getType(); 809 case Intrinsic::masked_store: 810 return II->getArgOperand(0)->getType(); 811 default: 812 return nullptr; 813 } 814 } 815 return getLoadStoreType(Inst); 816 } 817 818 bool mayReadFromMemory() const { 819 if (IntrID != 0) 820 return Info.ReadMem; 821 return Inst->mayReadFromMemory(); 822 } 823 824 bool mayWriteToMemory() const { 825 if (IntrID != 0) 826 return Info.WriteMem; 827 return Inst->mayWriteToMemory(); 828 } 829 830 private: 831 Intrinsic::ID IntrID = 0; 832 MemIntrinsicInfo Info; 833 Instruction *Inst; 834 }; 835 836 // This function is to prevent accidentally passing a non-target 837 // intrinsic ID to TargetTransformInfo. 838 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 839 switch (ID) { 840 case Intrinsic::masked_load: 841 case Intrinsic::masked_store: 842 return true; 843 } 844 return false; 845 } 846 static bool isHandledNonTargetIntrinsic(const Value *V) { 847 if (auto *II = dyn_cast<IntrinsicInst>(V)) 848 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 849 return false; 850 } 851 852 bool processNode(DomTreeNode *Node); 853 854 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 855 const BasicBlock *BB, const BasicBlock *Pred); 856 857 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 858 unsigned CurrentGeneration); 859 860 bool overridingStores(const ParseMemoryInst &Earlier, 861 const ParseMemoryInst &Later); 862 863 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 864 // TODO: We could insert relevant casts on type mismatch here. 865 if (auto *LI = dyn_cast<LoadInst>(Inst)) 866 return LI->getType() == ExpectedType ? LI : nullptr; 867 if (auto *SI = dyn_cast<StoreInst>(Inst)) { 868 Value *V = SI->getValueOperand(); 869 return V->getType() == ExpectedType ? V : nullptr; 870 } 871 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 872 auto *II = cast<IntrinsicInst>(Inst); 873 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 874 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 875 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 876 } 877 878 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 879 Type *ExpectedType) const { 880 // TODO: We could insert relevant casts on type mismatch here. 881 switch (II->getIntrinsicID()) { 882 case Intrinsic::masked_load: 883 return II->getType() == ExpectedType ? II : nullptr; 884 case Intrinsic::masked_store: { 885 Value *V = II->getOperand(0); 886 return V->getType() == ExpectedType ? V : nullptr; 887 } 888 } 889 return nullptr; 890 } 891 892 /// Return true if the instruction is known to only operate on memory 893 /// provably invariant in the given "generation". 894 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 895 896 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 897 Instruction *EarlierInst, Instruction *LaterInst); 898 899 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 900 const IntrinsicInst *Later) { 901 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 902 // Is Mask0 a submask of Mask1? 903 if (Mask0 == Mask1) 904 return true; 905 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 906 return false; 907 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 908 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 909 if (!Vec0 || !Vec1) 910 return false; 911 if (Vec0->getType() != Vec1->getType()) 912 return false; 913 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 914 Constant *Elem0 = Vec0->getOperand(i); 915 Constant *Elem1 = Vec1->getOperand(i); 916 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 917 if (Int0 && Int0->isZero()) 918 continue; 919 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 920 if (Int1 && !Int1->isZero()) 921 continue; 922 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 923 return false; 924 if (Elem0 == Elem1) 925 continue; 926 return false; 927 } 928 return true; 929 }; 930 auto PtrOp = [](const IntrinsicInst *II) { 931 if (II->getIntrinsicID() == Intrinsic::masked_load) 932 return II->getOperand(0); 933 if (II->getIntrinsicID() == Intrinsic::masked_store) 934 return II->getOperand(1); 935 llvm_unreachable("Unexpected IntrinsicInst"); 936 }; 937 auto MaskOp = [](const IntrinsicInst *II) { 938 if (II->getIntrinsicID() == Intrinsic::masked_load) 939 return II->getOperand(2); 940 if (II->getIntrinsicID() == Intrinsic::masked_store) 941 return II->getOperand(3); 942 llvm_unreachable("Unexpected IntrinsicInst"); 943 }; 944 auto ThruOp = [](const IntrinsicInst *II) { 945 if (II->getIntrinsicID() == Intrinsic::masked_load) 946 return II->getOperand(3); 947 llvm_unreachable("Unexpected IntrinsicInst"); 948 }; 949 950 if (PtrOp(Earlier) != PtrOp(Later)) 951 return false; 952 953 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 954 Intrinsic::ID IDL = Later->getIntrinsicID(); 955 // We could really use specific intrinsic classes for masked loads 956 // and stores in IntrinsicInst.h. 957 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 958 // Trying to replace later masked load with the earlier one. 959 // Check that the pointers are the same, and 960 // - masks and pass-throughs are the same, or 961 // - replacee's pass-through is "undef" and replacer's mask is a 962 // super-set of the replacee's mask. 963 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 964 return true; 965 if (!isa<UndefValue>(ThruOp(Later))) 966 return false; 967 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 968 } 969 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 970 // Trying to replace a load of a stored value with the store's value. 971 // Check that the pointers are the same, and 972 // - load's mask is a subset of store's mask, and 973 // - load's pass-through is "undef". 974 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 975 return false; 976 return isa<UndefValue>(ThruOp(Later)); 977 } 978 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 979 // Trying to remove a store of the loaded value. 980 // Check that the pointers are the same, and 981 // - store's mask is a subset of the load's mask. 982 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 983 } 984 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 985 // Trying to remove a dead store (earlier). 986 // Check that the pointers are the same, 987 // - the to-be-removed store's mask is a subset of the other store's 988 // mask. 989 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 990 } 991 return false; 992 } 993 994 void removeMSSA(Instruction &Inst) { 995 if (!MSSA) 996 return; 997 if (VerifyMemorySSA) 998 MSSA->verifyMemorySSA(); 999 // Removing a store here can leave MemorySSA in an unoptimized state by 1000 // creating MemoryPhis that have identical arguments and by creating 1001 // MemoryUses whose defining access is not an actual clobber. The phi case 1002 // is handled by MemorySSA when passing OptimizePhis = true to 1003 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 1004 // by MemorySSA's getClobberingMemoryAccess. 1005 MSSAUpdater->removeMemoryAccess(&Inst, true); 1006 } 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 /// Determine if the memory referenced by LaterInst is from the same heap 1012 /// version as EarlierInst. 1013 /// This is currently called in two scenarios: 1014 /// 1015 /// load p 1016 /// ... 1017 /// load p 1018 /// 1019 /// and 1020 /// 1021 /// x = load p 1022 /// ... 1023 /// store x, p 1024 /// 1025 /// in both cases we want to verify that there are no possible writes to the 1026 /// memory referenced by p between the earlier and later instruction. 1027 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1028 unsigned LaterGeneration, 1029 Instruction *EarlierInst, 1030 Instruction *LaterInst) { 1031 // Check the simple memory generation tracking first. 1032 if (EarlierGeneration == LaterGeneration) 1033 return true; 1034 1035 if (!MSSA) 1036 return false; 1037 1038 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1039 // read/write memory, then we can safely return true here. 1040 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1041 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1042 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1043 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1044 // with the default optimization pipeline. 1045 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1046 if (!EarlierMA) 1047 return true; 1048 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1049 if (!LaterMA) 1050 return true; 1051 1052 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1053 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1054 // EarlierInst and LaterInst and neither can any other write that potentially 1055 // clobbers LaterInst. 1056 MemoryAccess *LaterDef; 1057 if (ClobberCounter < EarlyCSEMssaOptCap) { 1058 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1059 ClobberCounter++; 1060 } else 1061 LaterDef = LaterMA->getDefiningAccess(); 1062 1063 return MSSA->dominates(LaterDef, EarlierMA); 1064 } 1065 1066 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1067 // A location loaded from with an invariant_load is assumed to *never* change 1068 // within the visible scope of the compilation. 1069 if (auto *LI = dyn_cast<LoadInst>(I)) 1070 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1071 return true; 1072 1073 auto MemLocOpt = MemoryLocation::getOrNone(I); 1074 if (!MemLocOpt) 1075 // "target" intrinsic forms of loads aren't currently known to 1076 // MemoryLocation::get. TODO 1077 return false; 1078 MemoryLocation MemLoc = *MemLocOpt; 1079 if (!AvailableInvariants.count(MemLoc)) 1080 return false; 1081 1082 // Is the generation at which this became invariant older than the 1083 // current one? 1084 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1085 } 1086 1087 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1088 const BranchInst *BI, const BasicBlock *BB, 1089 const BasicBlock *Pred) { 1090 assert(BI->isConditional() && "Should be a conditional branch!"); 1091 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1092 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1093 auto *TorF = (BI->getSuccessor(0) == BB) 1094 ? ConstantInt::getTrue(BB->getContext()) 1095 : ConstantInt::getFalse(BB->getContext()); 1096 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1097 Value *&RHS) { 1098 if (Opcode == Instruction::And && 1099 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1100 return true; 1101 else if (Opcode == Instruction::Or && 1102 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1103 return true; 1104 return false; 1105 }; 1106 // If the condition is AND operation, we can propagate its operands into the 1107 // true branch. If it is OR operation, we can propagate them into the false 1108 // branch. 1109 unsigned PropagateOpcode = 1110 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1111 1112 bool MadeChanges = false; 1113 SmallVector<Instruction *, 4> WorkList; 1114 SmallPtrSet<Instruction *, 4> Visited; 1115 WorkList.push_back(CondInst); 1116 while (!WorkList.empty()) { 1117 Instruction *Curr = WorkList.pop_back_val(); 1118 1119 AvailableValues.insert(Curr, TorF); 1120 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1121 << Curr->getName() << "' as " << *TorF << " in " 1122 << BB->getName() << "\n"); 1123 if (!DebugCounter::shouldExecute(CSECounter)) { 1124 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1125 } else { 1126 // Replace all dominated uses with the known value. 1127 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1128 BasicBlockEdge(Pred, BB))) { 1129 NumCSECVP += Count; 1130 MadeChanges = true; 1131 } 1132 } 1133 1134 Value *LHS, *RHS; 1135 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1136 for (auto *Op : { LHS, RHS }) 1137 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1138 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1139 WorkList.push_back(OPI); 1140 } 1141 1142 return MadeChanges; 1143 } 1144 1145 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1146 unsigned CurrentGeneration) { 1147 if (InVal.DefInst == nullptr) 1148 return nullptr; 1149 if (InVal.MatchingId != MemInst.getMatchingId()) 1150 return nullptr; 1151 // We don't yet handle removing loads with ordering of any kind. 1152 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1153 return nullptr; 1154 // We can't replace an atomic load with one which isn't also atomic. 1155 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1156 return nullptr; 1157 // The value V returned from this function is used differently depending 1158 // on whether MemInst is a load or a store. If it's a load, we will replace 1159 // MemInst with V, if it's a store, we will check if V is the same as the 1160 // available value. 1161 bool MemInstMatching = !MemInst.isLoad(); 1162 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1163 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1164 1165 // For stores check the result values before checking memory generation 1166 // (otherwise isSameMemGeneration may crash). 1167 Value *Result = MemInst.isStore() 1168 ? getOrCreateResult(Matching, Other->getType()) 1169 : nullptr; 1170 if (MemInst.isStore() && InVal.DefInst != Result) 1171 return nullptr; 1172 1173 // Deal with non-target memory intrinsics. 1174 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1175 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1176 if (OtherNTI != MatchingNTI) 1177 return nullptr; 1178 if (OtherNTI && MatchingNTI) { 1179 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1180 cast<IntrinsicInst>(MemInst.get()))) 1181 return nullptr; 1182 } 1183 1184 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1185 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1186 MemInst.get())) 1187 return nullptr; 1188 1189 if (!Result) 1190 Result = getOrCreateResult(Matching, Other->getType()); 1191 return Result; 1192 } 1193 1194 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1195 const ParseMemoryInst &Later) { 1196 // Can we remove Earlier store because of Later store? 1197 1198 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1199 "Violated invariant"); 1200 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1201 return false; 1202 if (!Earlier.getValueType() || !Later.getValueType() || 1203 Earlier.getValueType() != Later.getValueType()) 1204 return false; 1205 if (Earlier.getMatchingId() != Later.getMatchingId()) 1206 return false; 1207 // At the moment, we don't remove ordered stores, but do remove 1208 // unordered atomic stores. There's no special requirement (for 1209 // unordered atomics) about removing atomic stores only in favor of 1210 // other atomic stores since we were going to execute the non-atomic 1211 // one anyway and the atomic one might never have become visible. 1212 if (!Earlier.isUnordered() || !Later.isUnordered()) 1213 return false; 1214 1215 // Deal with non-target memory intrinsics. 1216 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1217 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1218 if (ENTI && LNTI) 1219 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1220 cast<IntrinsicInst>(Later.get())); 1221 1222 // Because of the check above, at least one of them is false. 1223 // For now disallow matching intrinsics with non-intrinsics, 1224 // so assume that the stores match if neither is an intrinsic. 1225 return ENTI == LNTI; 1226 } 1227 1228 bool EarlyCSE::processNode(DomTreeNode *Node) { 1229 bool Changed = false; 1230 BasicBlock *BB = Node->getBlock(); 1231 1232 // If this block has a single predecessor, then the predecessor is the parent 1233 // of the domtree node and all of the live out memory values are still current 1234 // in this block. If this block has multiple predecessors, then they could 1235 // have invalidated the live-out memory values of our parent value. For now, 1236 // just be conservative and invalidate memory if this block has multiple 1237 // predecessors. 1238 if (!BB->getSinglePredecessor()) 1239 ++CurrentGeneration; 1240 1241 // If this node has a single predecessor which ends in a conditional branch, 1242 // we can infer the value of the branch condition given that we took this 1243 // path. We need the single predecessor to ensure there's not another path 1244 // which reaches this block where the condition might hold a different 1245 // value. Since we're adding this to the scoped hash table (like any other 1246 // def), it will have been popped if we encounter a future merge block. 1247 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1248 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1249 if (BI && BI->isConditional()) { 1250 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1251 if (CondInst && SimpleValue::canHandle(CondInst)) 1252 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1253 } 1254 } 1255 1256 /// LastStore - Keep track of the last non-volatile store that we saw... for 1257 /// as long as there in no instruction that reads memory. If we see a store 1258 /// to the same location, we delete the dead store. This zaps trivial dead 1259 /// stores which can occur in bitfield code among other things. 1260 Instruction *LastStore = nullptr; 1261 1262 // See if any instructions in the block can be eliminated. If so, do it. If 1263 // not, add them to AvailableValues. 1264 for (Instruction &Inst : make_early_inc_range(*BB)) { 1265 // Dead instructions should just be removed. 1266 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1267 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1268 if (!DebugCounter::shouldExecute(CSECounter)) { 1269 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1270 continue; 1271 } 1272 1273 salvageKnowledge(&Inst, &AC); 1274 salvageDebugInfo(Inst); 1275 removeMSSA(Inst); 1276 Inst.eraseFromParent(); 1277 Changed = true; 1278 ++NumSimplify; 1279 continue; 1280 } 1281 1282 // Skip assume intrinsics, they don't really have side effects (although 1283 // they're marked as such to ensure preservation of control dependencies), 1284 // and this pass will not bother with its removal. However, we should mark 1285 // its condition as true for all dominated blocks. 1286 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1287 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1288 if (CondI && SimpleValue::canHandle(CondI)) { 1289 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1290 << '\n'); 1291 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1292 } else 1293 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1294 continue; 1295 } 1296 1297 // Likewise, noalias intrinsics don't actually write. 1298 if (match(&Inst, 1299 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1300 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1301 << '\n'); 1302 continue; 1303 } 1304 1305 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1306 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1307 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1308 continue; 1309 } 1310 1311 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1312 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1313 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1314 continue; 1315 } 1316 1317 // We can skip all invariant.start intrinsics since they only read memory, 1318 // and we can forward values across it. For invariant starts without 1319 // invariant ends, we can use the fact that the invariantness never ends to 1320 // start a scope in the current generaton which is true for all future 1321 // generations. Also, we dont need to consume the last store since the 1322 // semantics of invariant.start allow us to perform DSE of the last 1323 // store, if there was a store following invariant.start. Consider: 1324 // 1325 // store 30, i8* p 1326 // invariant.start(p) 1327 // store 40, i8* p 1328 // We can DSE the store to 30, since the store 40 to invariant location p 1329 // causes undefined behaviour. 1330 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1331 // If there are any uses, the scope might end. 1332 if (!Inst.use_empty()) 1333 continue; 1334 MemoryLocation MemLoc = 1335 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1336 // Don't start a scope if we already have a better one pushed 1337 if (!AvailableInvariants.count(MemLoc)) 1338 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1339 continue; 1340 } 1341 1342 if (isGuard(&Inst)) { 1343 if (auto *CondI = 1344 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1345 if (SimpleValue::canHandle(CondI)) { 1346 // Do we already know the actual value of this condition? 1347 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1348 // Is the condition known to be true? 1349 if (isa<ConstantInt>(KnownCond) && 1350 cast<ConstantInt>(KnownCond)->isOne()) { 1351 LLVM_DEBUG(dbgs() 1352 << "EarlyCSE removing guard: " << Inst << '\n'); 1353 salvageKnowledge(&Inst, &AC); 1354 removeMSSA(Inst); 1355 Inst.eraseFromParent(); 1356 Changed = true; 1357 continue; 1358 } else 1359 // Use the known value if it wasn't true. 1360 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1361 } 1362 // The condition we're on guarding here is true for all dominated 1363 // locations. 1364 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1365 } 1366 } 1367 1368 // Guard intrinsics read all memory, but don't write any memory. 1369 // Accordingly, don't update the generation but consume the last store (to 1370 // avoid an incorrect DSE). 1371 LastStore = nullptr; 1372 continue; 1373 } 1374 1375 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1376 // its simpler value. 1377 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1378 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1379 << '\n'); 1380 if (!DebugCounter::shouldExecute(CSECounter)) { 1381 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1382 } else { 1383 bool Killed = false; 1384 if (!Inst.use_empty()) { 1385 Inst.replaceAllUsesWith(V); 1386 Changed = true; 1387 } 1388 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1389 salvageKnowledge(&Inst, &AC); 1390 removeMSSA(Inst); 1391 Inst.eraseFromParent(); 1392 Changed = true; 1393 Killed = true; 1394 } 1395 if (Changed) 1396 ++NumSimplify; 1397 if (Killed) 1398 continue; 1399 } 1400 } 1401 1402 // If this is a simple instruction that we can value number, process it. 1403 if (SimpleValue::canHandle(&Inst)) { 1404 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1405 assert(CI->getExceptionBehavior() != fp::ebStrict && 1406 "Unexpected ebStrict from SimpleValue::canHandle()"); 1407 assert((!CI->getRoundingMode() || 1408 CI->getRoundingMode() != RoundingMode::Dynamic) && 1409 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1410 } 1411 // See if the instruction has an available value. If so, use it. 1412 if (Value *V = AvailableValues.lookup(&Inst)) { 1413 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1414 << '\n'); 1415 if (!DebugCounter::shouldExecute(CSECounter)) { 1416 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1417 continue; 1418 } 1419 if (auto *I = dyn_cast<Instruction>(V)) { 1420 // If I being poison triggers UB, there is no need to drop those 1421 // flags. Otherwise, only retain flags present on both I and Inst. 1422 // TODO: Currently some fast-math flags are not treated as 1423 // poison-generating even though they should. Until this is fixed, 1424 // always retain flags present on both I and Inst for floating point 1425 // instructions. 1426 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1427 I->andIRFlags(&Inst); 1428 } 1429 Inst.replaceAllUsesWith(V); 1430 salvageKnowledge(&Inst, &AC); 1431 removeMSSA(Inst); 1432 Inst.eraseFromParent(); 1433 Changed = true; 1434 ++NumCSE; 1435 continue; 1436 } 1437 1438 // Otherwise, just remember that this value is available. 1439 AvailableValues.insert(&Inst, &Inst); 1440 continue; 1441 } 1442 1443 ParseMemoryInst MemInst(&Inst, TTI); 1444 // If this is a non-volatile load, process it. 1445 if (MemInst.isValid() && MemInst.isLoad()) { 1446 // (conservatively) we can't peak past the ordering implied by this 1447 // operation, but we can add this load to our set of available values 1448 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1449 LastStore = nullptr; 1450 ++CurrentGeneration; 1451 } 1452 1453 if (MemInst.isInvariantLoad()) { 1454 // If we pass an invariant load, we know that memory location is 1455 // indefinitely constant from the moment of first dereferenceability. 1456 // We conservatively treat the invariant_load as that moment. If we 1457 // pass a invariant load after already establishing a scope, don't 1458 // restart it since we want to preserve the earliest point seen. 1459 auto MemLoc = MemoryLocation::get(&Inst); 1460 if (!AvailableInvariants.count(MemLoc)) 1461 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1462 } 1463 1464 // If we have an available version of this load, and if it is the right 1465 // generation or the load is known to be from an invariant location, 1466 // replace this instruction. 1467 // 1468 // If either the dominating load or the current load are invariant, then 1469 // we can assume the current load loads the same value as the dominating 1470 // load. 1471 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1472 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1473 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1474 << " to: " << *InVal.DefInst << '\n'); 1475 if (!DebugCounter::shouldExecute(CSECounter)) { 1476 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1477 continue; 1478 } 1479 if (!Inst.use_empty()) 1480 Inst.replaceAllUsesWith(Op); 1481 salvageKnowledge(&Inst, &AC); 1482 removeMSSA(Inst); 1483 Inst.eraseFromParent(); 1484 Changed = true; 1485 ++NumCSELoad; 1486 continue; 1487 } 1488 1489 // Otherwise, remember that we have this instruction. 1490 AvailableLoads.insert(MemInst.getPointerOperand(), 1491 LoadValue(&Inst, CurrentGeneration, 1492 MemInst.getMatchingId(), 1493 MemInst.isAtomic())); 1494 LastStore = nullptr; 1495 continue; 1496 } 1497 1498 // If this instruction may read from memory or throw (and potentially read 1499 // from memory in the exception handler), forget LastStore. Load/store 1500 // intrinsics will indicate both a read and a write to memory. The target 1501 // may override this (e.g. so that a store intrinsic does not read from 1502 // memory, and thus will be treated the same as a regular store for 1503 // commoning purposes). 1504 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1505 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1506 LastStore = nullptr; 1507 1508 // If this is a read-only call, process it. 1509 if (CallValue::canHandle(&Inst)) { 1510 // If we have an available version of this call, and if it is the right 1511 // generation, replace this instruction. 1512 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1513 if (InVal.first != nullptr && 1514 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1515 &Inst)) { 1516 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1517 << " to: " << *InVal.first << '\n'); 1518 if (!DebugCounter::shouldExecute(CSECounter)) { 1519 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1520 continue; 1521 } 1522 if (!Inst.use_empty()) 1523 Inst.replaceAllUsesWith(InVal.first); 1524 salvageKnowledge(&Inst, &AC); 1525 removeMSSA(Inst); 1526 Inst.eraseFromParent(); 1527 Changed = true; 1528 ++NumCSECall; 1529 continue; 1530 } 1531 1532 // Otherwise, remember that we have this instruction. 1533 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1534 continue; 1535 } 1536 1537 // A release fence requires that all stores complete before it, but does 1538 // not prevent the reordering of following loads 'before' the fence. As a 1539 // result, we don't need to consider it as writing to memory and don't need 1540 // to advance the generation. We do need to prevent DSE across the fence, 1541 // but that's handled above. 1542 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1543 if (FI->getOrdering() == AtomicOrdering::Release) { 1544 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1545 continue; 1546 } 1547 1548 // write back DSE - If we write back the same value we just loaded from 1549 // the same location and haven't passed any intervening writes or ordering 1550 // operations, we can remove the write. The primary benefit is in allowing 1551 // the available load table to remain valid and value forward past where 1552 // the store originally was. 1553 if (MemInst.isValid() && MemInst.isStore()) { 1554 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1555 if (InVal.DefInst && 1556 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1557 // It is okay to have a LastStore to a different pointer here if MemorySSA 1558 // tells us that the load and store are from the same memory generation. 1559 // In that case, LastStore should keep its present value since we're 1560 // removing the current store. 1561 assert((!LastStore || 1562 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1563 MemInst.getPointerOperand() || 1564 MSSA) && 1565 "can't have an intervening store if not using MemorySSA!"); 1566 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1567 if (!DebugCounter::shouldExecute(CSECounter)) { 1568 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1569 continue; 1570 } 1571 salvageKnowledge(&Inst, &AC); 1572 removeMSSA(Inst); 1573 Inst.eraseFromParent(); 1574 Changed = true; 1575 ++NumDSE; 1576 // We can avoid incrementing the generation count since we were able 1577 // to eliminate this store. 1578 continue; 1579 } 1580 } 1581 1582 // Okay, this isn't something we can CSE at all. Check to see if it is 1583 // something that could modify memory. If so, our available memory values 1584 // cannot be used so bump the generation count. 1585 if (Inst.mayWriteToMemory()) { 1586 ++CurrentGeneration; 1587 1588 if (MemInst.isValid() && MemInst.isStore()) { 1589 // We do a trivial form of DSE if there are two stores to the same 1590 // location with no intervening loads. Delete the earlier store. 1591 if (LastStore) { 1592 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1593 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1594 << " due to: " << Inst << '\n'); 1595 if (!DebugCounter::shouldExecute(CSECounter)) { 1596 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1597 } else { 1598 salvageKnowledge(&Inst, &AC); 1599 removeMSSA(*LastStore); 1600 LastStore->eraseFromParent(); 1601 Changed = true; 1602 ++NumDSE; 1603 LastStore = nullptr; 1604 } 1605 } 1606 // fallthrough - we can exploit information about this store 1607 } 1608 1609 // Okay, we just invalidated anything we knew about loaded values. Try 1610 // to salvage *something* by remembering that the stored value is a live 1611 // version of the pointer. It is safe to forward from volatile stores 1612 // to non-volatile loads, so we don't have to check for volatility of 1613 // the store. 1614 AvailableLoads.insert(MemInst.getPointerOperand(), 1615 LoadValue(&Inst, CurrentGeneration, 1616 MemInst.getMatchingId(), 1617 MemInst.isAtomic())); 1618 1619 // Remember that this was the last unordered store we saw for DSE. We 1620 // don't yet handle DSE on ordered or volatile stores since we don't 1621 // have a good way to model the ordering requirement for following 1622 // passes once the store is removed. We could insert a fence, but 1623 // since fences are slightly stronger than stores in their ordering, 1624 // it's not clear this is a profitable transform. Another option would 1625 // be to merge the ordering with that of the post dominating store. 1626 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1627 LastStore = &Inst; 1628 else 1629 LastStore = nullptr; 1630 } 1631 } 1632 } 1633 1634 return Changed; 1635 } 1636 1637 bool EarlyCSE::run() { 1638 // Note, deque is being used here because there is significant performance 1639 // gains over vector when the container becomes very large due to the 1640 // specific access patterns. For more information see the mailing list 1641 // discussion on this: 1642 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1643 std::deque<StackNode *> nodesToProcess; 1644 1645 bool Changed = false; 1646 1647 // Process the root node. 1648 nodesToProcess.push_back(new StackNode( 1649 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1650 CurrentGeneration, DT.getRootNode(), 1651 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1652 1653 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1654 1655 // Process the stack. 1656 while (!nodesToProcess.empty()) { 1657 // Grab the first item off the stack. Set the current generation, remove 1658 // the node from the stack, and process it. 1659 StackNode *NodeToProcess = nodesToProcess.back(); 1660 1661 // Initialize class members. 1662 CurrentGeneration = NodeToProcess->currentGeneration(); 1663 1664 // Check if the node needs to be processed. 1665 if (!NodeToProcess->isProcessed()) { 1666 // Process the node. 1667 Changed |= processNode(NodeToProcess->node()); 1668 NodeToProcess->childGeneration(CurrentGeneration); 1669 NodeToProcess->process(); 1670 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1671 // Push the next child onto the stack. 1672 DomTreeNode *child = NodeToProcess->nextChild(); 1673 nodesToProcess.push_back( 1674 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1675 AvailableCalls, NodeToProcess->childGeneration(), 1676 child, child->begin(), child->end())); 1677 } else { 1678 // It has been processed, and there are no more children to process, 1679 // so delete it and pop it off the stack. 1680 delete NodeToProcess; 1681 nodesToProcess.pop_back(); 1682 } 1683 } // while (!nodes...) 1684 1685 return Changed; 1686 } 1687 1688 PreservedAnalyses EarlyCSEPass::run(Function &F, 1689 FunctionAnalysisManager &AM) { 1690 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1691 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1692 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1693 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1694 auto *MSSA = 1695 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1696 1697 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1698 1699 if (!CSE.run()) 1700 return PreservedAnalyses::all(); 1701 1702 PreservedAnalyses PA; 1703 PA.preserveSet<CFGAnalyses>(); 1704 if (UseMemorySSA) 1705 PA.preserve<MemorySSAAnalysis>(); 1706 return PA; 1707 } 1708 1709 void EarlyCSEPass::printPipeline( 1710 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1711 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1712 OS, MapClassName2PassName); 1713 OS << "<"; 1714 if (UseMemorySSA) 1715 OS << "memssa"; 1716 OS << ">"; 1717 } 1718 1719 namespace { 1720 1721 /// A simple and fast domtree-based CSE pass. 1722 /// 1723 /// This pass does a simple depth-first walk over the dominator tree, 1724 /// eliminating trivially redundant instructions and using instsimplify to 1725 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1726 /// cases so that instcombine and other passes are more effective. It is 1727 /// expected that a later pass of GVN will catch the interesting/hard cases. 1728 template<bool UseMemorySSA> 1729 class EarlyCSELegacyCommonPass : public FunctionPass { 1730 public: 1731 static char ID; 1732 1733 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1734 if (UseMemorySSA) 1735 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1736 else 1737 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1745 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1746 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1747 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1748 auto *MSSA = 1749 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1750 1751 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1752 1753 return CSE.run(); 1754 } 1755 1756 void getAnalysisUsage(AnalysisUsage &AU) const override { 1757 AU.addRequired<AssumptionCacheTracker>(); 1758 AU.addRequired<DominatorTreeWrapperPass>(); 1759 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1760 AU.addRequired<TargetTransformInfoWrapperPass>(); 1761 if (UseMemorySSA) { 1762 AU.addRequired<AAResultsWrapperPass>(); 1763 AU.addRequired<MemorySSAWrapperPass>(); 1764 AU.addPreserved<MemorySSAWrapperPass>(); 1765 } 1766 AU.addPreserved<GlobalsAAWrapperPass>(); 1767 AU.addPreserved<AAResultsWrapperPass>(); 1768 AU.setPreservesCFG(); 1769 } 1770 }; 1771 1772 } // end anonymous namespace 1773 1774 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1775 1776 template<> 1777 char EarlyCSELegacyPass::ID = 0; 1778 1779 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1780 false) 1781 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1782 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1784 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1785 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1786 1787 using EarlyCSEMemSSALegacyPass = 1788 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1789 1790 template<> 1791 char EarlyCSEMemSSALegacyPass::ID = 0; 1792 1793 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1794 if (UseMemorySSA) 1795 return new EarlyCSEMemSSALegacyPass(); 1796 else 1797 return new EarlyCSELegacyPass(); 1798 } 1799 1800 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1801 "Early CSE w/ MemorySSA", false, false) 1802 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1803 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1804 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1805 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1806 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1807 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1808 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1809 "Early CSE w/ MemorySSA", false, false) 1810