1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd"); 71 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 72 73 DEBUG_COUNTER(CSECounter, "early-cse", 74 "Controls which instructions are removed"); 75 76 static cl::opt<unsigned> EarlyCSEMssaOptCap( 77 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 78 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 79 "for faster compile. Caps the MemorySSA clobbering calls.")); 80 81 static cl::opt<bool> EarlyCSEDebugHash( 82 "earlycse-debug-hash", cl::init(false), cl::Hidden, 83 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 84 "function is well-behaved w.r.t. its isEqual predicate")); 85 86 //===----------------------------------------------------------------------===// 87 // SimpleValue 88 //===----------------------------------------------------------------------===// 89 90 namespace { 91 92 /// Struct representing the available values in the scoped hash table. 93 struct SimpleValue { 94 Instruction *Inst; 95 96 SimpleValue(Instruction *I) : Inst(I) { 97 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 98 } 99 100 bool isSentinel() const { 101 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 102 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 103 } 104 105 static bool canHandle(Instruction *Inst) { 106 // This can only handle non-void readnone functions. 107 // Also handled are constrained intrinsic that look like the types 108 // of instruction handled below (UnaryOperator, etc.). 109 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 110 if (Function *F = CI->getCalledFunction()) { 111 switch ((Intrinsic::ID)F->getIntrinsicID()) { 112 case Intrinsic::experimental_constrained_fadd: 113 case Intrinsic::experimental_constrained_fsub: 114 case Intrinsic::experimental_constrained_fmul: 115 case Intrinsic::experimental_constrained_fdiv: 116 case Intrinsic::experimental_constrained_frem: 117 case Intrinsic::experimental_constrained_fptosi: 118 case Intrinsic::experimental_constrained_sitofp: 119 case Intrinsic::experimental_constrained_fptoui: 120 case Intrinsic::experimental_constrained_uitofp: 121 case Intrinsic::experimental_constrained_fcmp: 122 case Intrinsic::experimental_constrained_fcmps: { 123 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 124 if (CFP->getExceptionBehavior() && 125 CFP->getExceptionBehavior() == fp::ebStrict) 126 return false; 127 // Since we CSE across function calls we must not allow 128 // the rounding mode to change. 129 if (CFP->getRoundingMode() && 130 CFP->getRoundingMode() == RoundingMode::Dynamic) 131 return false; 132 return true; 133 } 134 } 135 } 136 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && 137 // FIXME: Currently the calls which may access the thread id may 138 // be considered as not accessing the memory. But this is 139 // problematic for coroutines, since coroutines may resume in a 140 // different thread. So we disable the optimization here for the 141 // correctness. However, it may block many other correct 142 // optimizations. Revert this one when we detect the memory 143 // accessing kind more precisely. 144 !CI->getFunction()->isPresplitCoroutine(); 145 } 146 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 147 isa<BinaryOperator>(Inst) || isa<CmpInst>(Inst) || 148 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 149 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 150 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst) || 151 isa<FreezeInst>(Inst); 152 } 153 }; 154 155 } // end anonymous namespace 156 157 namespace llvm { 158 159 template <> struct DenseMapInfo<SimpleValue> { 160 static inline SimpleValue getEmptyKey() { 161 return DenseMapInfo<Instruction *>::getEmptyKey(); 162 } 163 164 static inline SimpleValue getTombstoneKey() { 165 return DenseMapInfo<Instruction *>::getTombstoneKey(); 166 } 167 168 static unsigned getHashValue(SimpleValue Val); 169 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 170 }; 171 172 } // end namespace llvm 173 174 /// Match a 'select' including an optional 'not's of the condition. 175 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 176 Value *&B, 177 SelectPatternFlavor &Flavor) { 178 // Return false if V is not even a select. 179 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 180 return false; 181 182 // Look through a 'not' of the condition operand by swapping A/B. 183 Value *CondNot; 184 if (match(Cond, m_Not(m_Value(CondNot)))) { 185 Cond = CondNot; 186 std::swap(A, B); 187 } 188 189 // Match canonical forms of min/max. We are not using ValueTracking's 190 // more powerful matchSelectPattern() because it may rely on instruction flags 191 // such as "nsw". That would be incompatible with the current hashing 192 // mechanism that may remove flags to increase the likelihood of CSE. 193 194 Flavor = SPF_UNKNOWN; 195 CmpInst::Predicate Pred; 196 197 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 198 // Check for commuted variants of min/max by swapping predicate. 199 // If we do not match the standard or commuted patterns, this is not a 200 // recognized form of min/max, but it is still a select, so return true. 201 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 202 return true; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 switch (Pred) { 207 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 208 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 209 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 210 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 211 // Non-strict inequalities. 212 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 213 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 214 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 215 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 216 default: break; 217 } 218 219 return true; 220 } 221 222 static unsigned hashCallInst(CallInst *CI) { 223 // Don't CSE convergent calls in different basic blocks, because they 224 // implicitly depend on the set of threads that is currently executing. 225 if (CI->isConvergent()) { 226 return hash_combine( 227 CI->getOpcode(), CI->getParent(), 228 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 229 } 230 return hash_combine( 231 CI->getOpcode(), 232 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 233 } 234 235 static unsigned getHashValueImpl(SimpleValue Val) { 236 Instruction *Inst = Val.Inst; 237 // Hash in all of the operands as pointers. 238 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 239 Value *LHS = BinOp->getOperand(0); 240 Value *RHS = BinOp->getOperand(1); 241 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 242 std::swap(LHS, RHS); 243 244 return hash_combine(BinOp->getOpcode(), LHS, RHS); 245 } 246 247 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 248 // Compares can be commuted by swapping the comparands and 249 // updating the predicate. Choose the form that has the 250 // comparands in sorted order, or in the case of a tie, the 251 // one with the lower predicate. 252 Value *LHS = CI->getOperand(0); 253 Value *RHS = CI->getOperand(1); 254 CmpInst::Predicate Pred = CI->getPredicate(); 255 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 256 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 257 std::swap(LHS, RHS); 258 Pred = SwappedPred; 259 } 260 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 261 } 262 263 // Hash general selects to allow matching commuted true/false operands. 264 SelectPatternFlavor SPF; 265 Value *Cond, *A, *B; 266 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 267 // Hash min/max (cmp + select) to allow for commuted operands. 268 // Min/max may also have non-canonical compare predicate (eg, the compare for 269 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 270 // compare. 271 // TODO: We should also detect FP min/max. 272 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 273 SPF == SPF_UMIN || SPF == SPF_UMAX) { 274 if (A > B) 275 std::swap(A, B); 276 return hash_combine(Inst->getOpcode(), SPF, A, B); 277 } 278 279 // Hash general selects to allow matching commuted true/false operands. 280 281 // If we do not have a compare as the condition, just hash in the condition. 282 CmpInst::Predicate Pred; 283 Value *X, *Y; 284 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 285 return hash_combine(Inst->getOpcode(), Cond, A, B); 286 287 // Similar to cmp normalization (above) - canonicalize the predicate value: 288 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 289 if (CmpInst::getInversePredicate(Pred) < Pred) { 290 Pred = CmpInst::getInversePredicate(Pred); 291 std::swap(A, B); 292 } 293 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 294 } 295 296 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 297 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 298 299 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 300 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 301 302 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 303 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 304 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 305 306 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 307 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 308 IVI->getOperand(1), 309 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 310 311 assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) || 312 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 313 isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) && 314 "Invalid/unknown instruction"); 315 316 // Handle intrinsics with commutative operands. 317 auto *II = dyn_cast<IntrinsicInst>(Inst); 318 if (II && II->isCommutative() && II->arg_size() >= 2) { 319 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 320 if (LHS > RHS) 321 std::swap(LHS, RHS); 322 return hash_combine( 323 II->getOpcode(), LHS, RHS, 324 hash_combine_range(II->value_op_begin() + 2, II->value_op_end())); 325 } 326 327 // gc.relocate is 'special' call: its second and third operands are 328 // not real values, but indices into statepoint's argument list. 329 // Get values they point to. 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 331 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 332 GCR->getBasePtr(), GCR->getDerivedPtr()); 333 334 // Don't CSE convergent calls in different basic blocks, because they 335 // implicitly depend on the set of threads that is currently executing. 336 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 337 return hashCallInst(CI); 338 339 // Mix in the opcode. 340 return hash_combine( 341 Inst->getOpcode(), 342 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 343 } 344 345 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 346 #ifndef NDEBUG 347 // If -earlycse-debug-hash was specified, return a constant -- this 348 // will force all hashing to collide, so we'll exhaustively search 349 // the table for a match, and the assertion in isEqual will fire if 350 // there's a bug causing equal keys to hash differently. 351 if (EarlyCSEDebugHash) 352 return 0; 353 #endif 354 return getHashValueImpl(Val); 355 } 356 357 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 358 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 359 360 if (LHS.isSentinel() || RHS.isSentinel()) 361 return LHSI == RHSI; 362 363 if (LHSI->getOpcode() != RHSI->getOpcode()) 364 return false; 365 if (LHSI->isIdenticalToWhenDefined(RHSI)) { 366 // Convergent calls implicitly depend on the set of threads that is 367 // currently executing, so conservatively return false if they are in 368 // different basic blocks. 369 if (CallInst *CI = dyn_cast<CallInst>(LHSI); 370 CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 371 return false; 372 373 return true; 374 } 375 376 // If we're not strictly identical, we still might be a commutable instruction 377 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 378 if (!LHSBinOp->isCommutative()) 379 return false; 380 381 assert(isa<BinaryOperator>(RHSI) && 382 "same opcode, but different instruction type?"); 383 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 384 385 // Commuted equality 386 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 387 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 388 } 389 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 390 assert(isa<CmpInst>(RHSI) && 391 "same opcode, but different instruction type?"); 392 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 393 // Commuted equality 394 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 395 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 396 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 397 } 398 399 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 400 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 401 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 402 LII->isCommutative() && LII->arg_size() >= 2) { 403 return LII->getArgOperand(0) == RII->getArgOperand(1) && 404 LII->getArgOperand(1) == RII->getArgOperand(0) && 405 std::equal(LII->arg_begin() + 2, LII->arg_end(), 406 RII->arg_begin() + 2, RII->arg_end()); 407 } 408 409 // See comment above in `getHashValue()`. 410 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 411 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 412 return GCR1->getOperand(0) == GCR2->getOperand(0) && 413 GCR1->getBasePtr() == GCR2->getBasePtr() && 414 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 415 416 // Min/max can occur with commuted operands, non-canonical predicates, 417 // and/or non-canonical operands. 418 // Selects can be non-trivially equivalent via inverted conditions and swaps. 419 SelectPatternFlavor LSPF, RSPF; 420 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 421 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 422 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 423 if (LSPF == RSPF) { 424 // TODO: We should also detect FP min/max. 425 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 426 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 427 return ((LHSA == RHSA && LHSB == RHSB) || 428 (LHSA == RHSB && LHSB == RHSA)); 429 430 // select Cond, A, B <--> select not(Cond), B, A 431 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 432 return true; 433 } 434 435 // If the true/false operands are swapped and the conditions are compares 436 // with inverted predicates, the selects are equal: 437 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 438 // 439 // This also handles patterns with a double-negation in the sense of not + 440 // inverse, because we looked through a 'not' in the matching function and 441 // swapped A/B: 442 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 443 // 444 // This intentionally does NOT handle patterns with a double-negation in 445 // the sense of not + not, because doing so could result in values 446 // comparing 447 // as equal that hash differently in the min/max cases like: 448 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 449 // ^ hashes as min ^ would not hash as min 450 // In the context of the EarlyCSE pass, however, such cases never reach 451 // this code, as we simplify the double-negation before hashing the second 452 // select (and so still succeed at CSEing them). 453 if (LHSA == RHSB && LHSB == RHSA) { 454 CmpInst::Predicate PredL, PredR; 455 Value *X, *Y; 456 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 457 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 458 CmpInst::getInversePredicate(PredL) == PredR) 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 467 // These comparisons are nontrivial, so assert that equality implies 468 // hash equality (DenseMap demands this as an invariant). 469 bool Result = isEqualImpl(LHS, RHS); 470 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 471 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 472 return Result; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // CallValue 477 //===----------------------------------------------------------------------===// 478 479 namespace { 480 481 /// Struct representing the available call values in the scoped hash 482 /// table. 483 struct CallValue { 484 Instruction *Inst; 485 486 CallValue(Instruction *I) : Inst(I) { 487 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 488 } 489 490 bool isSentinel() const { 491 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 492 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 493 } 494 495 static bool canHandle(Instruction *Inst) { 496 // Don't value number anything that returns void. 497 if (Inst->getType()->isVoidTy()) 498 return false; 499 500 CallInst *CI = dyn_cast<CallInst>(Inst); 501 if (!CI || !CI->onlyReadsMemory() || 502 // FIXME: Currently the calls which may access the thread id may 503 // be considered as not accessing the memory. But this is 504 // problematic for coroutines, since coroutines may resume in a 505 // different thread. So we disable the optimization here for the 506 // correctness. However, it may block many other correct 507 // optimizations. Revert this one when we detect the memory 508 // accessing kind more precisely. 509 CI->getFunction()->isPresplitCoroutine()) 510 return false; 511 return true; 512 } 513 }; 514 515 } // end anonymous namespace 516 517 namespace llvm { 518 519 template <> struct DenseMapInfo<CallValue> { 520 static inline CallValue getEmptyKey() { 521 return DenseMapInfo<Instruction *>::getEmptyKey(); 522 } 523 524 static inline CallValue getTombstoneKey() { 525 return DenseMapInfo<Instruction *>::getTombstoneKey(); 526 } 527 528 static unsigned getHashValue(CallValue Val); 529 static bool isEqual(CallValue LHS, CallValue RHS); 530 }; 531 532 } // end namespace llvm 533 534 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 535 Instruction *Inst = Val.Inst; 536 537 // Hash all of the operands as pointers and mix in the opcode. 538 return hashCallInst(cast<CallInst>(Inst)); 539 } 540 541 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 542 if (LHS.isSentinel() || RHS.isSentinel()) 543 return LHS.Inst == RHS.Inst; 544 545 CallInst *LHSI = cast<CallInst>(LHS.Inst); 546 CallInst *RHSI = cast<CallInst>(RHS.Inst); 547 548 // Convergent calls implicitly depend on the set of threads that is 549 // currently executing, so conservatively return false if they are in 550 // different basic blocks. 551 if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 552 return false; 553 554 return LHSI->isIdenticalTo(RHSI); 555 } 556 557 //===----------------------------------------------------------------------===// 558 // GEPValue 559 //===----------------------------------------------------------------------===// 560 561 namespace { 562 563 struct GEPValue { 564 Instruction *Inst; 565 std::optional<int64_t> ConstantOffset; 566 567 GEPValue(Instruction *I) : Inst(I) { 568 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 569 } 570 571 GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset) 572 : Inst(I), ConstantOffset(ConstantOffset) { 573 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 574 } 575 576 bool isSentinel() const { 577 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 578 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 579 } 580 581 static bool canHandle(Instruction *Inst) { 582 return isa<GetElementPtrInst>(Inst); 583 } 584 }; 585 586 } // namespace 587 588 namespace llvm { 589 590 template <> struct DenseMapInfo<GEPValue> { 591 static inline GEPValue getEmptyKey() { 592 return DenseMapInfo<Instruction *>::getEmptyKey(); 593 } 594 595 static inline GEPValue getTombstoneKey() { 596 return DenseMapInfo<Instruction *>::getTombstoneKey(); 597 } 598 599 static unsigned getHashValue(const GEPValue &Val); 600 static bool isEqual(const GEPValue &LHS, const GEPValue &RHS); 601 }; 602 603 } // end namespace llvm 604 605 unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) { 606 auto *GEP = cast<GetElementPtrInst>(Val.Inst); 607 if (Val.ConstantOffset.has_value()) 608 return hash_combine(GEP->getOpcode(), GEP->getPointerOperand(), 609 Val.ConstantOffset.value()); 610 return hash_combine( 611 GEP->getOpcode(), 612 hash_combine_range(GEP->value_op_begin(), GEP->value_op_end())); 613 } 614 615 bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) { 616 if (LHS.isSentinel() || RHS.isSentinel()) 617 return LHS.Inst == RHS.Inst; 618 auto *LGEP = cast<GetElementPtrInst>(LHS.Inst); 619 auto *RGEP = cast<GetElementPtrInst>(RHS.Inst); 620 if (LGEP->getPointerOperand() != RGEP->getPointerOperand()) 621 return false; 622 if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value()) 623 return LHS.ConstantOffset.value() == RHS.ConstantOffset.value(); 624 return LGEP->isIdenticalToWhenDefined(RGEP); 625 } 626 627 //===----------------------------------------------------------------------===// 628 // EarlyCSE implementation 629 //===----------------------------------------------------------------------===// 630 631 namespace { 632 633 /// A simple and fast domtree-based CSE pass. 634 /// 635 /// This pass does a simple depth-first walk over the dominator tree, 636 /// eliminating trivially redundant instructions and using instsimplify to 637 /// canonicalize things as it goes. It is intended to be fast and catch obvious 638 /// cases so that instcombine and other passes are more effective. It is 639 /// expected that a later pass of GVN will catch the interesting/hard cases. 640 class EarlyCSE { 641 public: 642 const TargetLibraryInfo &TLI; 643 const TargetTransformInfo &TTI; 644 DominatorTree &DT; 645 AssumptionCache &AC; 646 const SimplifyQuery SQ; 647 MemorySSA *MSSA; 648 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 649 650 using AllocatorTy = 651 RecyclingAllocator<BumpPtrAllocator, 652 ScopedHashTableVal<SimpleValue, Value *>>; 653 using ScopedHTType = 654 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 655 AllocatorTy>; 656 657 /// A scoped hash table of the current values of all of our simple 658 /// scalar expressions. 659 /// 660 /// As we walk down the domtree, we look to see if instructions are in this: 661 /// if so, we replace them with what we find, otherwise we insert them so 662 /// that dominated values can succeed in their lookup. 663 ScopedHTType AvailableValues; 664 665 /// A scoped hash table of the current values of previously encountered 666 /// memory locations. 667 /// 668 /// This allows us to get efficient access to dominating loads or stores when 669 /// we have a fully redundant load. In addition to the most recent load, we 670 /// keep track of a generation count of the read, which is compared against 671 /// the current generation count. The current generation count is incremented 672 /// after every possibly writing memory operation, which ensures that we only 673 /// CSE loads with other loads that have no intervening store. Ordering 674 /// events (such as fences or atomic instructions) increment the generation 675 /// count as well; essentially, we model these as writes to all possible 676 /// locations. Note that atomic and/or volatile loads and stores can be 677 /// present the table; it is the responsibility of the consumer to inspect 678 /// the atomicity/volatility if needed. 679 struct LoadValue { 680 Instruction *DefInst = nullptr; 681 unsigned Generation = 0; 682 int MatchingId = -1; 683 bool IsAtomic = false; 684 bool IsLoad = false; 685 686 LoadValue() = default; 687 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 688 bool IsAtomic, bool IsLoad) 689 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 690 IsAtomic(IsAtomic), IsLoad(IsLoad) {} 691 }; 692 693 using LoadMapAllocator = 694 RecyclingAllocator<BumpPtrAllocator, 695 ScopedHashTableVal<Value *, LoadValue>>; 696 using LoadHTType = 697 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 698 LoadMapAllocator>; 699 700 LoadHTType AvailableLoads; 701 702 // A scoped hash table mapping memory locations (represented as typed 703 // addresses) to generation numbers at which that memory location became 704 // (henceforth indefinitely) invariant. 705 using InvariantMapAllocator = 706 RecyclingAllocator<BumpPtrAllocator, 707 ScopedHashTableVal<MemoryLocation, unsigned>>; 708 using InvariantHTType = 709 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 710 InvariantMapAllocator>; 711 InvariantHTType AvailableInvariants; 712 713 /// A scoped hash table of the current values of read-only call 714 /// values. 715 /// 716 /// It uses the same generation count as loads. 717 using CallHTType = 718 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 719 CallHTType AvailableCalls; 720 721 using GEPMapAllocatorTy = 722 RecyclingAllocator<BumpPtrAllocator, 723 ScopedHashTableVal<GEPValue, Value *>>; 724 using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>, 725 GEPMapAllocatorTy>; 726 GEPHTType AvailableGEPs; 727 728 /// This is the current generation of the memory value. 729 unsigned CurrentGeneration = 0; 730 731 /// Set up the EarlyCSE runner for a particular function. 732 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 733 const TargetTransformInfo &TTI, DominatorTree &DT, 734 AssumptionCache &AC, MemorySSA *MSSA) 735 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 736 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 737 738 bool run(); 739 740 private: 741 unsigned ClobberCounter = 0; 742 // Almost a POD, but needs to call the constructors for the scoped hash 743 // tables so that a new scope gets pushed on. These are RAII so that the 744 // scope gets popped when the NodeScope is destroyed. 745 class NodeScope { 746 public: 747 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 748 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 749 GEPHTType &AvailableGEPs) 750 : Scope(AvailableValues), LoadScope(AvailableLoads), 751 InvariantScope(AvailableInvariants), CallScope(AvailableCalls), 752 GEPScope(AvailableGEPs) {} 753 NodeScope(const NodeScope &) = delete; 754 NodeScope &operator=(const NodeScope &) = delete; 755 756 private: 757 ScopedHTType::ScopeTy Scope; 758 LoadHTType::ScopeTy LoadScope; 759 InvariantHTType::ScopeTy InvariantScope; 760 CallHTType::ScopeTy CallScope; 761 GEPHTType::ScopeTy GEPScope; 762 }; 763 764 // Contains all the needed information to create a stack for doing a depth 765 // first traversal of the tree. This includes scopes for values, loads, and 766 // calls as well as the generation. There is a child iterator so that the 767 // children do not need to be store separately. 768 class StackNode { 769 public: 770 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 771 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 772 GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n, 773 DomTreeNode::const_iterator child, 774 DomTreeNode::const_iterator end) 775 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 776 EndIter(end), 777 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 778 AvailableCalls, AvailableGEPs) {} 779 StackNode(const StackNode &) = delete; 780 StackNode &operator=(const StackNode &) = delete; 781 782 // Accessors. 783 unsigned currentGeneration() const { return CurrentGeneration; } 784 unsigned childGeneration() const { return ChildGeneration; } 785 void childGeneration(unsigned generation) { ChildGeneration = generation; } 786 DomTreeNode *node() { return Node; } 787 DomTreeNode::const_iterator childIter() const { return ChildIter; } 788 789 DomTreeNode *nextChild() { 790 DomTreeNode *child = *ChildIter; 791 ++ChildIter; 792 return child; 793 } 794 795 DomTreeNode::const_iterator end() const { return EndIter; } 796 bool isProcessed() const { return Processed; } 797 void process() { Processed = true; } 798 799 private: 800 unsigned CurrentGeneration; 801 unsigned ChildGeneration; 802 DomTreeNode *Node; 803 DomTreeNode::const_iterator ChildIter; 804 DomTreeNode::const_iterator EndIter; 805 NodeScope Scopes; 806 bool Processed = false; 807 }; 808 809 /// Wrapper class to handle memory instructions, including loads, 810 /// stores and intrinsic loads and stores defined by the target. 811 class ParseMemoryInst { 812 public: 813 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 814 : Inst(Inst) { 815 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 816 IntrID = II->getIntrinsicID(); 817 if (TTI.getTgtMemIntrinsic(II, Info)) 818 return; 819 if (isHandledNonTargetIntrinsic(IntrID)) { 820 switch (IntrID) { 821 case Intrinsic::masked_load: 822 Info.PtrVal = Inst->getOperand(0); 823 Info.MatchingId = Intrinsic::masked_load; 824 Info.ReadMem = true; 825 Info.WriteMem = false; 826 Info.IsVolatile = false; 827 break; 828 case Intrinsic::masked_store: 829 Info.PtrVal = Inst->getOperand(1); 830 // Use the ID of masked load as the "matching id". This will 831 // prevent matching non-masked loads/stores with masked ones 832 // (which could be done), but at the moment, the code here 833 // does not support matching intrinsics with non-intrinsics, 834 // so keep the MatchingIds specific to masked instructions 835 // for now (TODO). 836 Info.MatchingId = Intrinsic::masked_load; 837 Info.ReadMem = false; 838 Info.WriteMem = true; 839 Info.IsVolatile = false; 840 break; 841 } 842 } 843 } 844 } 845 846 Instruction *get() { return Inst; } 847 const Instruction *get() const { return Inst; } 848 849 bool isLoad() const { 850 if (IntrID != 0) 851 return Info.ReadMem; 852 return isa<LoadInst>(Inst); 853 } 854 855 bool isStore() const { 856 if (IntrID != 0) 857 return Info.WriteMem; 858 return isa<StoreInst>(Inst); 859 } 860 861 bool isAtomic() const { 862 if (IntrID != 0) 863 return Info.Ordering != AtomicOrdering::NotAtomic; 864 return Inst->isAtomic(); 865 } 866 867 bool isUnordered() const { 868 if (IntrID != 0) 869 return Info.isUnordered(); 870 871 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 872 return LI->isUnordered(); 873 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 874 return SI->isUnordered(); 875 } 876 // Conservative answer 877 return !Inst->isAtomic(); 878 } 879 880 bool isVolatile() const { 881 if (IntrID != 0) 882 return Info.IsVolatile; 883 884 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 885 return LI->isVolatile(); 886 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 887 return SI->isVolatile(); 888 } 889 // Conservative answer 890 return true; 891 } 892 893 bool isInvariantLoad() const { 894 if (auto *LI = dyn_cast<LoadInst>(Inst)) 895 return LI->hasMetadata(LLVMContext::MD_invariant_load); 896 return false; 897 } 898 899 bool isValid() const { return getPointerOperand() != nullptr; } 900 901 // For regular (non-intrinsic) loads/stores, this is set to -1. For 902 // intrinsic loads/stores, the id is retrieved from the corresponding 903 // field in the MemIntrinsicInfo structure. That field contains 904 // non-negative values only. 905 int getMatchingId() const { 906 if (IntrID != 0) 907 return Info.MatchingId; 908 return -1; 909 } 910 911 Value *getPointerOperand() const { 912 if (IntrID != 0) 913 return Info.PtrVal; 914 return getLoadStorePointerOperand(Inst); 915 } 916 917 Type *getValueType() const { 918 // TODO: handle target-specific intrinsics. 919 return Inst->getAccessType(); 920 } 921 922 bool mayReadFromMemory() const { 923 if (IntrID != 0) 924 return Info.ReadMem; 925 return Inst->mayReadFromMemory(); 926 } 927 928 bool mayWriteToMemory() const { 929 if (IntrID != 0) 930 return Info.WriteMem; 931 return Inst->mayWriteToMemory(); 932 } 933 934 private: 935 Intrinsic::ID IntrID = 0; 936 MemIntrinsicInfo Info; 937 Instruction *Inst; 938 }; 939 940 // This function is to prevent accidentally passing a non-target 941 // intrinsic ID to TargetTransformInfo. 942 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 943 switch (ID) { 944 case Intrinsic::masked_load: 945 case Intrinsic::masked_store: 946 return true; 947 } 948 return false; 949 } 950 static bool isHandledNonTargetIntrinsic(const Value *V) { 951 if (auto *II = dyn_cast<IntrinsicInst>(V)) 952 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 953 return false; 954 } 955 956 bool processNode(DomTreeNode *Node); 957 958 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 959 const BasicBlock *BB, const BasicBlock *Pred); 960 961 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 962 unsigned CurrentGeneration); 963 964 bool overridingStores(const ParseMemoryInst &Earlier, 965 const ParseMemoryInst &Later); 966 967 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 968 // TODO: We could insert relevant casts on type mismatch here. 969 if (auto *LI = dyn_cast<LoadInst>(Inst)) 970 return LI->getType() == ExpectedType ? LI : nullptr; 971 if (auto *SI = dyn_cast<StoreInst>(Inst)) { 972 Value *V = SI->getValueOperand(); 973 return V->getType() == ExpectedType ? V : nullptr; 974 } 975 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 976 auto *II = cast<IntrinsicInst>(Inst); 977 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 978 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 979 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 980 } 981 982 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 983 Type *ExpectedType) const { 984 // TODO: We could insert relevant casts on type mismatch here. 985 switch (II->getIntrinsicID()) { 986 case Intrinsic::masked_load: 987 return II->getType() == ExpectedType ? II : nullptr; 988 case Intrinsic::masked_store: { 989 Value *V = II->getOperand(0); 990 return V->getType() == ExpectedType ? V : nullptr; 991 } 992 } 993 return nullptr; 994 } 995 996 /// Return true if the instruction is known to only operate on memory 997 /// provably invariant in the given "generation". 998 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 999 1000 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 1001 Instruction *EarlierInst, Instruction *LaterInst); 1002 1003 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 1004 const IntrinsicInst *Later) { 1005 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 1006 // Is Mask0 a submask of Mask1? 1007 if (Mask0 == Mask1) 1008 return true; 1009 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 1010 return false; 1011 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 1012 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 1013 if (!Vec0 || !Vec1) 1014 return false; 1015 if (Vec0->getType() != Vec1->getType()) 1016 return false; 1017 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 1018 Constant *Elem0 = Vec0->getOperand(i); 1019 Constant *Elem1 = Vec1->getOperand(i); 1020 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 1021 if (Int0 && Int0->isZero()) 1022 continue; 1023 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 1024 if (Int1 && !Int1->isZero()) 1025 continue; 1026 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 1027 return false; 1028 if (Elem0 == Elem1) 1029 continue; 1030 return false; 1031 } 1032 return true; 1033 }; 1034 auto PtrOp = [](const IntrinsicInst *II) { 1035 if (II->getIntrinsicID() == Intrinsic::masked_load) 1036 return II->getOperand(0); 1037 if (II->getIntrinsicID() == Intrinsic::masked_store) 1038 return II->getOperand(1); 1039 llvm_unreachable("Unexpected IntrinsicInst"); 1040 }; 1041 auto MaskOp = [](const IntrinsicInst *II) { 1042 if (II->getIntrinsicID() == Intrinsic::masked_load) 1043 return II->getOperand(2); 1044 if (II->getIntrinsicID() == Intrinsic::masked_store) 1045 return II->getOperand(3); 1046 llvm_unreachable("Unexpected IntrinsicInst"); 1047 }; 1048 auto ThruOp = [](const IntrinsicInst *II) { 1049 if (II->getIntrinsicID() == Intrinsic::masked_load) 1050 return II->getOperand(3); 1051 llvm_unreachable("Unexpected IntrinsicInst"); 1052 }; 1053 1054 if (PtrOp(Earlier) != PtrOp(Later)) 1055 return false; 1056 1057 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 1058 Intrinsic::ID IDL = Later->getIntrinsicID(); 1059 // We could really use specific intrinsic classes for masked loads 1060 // and stores in IntrinsicInst.h. 1061 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 1062 // Trying to replace later masked load with the earlier one. 1063 // Check that the pointers are the same, and 1064 // - masks and pass-throughs are the same, or 1065 // - replacee's pass-through is "undef" and replacer's mask is a 1066 // super-set of the replacee's mask. 1067 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 1068 return true; 1069 if (!isa<UndefValue>(ThruOp(Later))) 1070 return false; 1071 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1072 } 1073 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 1074 // Trying to replace a load of a stored value with the store's value. 1075 // Check that the pointers are the same, and 1076 // - load's mask is a subset of store's mask, and 1077 // - load's pass-through is "undef". 1078 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 1079 return false; 1080 return isa<UndefValue>(ThruOp(Later)); 1081 } 1082 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 1083 // Trying to remove a store of the loaded value. 1084 // Check that the pointers are the same, and 1085 // - store's mask is a subset of the load's mask. 1086 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1087 } 1088 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 1089 // Trying to remove a dead store (earlier). 1090 // Check that the pointers are the same, 1091 // - the to-be-removed store's mask is a subset of the other store's 1092 // mask. 1093 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 1094 } 1095 return false; 1096 } 1097 1098 void removeMSSA(Instruction &Inst) { 1099 if (!MSSA) 1100 return; 1101 if (VerifyMemorySSA) 1102 MSSA->verifyMemorySSA(); 1103 // Removing a store here can leave MemorySSA in an unoptimized state by 1104 // creating MemoryPhis that have identical arguments and by creating 1105 // MemoryUses whose defining access is not an actual clobber. The phi case 1106 // is handled by MemorySSA when passing OptimizePhis = true to 1107 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 1108 // by MemorySSA's getClobberingMemoryAccess. 1109 MSSAUpdater->removeMemoryAccess(&Inst, true); 1110 } 1111 }; 1112 1113 } // end anonymous namespace 1114 1115 /// Determine if the memory referenced by LaterInst is from the same heap 1116 /// version as EarlierInst. 1117 /// This is currently called in two scenarios: 1118 /// 1119 /// load p 1120 /// ... 1121 /// load p 1122 /// 1123 /// and 1124 /// 1125 /// x = load p 1126 /// ... 1127 /// store x, p 1128 /// 1129 /// in both cases we want to verify that there are no possible writes to the 1130 /// memory referenced by p between the earlier and later instruction. 1131 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1132 unsigned LaterGeneration, 1133 Instruction *EarlierInst, 1134 Instruction *LaterInst) { 1135 // Check the simple memory generation tracking first. 1136 if (EarlierGeneration == LaterGeneration) 1137 return true; 1138 1139 if (!MSSA) 1140 return false; 1141 1142 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1143 // read/write memory, then we can safely return true here. 1144 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1145 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1146 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1147 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1148 // with the default optimization pipeline. 1149 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1150 if (!EarlierMA) 1151 return true; 1152 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1153 if (!LaterMA) 1154 return true; 1155 1156 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1157 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1158 // EarlierInst and LaterInst and neither can any other write that potentially 1159 // clobbers LaterInst. 1160 MemoryAccess *LaterDef; 1161 if (ClobberCounter < EarlyCSEMssaOptCap) { 1162 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1163 ClobberCounter++; 1164 } else 1165 LaterDef = LaterMA->getDefiningAccess(); 1166 1167 return MSSA->dominates(LaterDef, EarlierMA); 1168 } 1169 1170 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1171 // A location loaded from with an invariant_load is assumed to *never* change 1172 // within the visible scope of the compilation. 1173 if (auto *LI = dyn_cast<LoadInst>(I)) 1174 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1175 return true; 1176 1177 auto MemLocOpt = MemoryLocation::getOrNone(I); 1178 if (!MemLocOpt) 1179 // "target" intrinsic forms of loads aren't currently known to 1180 // MemoryLocation::get. TODO 1181 return false; 1182 MemoryLocation MemLoc = *MemLocOpt; 1183 if (!AvailableInvariants.count(MemLoc)) 1184 return false; 1185 1186 // Is the generation at which this became invariant older than the 1187 // current one? 1188 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1189 } 1190 1191 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1192 const BranchInst *BI, const BasicBlock *BB, 1193 const BasicBlock *Pred) { 1194 assert(BI->isConditional() && "Should be a conditional branch!"); 1195 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1196 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1197 auto *TorF = (BI->getSuccessor(0) == BB) 1198 ? ConstantInt::getTrue(BB->getContext()) 1199 : ConstantInt::getFalse(BB->getContext()); 1200 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1201 Value *&RHS) { 1202 if (Opcode == Instruction::And && 1203 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1204 return true; 1205 else if (Opcode == Instruction::Or && 1206 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1207 return true; 1208 return false; 1209 }; 1210 // If the condition is AND operation, we can propagate its operands into the 1211 // true branch. If it is OR operation, we can propagate them into the false 1212 // branch. 1213 unsigned PropagateOpcode = 1214 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1215 1216 bool MadeChanges = false; 1217 SmallVector<Instruction *, 4> WorkList; 1218 SmallPtrSet<Instruction *, 4> Visited; 1219 WorkList.push_back(CondInst); 1220 while (!WorkList.empty()) { 1221 Instruction *Curr = WorkList.pop_back_val(); 1222 1223 AvailableValues.insert(Curr, TorF); 1224 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1225 << Curr->getName() << "' as " << *TorF << " in " 1226 << BB->getName() << "\n"); 1227 if (!DebugCounter::shouldExecute(CSECounter)) { 1228 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1229 } else { 1230 // Replace all dominated uses with the known value. 1231 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1232 BasicBlockEdge(Pred, BB))) { 1233 NumCSECVP += Count; 1234 MadeChanges = true; 1235 } 1236 } 1237 1238 Value *LHS, *RHS; 1239 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1240 for (auto *Op : { LHS, RHS }) 1241 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1242 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1243 WorkList.push_back(OPI); 1244 } 1245 1246 return MadeChanges; 1247 } 1248 1249 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1250 unsigned CurrentGeneration) { 1251 if (InVal.DefInst == nullptr) 1252 return nullptr; 1253 if (InVal.MatchingId != MemInst.getMatchingId()) 1254 return nullptr; 1255 // We don't yet handle removing loads with ordering of any kind. 1256 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1257 return nullptr; 1258 // We can't replace an atomic load with one which isn't also atomic. 1259 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1260 return nullptr; 1261 // The value V returned from this function is used differently depending 1262 // on whether MemInst is a load or a store. If it's a load, we will replace 1263 // MemInst with V, if it's a store, we will check if V is the same as the 1264 // available value. 1265 bool MemInstMatching = !MemInst.isLoad(); 1266 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1267 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1268 1269 // For stores check the result values before checking memory generation 1270 // (otherwise isSameMemGeneration may crash). 1271 Value *Result = MemInst.isStore() 1272 ? getOrCreateResult(Matching, Other->getType()) 1273 : nullptr; 1274 if (MemInst.isStore() && InVal.DefInst != Result) 1275 return nullptr; 1276 1277 // Deal with non-target memory intrinsics. 1278 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1279 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1280 if (OtherNTI != MatchingNTI) 1281 return nullptr; 1282 if (OtherNTI && MatchingNTI) { 1283 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1284 cast<IntrinsicInst>(MemInst.get()))) 1285 return nullptr; 1286 } 1287 1288 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1289 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1290 MemInst.get())) 1291 return nullptr; 1292 1293 if (!Result) 1294 Result = getOrCreateResult(Matching, Other->getType()); 1295 return Result; 1296 } 1297 1298 static void combineIRFlags(Instruction &From, Value *To) { 1299 if (auto *I = dyn_cast<Instruction>(To)) { 1300 // If I being poison triggers UB, there is no need to drop those 1301 // flags. Otherwise, only retain flags present on both I and Inst. 1302 // TODO: Currently some fast-math flags are not treated as 1303 // poison-generating even though they should. Until this is fixed, 1304 // always retain flags present on both I and Inst for floating point 1305 // instructions. 1306 if (isa<FPMathOperator>(I) || 1307 (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1308 I->andIRFlags(&From); 1309 } 1310 } 1311 1312 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1313 const ParseMemoryInst &Later) { 1314 // Can we remove Earlier store because of Later store? 1315 1316 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1317 "Violated invariant"); 1318 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1319 return false; 1320 if (!Earlier.getValueType() || !Later.getValueType() || 1321 Earlier.getValueType() != Later.getValueType()) 1322 return false; 1323 if (Earlier.getMatchingId() != Later.getMatchingId()) 1324 return false; 1325 // At the moment, we don't remove ordered stores, but do remove 1326 // unordered atomic stores. There's no special requirement (for 1327 // unordered atomics) about removing atomic stores only in favor of 1328 // other atomic stores since we were going to execute the non-atomic 1329 // one anyway and the atomic one might never have become visible. 1330 if (!Earlier.isUnordered() || !Later.isUnordered()) 1331 return false; 1332 1333 // Deal with non-target memory intrinsics. 1334 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1335 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1336 if (ENTI && LNTI) 1337 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1338 cast<IntrinsicInst>(Later.get())); 1339 1340 // Because of the check above, at least one of them is false. 1341 // For now disallow matching intrinsics with non-intrinsics, 1342 // so assume that the stores match if neither is an intrinsic. 1343 return ENTI == LNTI; 1344 } 1345 1346 bool EarlyCSE::processNode(DomTreeNode *Node) { 1347 bool Changed = false; 1348 BasicBlock *BB = Node->getBlock(); 1349 1350 // If this block has a single predecessor, then the predecessor is the parent 1351 // of the domtree node and all of the live out memory values are still current 1352 // in this block. If this block has multiple predecessors, then they could 1353 // have invalidated the live-out memory values of our parent value. For now, 1354 // just be conservative and invalidate memory if this block has multiple 1355 // predecessors. 1356 if (!BB->getSinglePredecessor()) 1357 ++CurrentGeneration; 1358 1359 // If this node has a single predecessor which ends in a conditional branch, 1360 // we can infer the value of the branch condition given that we took this 1361 // path. We need the single predecessor to ensure there's not another path 1362 // which reaches this block where the condition might hold a different 1363 // value. Since we're adding this to the scoped hash table (like any other 1364 // def), it will have been popped if we encounter a future merge block. 1365 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1366 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1367 if (BI && BI->isConditional()) { 1368 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1369 if (CondInst && SimpleValue::canHandle(CondInst)) 1370 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1371 } 1372 } 1373 1374 /// LastStore - Keep track of the last non-volatile store that we saw... for 1375 /// as long as there in no instruction that reads memory. If we see a store 1376 /// to the same location, we delete the dead store. This zaps trivial dead 1377 /// stores which can occur in bitfield code among other things. 1378 Instruction *LastStore = nullptr; 1379 1380 // See if any instructions in the block can be eliminated. If so, do it. If 1381 // not, add them to AvailableValues. 1382 for (Instruction &Inst : make_early_inc_range(*BB)) { 1383 // Dead instructions should just be removed. 1384 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1385 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1386 if (!DebugCounter::shouldExecute(CSECounter)) { 1387 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1388 continue; 1389 } 1390 1391 salvageKnowledge(&Inst, &AC); 1392 salvageDebugInfo(Inst); 1393 removeMSSA(Inst); 1394 Inst.eraseFromParent(); 1395 Changed = true; 1396 ++NumSimplify; 1397 continue; 1398 } 1399 1400 // Skip assume intrinsics, they don't really have side effects (although 1401 // they're marked as such to ensure preservation of control dependencies), 1402 // and this pass will not bother with its removal. However, we should mark 1403 // its condition as true for all dominated blocks. 1404 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1405 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1406 if (CondI && SimpleValue::canHandle(CondI)) { 1407 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1408 << '\n'); 1409 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1410 } else 1411 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1412 continue; 1413 } 1414 1415 // Likewise, noalias intrinsics don't actually write. 1416 if (match(&Inst, 1417 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1418 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1419 << '\n'); 1420 continue; 1421 } 1422 1423 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1424 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1425 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1426 continue; 1427 } 1428 1429 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1430 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1431 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1432 continue; 1433 } 1434 1435 // We can skip all invariant.start intrinsics since they only read memory, 1436 // and we can forward values across it. For invariant starts without 1437 // invariant ends, we can use the fact that the invariantness never ends to 1438 // start a scope in the current generaton which is true for all future 1439 // generations. Also, we dont need to consume the last store since the 1440 // semantics of invariant.start allow us to perform DSE of the last 1441 // store, if there was a store following invariant.start. Consider: 1442 // 1443 // store 30, i8* p 1444 // invariant.start(p) 1445 // store 40, i8* p 1446 // We can DSE the store to 30, since the store 40 to invariant location p 1447 // causes undefined behaviour. 1448 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1449 // If there are any uses, the scope might end. 1450 if (!Inst.use_empty()) 1451 continue; 1452 MemoryLocation MemLoc = 1453 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1454 // Don't start a scope if we already have a better one pushed 1455 if (!AvailableInvariants.count(MemLoc)) 1456 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1457 continue; 1458 } 1459 1460 if (isGuard(&Inst)) { 1461 if (auto *CondI = 1462 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1463 if (SimpleValue::canHandle(CondI)) { 1464 // Do we already know the actual value of this condition? 1465 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1466 // Is the condition known to be true? 1467 if (isa<ConstantInt>(KnownCond) && 1468 cast<ConstantInt>(KnownCond)->isOne()) { 1469 LLVM_DEBUG(dbgs() 1470 << "EarlyCSE removing guard: " << Inst << '\n'); 1471 salvageKnowledge(&Inst, &AC); 1472 removeMSSA(Inst); 1473 Inst.eraseFromParent(); 1474 Changed = true; 1475 continue; 1476 } else 1477 // Use the known value if it wasn't true. 1478 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1479 } 1480 // The condition we're on guarding here is true for all dominated 1481 // locations. 1482 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1483 } 1484 } 1485 1486 // Guard intrinsics read all memory, but don't write any memory. 1487 // Accordingly, don't update the generation but consume the last store (to 1488 // avoid an incorrect DSE). 1489 LastStore = nullptr; 1490 continue; 1491 } 1492 1493 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1494 // its simpler value. 1495 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1496 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1497 << '\n'); 1498 if (!DebugCounter::shouldExecute(CSECounter)) { 1499 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1500 } else { 1501 bool Killed = false; 1502 if (!Inst.use_empty()) { 1503 Inst.replaceAllUsesWith(V); 1504 Changed = true; 1505 } 1506 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1507 salvageKnowledge(&Inst, &AC); 1508 removeMSSA(Inst); 1509 Inst.eraseFromParent(); 1510 Changed = true; 1511 Killed = true; 1512 } 1513 if (Changed) 1514 ++NumSimplify; 1515 if (Killed) 1516 continue; 1517 } 1518 } 1519 1520 // If this is a simple instruction that we can value number, process it. 1521 if (SimpleValue::canHandle(&Inst)) { 1522 if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1523 assert(CI->getExceptionBehavior() != fp::ebStrict && 1524 "Unexpected ebStrict from SimpleValue::canHandle()"); 1525 assert((!CI->getRoundingMode() || 1526 CI->getRoundingMode() != RoundingMode::Dynamic) && 1527 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1528 } 1529 // See if the instruction has an available value. If so, use it. 1530 if (Value *V = AvailableValues.lookup(&Inst)) { 1531 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1532 << '\n'); 1533 if (!DebugCounter::shouldExecute(CSECounter)) { 1534 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1535 continue; 1536 } 1537 combineIRFlags(Inst, V); 1538 Inst.replaceAllUsesWith(V); 1539 salvageKnowledge(&Inst, &AC); 1540 removeMSSA(Inst); 1541 Inst.eraseFromParent(); 1542 Changed = true; 1543 ++NumCSE; 1544 continue; 1545 } 1546 1547 // Otherwise, just remember that this value is available. 1548 AvailableValues.insert(&Inst, &Inst); 1549 continue; 1550 } 1551 1552 ParseMemoryInst MemInst(&Inst, TTI); 1553 // If this is a non-volatile load, process it. 1554 if (MemInst.isValid() && MemInst.isLoad()) { 1555 // (conservatively) we can't peak past the ordering implied by this 1556 // operation, but we can add this load to our set of available values 1557 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1558 LastStore = nullptr; 1559 ++CurrentGeneration; 1560 } 1561 1562 if (MemInst.isInvariantLoad()) { 1563 // If we pass an invariant load, we know that memory location is 1564 // indefinitely constant from the moment of first dereferenceability. 1565 // We conservatively treat the invariant_load as that moment. If we 1566 // pass a invariant load after already establishing a scope, don't 1567 // restart it since we want to preserve the earliest point seen. 1568 auto MemLoc = MemoryLocation::get(&Inst); 1569 if (!AvailableInvariants.count(MemLoc)) 1570 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1571 } 1572 1573 // If we have an available version of this load, and if it is the right 1574 // generation or the load is known to be from an invariant location, 1575 // replace this instruction. 1576 // 1577 // If either the dominating load or the current load are invariant, then 1578 // we can assume the current load loads the same value as the dominating 1579 // load. 1580 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1581 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1582 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1583 << " to: " << *InVal.DefInst << '\n'); 1584 if (!DebugCounter::shouldExecute(CSECounter)) { 1585 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1586 continue; 1587 } 1588 if (InVal.IsLoad) 1589 if (auto *I = dyn_cast<Instruction>(Op)) 1590 combineMetadataForCSE(I, &Inst, false); 1591 if (!Inst.use_empty()) 1592 Inst.replaceAllUsesWith(Op); 1593 salvageKnowledge(&Inst, &AC); 1594 removeMSSA(Inst); 1595 Inst.eraseFromParent(); 1596 Changed = true; 1597 ++NumCSELoad; 1598 continue; 1599 } 1600 1601 // Otherwise, remember that we have this instruction. 1602 AvailableLoads.insert(MemInst.getPointerOperand(), 1603 LoadValue(&Inst, CurrentGeneration, 1604 MemInst.getMatchingId(), 1605 MemInst.isAtomic(), 1606 MemInst.isLoad())); 1607 LastStore = nullptr; 1608 continue; 1609 } 1610 1611 // If this instruction may read from memory or throw (and potentially read 1612 // from memory in the exception handler), forget LastStore. Load/store 1613 // intrinsics will indicate both a read and a write to memory. The target 1614 // may override this (e.g. so that a store intrinsic does not read from 1615 // memory, and thus will be treated the same as a regular store for 1616 // commoning purposes). 1617 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1618 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1619 LastStore = nullptr; 1620 1621 // If this is a read-only call, process it. 1622 if (CallValue::canHandle(&Inst)) { 1623 // If we have an available version of this call, and if it is the right 1624 // generation, replace this instruction. 1625 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1626 if (InVal.first != nullptr && 1627 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1628 &Inst)) { 1629 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1630 << " to: " << *InVal.first << '\n'); 1631 if (!DebugCounter::shouldExecute(CSECounter)) { 1632 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1633 continue; 1634 } 1635 if (!Inst.use_empty()) 1636 Inst.replaceAllUsesWith(InVal.first); 1637 salvageKnowledge(&Inst, &AC); 1638 removeMSSA(Inst); 1639 Inst.eraseFromParent(); 1640 Changed = true; 1641 ++NumCSECall; 1642 continue; 1643 } 1644 1645 // Otherwise, remember that we have this instruction. 1646 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1647 continue; 1648 } 1649 1650 // Compare GEP instructions based on offset. 1651 if (GEPValue::canHandle(&Inst)) { 1652 auto *GEP = cast<GetElementPtrInst>(&Inst); 1653 APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(GEP->getType()), 0); 1654 GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(SQ.DL, Offset) 1655 ? Offset.trySExtValue() 1656 : std::nullopt); 1657 if (Value *V = AvailableGEPs.lookup(GEPVal)) { 1658 LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << " to: " << *V 1659 << '\n'); 1660 combineIRFlags(Inst, V); 1661 Inst.replaceAllUsesWith(V); 1662 salvageKnowledge(&Inst, &AC); 1663 removeMSSA(Inst); 1664 Inst.eraseFromParent(); 1665 Changed = true; 1666 ++NumCSEGEP; 1667 continue; 1668 } 1669 1670 // Otherwise, just remember that we have this GEP. 1671 AvailableGEPs.insert(GEPVal, &Inst); 1672 continue; 1673 } 1674 1675 // A release fence requires that all stores complete before it, but does 1676 // not prevent the reordering of following loads 'before' the fence. As a 1677 // result, we don't need to consider it as writing to memory and don't need 1678 // to advance the generation. We do need to prevent DSE across the fence, 1679 // but that's handled above. 1680 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1681 if (FI->getOrdering() == AtomicOrdering::Release) { 1682 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1683 continue; 1684 } 1685 1686 // write back DSE - If we write back the same value we just loaded from 1687 // the same location and haven't passed any intervening writes or ordering 1688 // operations, we can remove the write. The primary benefit is in allowing 1689 // the available load table to remain valid and value forward past where 1690 // the store originally was. 1691 if (MemInst.isValid() && MemInst.isStore()) { 1692 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1693 if (InVal.DefInst && 1694 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1695 // It is okay to have a LastStore to a different pointer here if MemorySSA 1696 // tells us that the load and store are from the same memory generation. 1697 // In that case, LastStore should keep its present value since we're 1698 // removing the current store. 1699 assert((!LastStore || 1700 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1701 MemInst.getPointerOperand() || 1702 MSSA) && 1703 "can't have an intervening store if not using MemorySSA!"); 1704 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1705 if (!DebugCounter::shouldExecute(CSECounter)) { 1706 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1707 continue; 1708 } 1709 salvageKnowledge(&Inst, &AC); 1710 removeMSSA(Inst); 1711 Inst.eraseFromParent(); 1712 Changed = true; 1713 ++NumDSE; 1714 // We can avoid incrementing the generation count since we were able 1715 // to eliminate this store. 1716 continue; 1717 } 1718 } 1719 1720 // Okay, this isn't something we can CSE at all. Check to see if it is 1721 // something that could modify memory. If so, our available memory values 1722 // cannot be used so bump the generation count. 1723 if (Inst.mayWriteToMemory()) { 1724 ++CurrentGeneration; 1725 1726 if (MemInst.isValid() && MemInst.isStore()) { 1727 // We do a trivial form of DSE if there are two stores to the same 1728 // location with no intervening loads. Delete the earlier store. 1729 if (LastStore) { 1730 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1731 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1732 << " due to: " << Inst << '\n'); 1733 if (!DebugCounter::shouldExecute(CSECounter)) { 1734 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1735 } else { 1736 salvageKnowledge(&Inst, &AC); 1737 removeMSSA(*LastStore); 1738 LastStore->eraseFromParent(); 1739 Changed = true; 1740 ++NumDSE; 1741 LastStore = nullptr; 1742 } 1743 } 1744 // fallthrough - we can exploit information about this store 1745 } 1746 1747 // Okay, we just invalidated anything we knew about loaded values. Try 1748 // to salvage *something* by remembering that the stored value is a live 1749 // version of the pointer. It is safe to forward from volatile stores 1750 // to non-volatile loads, so we don't have to check for volatility of 1751 // the store. 1752 AvailableLoads.insert(MemInst.getPointerOperand(), 1753 LoadValue(&Inst, CurrentGeneration, 1754 MemInst.getMatchingId(), 1755 MemInst.isAtomic(), 1756 MemInst.isLoad())); 1757 1758 // Remember that this was the last unordered store we saw for DSE. We 1759 // don't yet handle DSE on ordered or volatile stores since we don't 1760 // have a good way to model the ordering requirement for following 1761 // passes once the store is removed. We could insert a fence, but 1762 // since fences are slightly stronger than stores in their ordering, 1763 // it's not clear this is a profitable transform. Another option would 1764 // be to merge the ordering with that of the post dominating store. 1765 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1766 LastStore = &Inst; 1767 else 1768 LastStore = nullptr; 1769 } 1770 } 1771 } 1772 1773 return Changed; 1774 } 1775 1776 bool EarlyCSE::run() { 1777 // Note, deque is being used here because there is significant performance 1778 // gains over vector when the container becomes very large due to the 1779 // specific access patterns. For more information see the mailing list 1780 // discussion on this: 1781 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1782 std::deque<StackNode *> nodesToProcess; 1783 1784 bool Changed = false; 1785 1786 // Process the root node. 1787 nodesToProcess.push_back(new StackNode( 1788 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1789 AvailableGEPs, CurrentGeneration, DT.getRootNode(), 1790 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1791 1792 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1793 1794 // Process the stack. 1795 while (!nodesToProcess.empty()) { 1796 // Grab the first item off the stack. Set the current generation, remove 1797 // the node from the stack, and process it. 1798 StackNode *NodeToProcess = nodesToProcess.back(); 1799 1800 // Initialize class members. 1801 CurrentGeneration = NodeToProcess->currentGeneration(); 1802 1803 // Check if the node needs to be processed. 1804 if (!NodeToProcess->isProcessed()) { 1805 // Process the node. 1806 Changed |= processNode(NodeToProcess->node()); 1807 NodeToProcess->childGeneration(CurrentGeneration); 1808 NodeToProcess->process(); 1809 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1810 // Push the next child onto the stack. 1811 DomTreeNode *child = NodeToProcess->nextChild(); 1812 nodesToProcess.push_back(new StackNode( 1813 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1814 AvailableGEPs, NodeToProcess->childGeneration(), child, 1815 child->begin(), child->end())); 1816 } else { 1817 // It has been processed, and there are no more children to process, 1818 // so delete it and pop it off the stack. 1819 delete NodeToProcess; 1820 nodesToProcess.pop_back(); 1821 } 1822 } // while (!nodes...) 1823 1824 return Changed; 1825 } 1826 1827 PreservedAnalyses EarlyCSEPass::run(Function &F, 1828 FunctionAnalysisManager &AM) { 1829 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1830 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1831 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1832 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1833 auto *MSSA = 1834 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1835 1836 EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); 1837 1838 if (!CSE.run()) 1839 return PreservedAnalyses::all(); 1840 1841 PreservedAnalyses PA; 1842 PA.preserveSet<CFGAnalyses>(); 1843 if (UseMemorySSA) 1844 PA.preserve<MemorySSAAnalysis>(); 1845 return PA; 1846 } 1847 1848 void EarlyCSEPass::printPipeline( 1849 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1850 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1851 OS, MapClassName2PassName); 1852 OS << '<'; 1853 if (UseMemorySSA) 1854 OS << "memssa"; 1855 OS << '>'; 1856 } 1857 1858 namespace { 1859 1860 /// A simple and fast domtree-based CSE pass. 1861 /// 1862 /// This pass does a simple depth-first walk over the dominator tree, 1863 /// eliminating trivially redundant instructions and using instsimplify to 1864 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1865 /// cases so that instcombine and other passes are more effective. It is 1866 /// expected that a later pass of GVN will catch the interesting/hard cases. 1867 template<bool UseMemorySSA> 1868 class EarlyCSELegacyCommonPass : public FunctionPass { 1869 public: 1870 static char ID; 1871 1872 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1873 if (UseMemorySSA) 1874 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1875 else 1876 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1877 } 1878 1879 bool runOnFunction(Function &F) override { 1880 if (skipFunction(F)) 1881 return false; 1882 1883 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1884 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1885 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1886 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1887 auto *MSSA = 1888 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1889 1890 EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); 1891 1892 return CSE.run(); 1893 } 1894 1895 void getAnalysisUsage(AnalysisUsage &AU) const override { 1896 AU.addRequired<AssumptionCacheTracker>(); 1897 AU.addRequired<DominatorTreeWrapperPass>(); 1898 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1899 AU.addRequired<TargetTransformInfoWrapperPass>(); 1900 if (UseMemorySSA) { 1901 AU.addRequired<AAResultsWrapperPass>(); 1902 AU.addRequired<MemorySSAWrapperPass>(); 1903 AU.addPreserved<MemorySSAWrapperPass>(); 1904 } 1905 AU.addPreserved<GlobalsAAWrapperPass>(); 1906 AU.addPreserved<AAResultsWrapperPass>(); 1907 AU.setPreservesCFG(); 1908 } 1909 }; 1910 1911 } // end anonymous namespace 1912 1913 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1914 1915 template<> 1916 char EarlyCSELegacyPass::ID = 0; 1917 1918 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1919 false) 1920 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1921 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1922 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1923 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1924 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1925 1926 using EarlyCSEMemSSALegacyPass = 1927 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1928 1929 template<> 1930 char EarlyCSEMemSSALegacyPass::ID = 0; 1931 1932 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1933 if (UseMemorySSA) 1934 return new EarlyCSEMemSSALegacyPass(); 1935 else 1936 return new EarlyCSELegacyPass(); 1937 } 1938 1939 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1940 "Early CSE w/ MemorySSA", false, false) 1941 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1942 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1943 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1944 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1945 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1946 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1947 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1948 "Early CSE w/ MemorySSA", false, false) 1949