1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/DebugCounter.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "div-rem-pairs" 34 STATISTIC(NumPairs, "Number of div/rem pairs"); 35 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 36 STATISTIC(NumHoisted, "Number of instructions hoisted"); 37 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 38 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 39 "Controls transformations in div-rem-pairs pass"); 40 41 namespace { 42 struct ExpandedMatch { 43 DivRemMapKey Key; 44 Instruction *Value; 45 }; 46 } // namespace 47 48 /// See if we can match: (which is the form we expand into) 49 /// X - ((X ?/ Y) * Y) 50 /// which is equivalent to: 51 /// X ?% Y 52 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 53 Value *Dividend, *XroundedDownToMultipleOfY; 54 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 55 return llvm::None; 56 57 Value *Divisor; 58 Instruction *Div; 59 // Look for ((X / Y) * Y) 60 if (!match( 61 XroundedDownToMultipleOfY, 62 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 63 m_Instruction(Div)), 64 m_Deferred(Divisor)))) 65 return llvm::None; 66 67 ExpandedMatch M; 68 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 69 M.Key.Dividend = Dividend; 70 M.Key.Divisor = Divisor; 71 M.Value = &I; 72 return M; 73 } 74 75 namespace { 76 /// A thin wrapper to store two values that we matched as div-rem pair. 77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 78 struct DivRemPairWorklistEntry { 79 /// The actual udiv/sdiv instruction. Source of truth. 80 AssertingVH<Instruction> DivInst; 81 82 /// The instruction that we have matched as a remainder instruction. 83 /// Should only be used as Value, don't introspect it. 84 AssertingVH<Instruction> RemInst; 85 86 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 87 : DivInst(DivInst_), RemInst(RemInst_) { 88 assert((DivInst->getOpcode() == Instruction::UDiv || 89 DivInst->getOpcode() == Instruction::SDiv) && 90 "Not a division."); 91 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 92 // We can't check anything else about remainder instruction, 93 // it's not strictly required to be a urem/srem. 94 } 95 96 /// The type for this pair, identical for both the div and rem. 97 Type *getType() const { return DivInst->getType(); } 98 99 /// Is this pair signed or unsigned? 100 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 101 102 /// In this pair, what are the divident and divisor? 103 Value *getDividend() const { return DivInst->getOperand(0); } 104 Value *getDivisor() const { return DivInst->getOperand(1); } 105 106 bool isRemExpanded() const { 107 switch (RemInst->getOpcode()) { 108 case Instruction::SRem: 109 case Instruction::URem: 110 return false; // single 'rem' instruction - unexpanded form. 111 default: 112 return true; // anything else means we have remainder in expanded form. 113 } 114 } 115 }; 116 } // namespace 117 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 118 119 /// Find matching pairs of integer div/rem ops (they have the same numerator, 120 /// denominator, and signedness). Place those pairs into a worklist for further 121 /// processing. This indirection is needed because we have to use TrackingVH<> 122 /// because we will be doing RAUW, and if one of the rem instructions we change 123 /// happens to be an input to another div/rem in the maps, we'd have problems. 124 static DivRemWorklistTy getWorklist(Function &F) { 125 // Insert all divide and remainder instructions into maps keyed by their 126 // operands and opcode (signed or unsigned). 127 DenseMap<DivRemMapKey, Instruction *> DivMap; 128 // Use a MapVector for RemMap so that instructions are moved/inserted in a 129 // deterministic order. 130 MapVector<DivRemMapKey, Instruction *> RemMap; 131 for (auto &BB : F) { 132 for (auto &I : BB) { 133 if (I.getOpcode() == Instruction::SDiv) 134 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 135 else if (I.getOpcode() == Instruction::UDiv) 136 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 137 else if (I.getOpcode() == Instruction::SRem) 138 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 139 else if (I.getOpcode() == Instruction::URem) 140 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 141 else if (auto Match = matchExpandedRem(I)) 142 RemMap[Match->Key] = Match->Value; 143 } 144 } 145 146 // We'll accumulate the matching pairs of div-rem instructions here. 147 DivRemWorklistTy Worklist; 148 149 // We can iterate over either map because we are only looking for matched 150 // pairs. Choose remainders for efficiency because they are usually even more 151 // rare than division. 152 for (auto &RemPair : RemMap) { 153 // Find the matching division instruction from the division map. 154 auto It = DivMap.find(RemPair.first); 155 if (It == DivMap.end()) 156 continue; 157 158 // We have a matching pair of div/rem instructions. 159 NumPairs++; 160 Instruction *RemInst = RemPair.second; 161 162 // Place it in the worklist. 163 Worklist.emplace_back(It->second, RemInst); 164 } 165 166 return Worklist; 167 } 168 169 /// Find matching pairs of integer div/rem ops (they have the same numerator, 170 /// denominator, and signedness). If they exist in different basic blocks, bring 171 /// them together by hoisting or replace the common division operation that is 172 /// implicit in the remainder: 173 /// X % Y <--> X - ((X / Y) * Y). 174 /// 175 /// We can largely ignore the normal safety and cost constraints on speculation 176 /// of these ops when we find a matching pair. This is because we are already 177 /// guaranteed that any exceptions and most cost are already incurred by the 178 /// first member of the pair. 179 /// 180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 181 /// SimplifyCFG, but it's split off on its own because it's different enough 182 /// that it doesn't quite match the stated objectives of those passes. 183 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 184 const DominatorTree &DT) { 185 bool Changed = false; 186 187 // Get the matching pairs of div-rem instructions. We want this extra 188 // indirection to avoid dealing with having to RAUW the keys of the maps. 189 DivRemWorklistTy Worklist = getWorklist(F); 190 191 // Process each entry in the worklist. 192 for (DivRemPairWorklistEntry &E : Worklist) { 193 if (!DebugCounter::shouldExecute(DRPCounter)) 194 continue; 195 196 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 197 198 auto &DivInst = E.DivInst; 199 auto &RemInst = E.RemInst; 200 201 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 202 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 203 204 if (HasDivRemOp && E.isRemExpanded()) { 205 // The target supports div+rem but the rem is expanded. 206 // We should recompose it first. 207 Value *X = E.getDividend(); 208 Value *Y = E.getDivisor(); 209 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 210 : BinaryOperator::CreateURem(X, Y); 211 // Note that we place it right next to the original expanded instruction, 212 // and letting further handling to move it if needed. 213 RealRem->setName(RemInst->getName() + ".recomposed"); 214 RealRem->insertAfter(RemInst); 215 Instruction *OrigRemInst = RemInst; 216 // Update AssertingVH<> with new instruction so it doesn't assert. 217 RemInst = RealRem; 218 // And replace the original instruction with the new one. 219 OrigRemInst->replaceAllUsesWith(RealRem); 220 OrigRemInst->eraseFromParent(); 221 NumRecomposed++; 222 // Note that we have left ((X / Y) * Y) around. 223 // If it had other uses we could rewrite it as X - X % Y 224 Changed = true; 225 } 226 227 assert((!E.isRemExpanded() || !HasDivRemOp) && 228 "*If* the target supports div-rem, then by now the RemInst *is* " 229 "Instruction::[US]Rem."); 230 231 // If the target supports div+rem and the instructions are in the same block 232 // already, there's nothing to do. The backend should handle this. If the 233 // target does not support div+rem, then we will decompose the rem. 234 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 235 continue; 236 237 bool DivDominates = DT.dominates(DivInst, RemInst); 238 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 239 // We have matching div-rem pair, but they are in two different blocks, 240 // neither of which dominates one another. 241 242 BasicBlock *PredBB = nullptr; 243 BasicBlock *DivBB = DivInst->getParent(); 244 BasicBlock *RemBB = RemInst->getParent(); 245 246 // It's only safe to hoist if every instruction before the Div/Rem in the 247 // basic block is guaranteed to transfer execution. 248 auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) { 249 for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E; 250 ++I) 251 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 252 return false; 253 254 return true; 255 }; 256 257 // Look for something like this 258 // PredBB 259 // | \ 260 // | Rem 261 // | / 262 // Div 263 // 264 // If the Rem block has a single predecessor and successor, and all paths 265 // from PredBB go to either RemBB or DivBB, and execution of RemBB and 266 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If 267 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave 268 // Rem where it is and rewrite it to mul/sub. 269 // FIXME: We could handle more hoisting cases. 270 if (RemBB->getSingleSuccessor() == DivBB) 271 PredBB = RemBB->getUniquePredecessor(); 272 273 if (PredBB && IsSafeToHoist(RemInst, RemBB) && 274 IsSafeToHoist(DivInst, DivBB) && 275 all_of(successors(PredBB), 276 [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) && 277 all_of(predecessors(DivBB), 278 [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) { 279 DivDominates = true; 280 DivInst->moveBefore(PredBB->getTerminator()); 281 Changed = true; 282 if (HasDivRemOp) { 283 RemInst->moveBefore(PredBB->getTerminator()); 284 continue; 285 } 286 } else 287 continue; 288 } 289 290 // The target does not have a single div/rem operation, 291 // and the rem is already in expanded form. Nothing to do. 292 if (!HasDivRemOp && E.isRemExpanded()) 293 continue; 294 295 if (HasDivRemOp) { 296 // The target has a single div/rem operation. Hoist the lower instruction 297 // to make the matched pair visible to the backend. 298 if (DivDominates) 299 RemInst->moveAfter(DivInst); 300 else 301 DivInst->moveAfter(RemInst); 302 NumHoisted++; 303 } else { 304 // The target does not have a single div/rem operation, 305 // and the rem is *not* in a already-expanded form. 306 // Decompose the remainder calculation as: 307 // X % Y --> X - ((X / Y) * Y). 308 309 assert(!RemOriginallyWasInExpandedForm && 310 "We should not be expanding if the rem was in expanded form to " 311 "begin with."); 312 313 Value *X = E.getDividend(); 314 Value *Y = E.getDivisor(); 315 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 316 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 317 318 // If the remainder dominates, then hoist the division up to that block: 319 // 320 // bb1: 321 // %rem = srem %x, %y 322 // bb2: 323 // %div = sdiv %x, %y 324 // --> 325 // bb1: 326 // %div = sdiv %x, %y 327 // %mul = mul %div, %y 328 // %rem = sub %x, %mul 329 // 330 // If the division dominates, it's already in the right place. The mul+sub 331 // will be in a different block because we don't assume that they are 332 // cheap to speculatively execute: 333 // 334 // bb1: 335 // %div = sdiv %x, %y 336 // bb2: 337 // %rem = srem %x, %y 338 // --> 339 // bb1: 340 // %div = sdiv %x, %y 341 // bb2: 342 // %mul = mul %div, %y 343 // %rem = sub %x, %mul 344 // 345 // If the div and rem are in the same block, we do the same transform, 346 // but any code movement would be within the same block. 347 348 if (!DivDominates) 349 DivInst->moveBefore(RemInst); 350 Mul->insertAfter(RemInst); 351 Sub->insertAfter(Mul); 352 353 // If X can be undef, X should be frozen first. 354 // For example, let's assume that Y = 1 & X = undef: 355 // %div = sdiv undef, 1 // %div = undef 356 // %rem = srem undef, 1 // %rem = 0 357 // => 358 // %div = sdiv undef, 1 // %div = undef 359 // %mul = mul %div, 1 // %mul = undef 360 // %rem = sub %x, %mul // %rem = undef - undef = undef 361 // If X is not frozen, %rem becomes undef after transformation. 362 // TODO: We need a undef-specific checking function in ValueTracking 363 if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) { 364 auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst); 365 DivInst->setOperand(0, FrX); 366 Sub->setOperand(0, FrX); 367 } 368 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, 369 // but %rem in tgt can be one of many integer values. 370 if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) { 371 auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst); 372 DivInst->setOperand(1, FrY); 373 Mul->setOperand(1, FrY); 374 } 375 376 // Now kill the explicit remainder. We have replaced it with: 377 // (sub X, (mul (div X, Y), Y) 378 Sub->setName(RemInst->getName() + ".decomposed"); 379 Instruction *OrigRemInst = RemInst; 380 // Update AssertingVH<> with new instruction so it doesn't assert. 381 RemInst = Sub; 382 // And replace the original instruction with the new one. 383 OrigRemInst->replaceAllUsesWith(Sub); 384 OrigRemInst->eraseFromParent(); 385 NumDecomposed++; 386 } 387 Changed = true; 388 } 389 390 return Changed; 391 } 392 393 // Pass manager boilerplate below here. 394 395 namespace { 396 struct DivRemPairsLegacyPass : public FunctionPass { 397 static char ID; 398 DivRemPairsLegacyPass() : FunctionPass(ID) { 399 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 400 } 401 402 void getAnalysisUsage(AnalysisUsage &AU) const override { 403 AU.addRequired<DominatorTreeWrapperPass>(); 404 AU.addRequired<TargetTransformInfoWrapperPass>(); 405 AU.setPreservesCFG(); 406 AU.addPreserved<DominatorTreeWrapperPass>(); 407 AU.addPreserved<GlobalsAAWrapperPass>(); 408 FunctionPass::getAnalysisUsage(AU); 409 } 410 411 bool runOnFunction(Function &F) override { 412 if (skipFunction(F)) 413 return false; 414 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 415 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 416 return optimizeDivRem(F, TTI, DT); 417 } 418 }; 419 } // namespace 420 421 char DivRemPairsLegacyPass::ID = 0; 422 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 423 "Hoist/decompose integer division and remainder", false, 424 false) 425 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 426 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 427 "Hoist/decompose integer division and remainder", false, 428 false) 429 FunctionPass *llvm::createDivRemPairsPass() { 430 return new DivRemPairsLegacyPass(); 431 } 432 433 PreservedAnalyses DivRemPairsPass::run(Function &F, 434 FunctionAnalysisManager &FAM) { 435 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 436 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 437 if (!optimizeDivRem(F, TTI, DT)) 438 return PreservedAnalyses::all(); 439 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 440 PreservedAnalyses PA; 441 PA.preserveSet<CFGAnalyses>(); 442 return PA; 443 } 444