xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/DivRemPairs.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/DebugCounter.h"
25 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
26 #include <optional>
27 
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30 
31 #define DEBUG_TYPE "div-rem-pairs"
32 STATISTIC(NumPairs, "Number of div/rem pairs");
33 STATISTIC(NumRecomposed, "Number of instructions recomposed");
34 STATISTIC(NumHoisted, "Number of instructions hoisted");
35 STATISTIC(NumDecomposed, "Number of instructions decomposed");
36 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
37               "Controls transformations in div-rem-pairs pass");
38 
39 namespace {
40 struct ExpandedMatch {
41   DivRemMapKey Key;
42   Instruction *Value;
43 };
44 } // namespace
45 
46 /// See if we can match: (which is the form we expand into)
47 ///   X - ((X ?/ Y) * Y)
48 /// which is equivalent to:
49 ///   X ?% Y
50 static std::optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
51   Value *Dividend, *XroundedDownToMultipleOfY;
52   if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
53     return std::nullopt;
54 
55   Value *Divisor;
56   Instruction *Div;
57   // Look for  ((X / Y) * Y)
58   if (!match(
59           XroundedDownToMultipleOfY,
60           m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
61                                m_Instruction(Div)),
62                   m_Deferred(Divisor))))
63     return std::nullopt;
64 
65   ExpandedMatch M;
66   M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
67   M.Key.Dividend = Dividend;
68   M.Key.Divisor = Divisor;
69   M.Value = &I;
70   return M;
71 }
72 
73 namespace {
74 /// A thin wrapper to store two values that we matched as div-rem pair.
75 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
76 struct DivRemPairWorklistEntry {
77   /// The actual udiv/sdiv instruction. Source of truth.
78   AssertingVH<Instruction> DivInst;
79 
80   /// The instruction that we have matched as a remainder instruction.
81   /// Should only be used as Value, don't introspect it.
82   AssertingVH<Instruction> RemInst;
83 
84   DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
85       : DivInst(DivInst_), RemInst(RemInst_) {
86     assert((DivInst->getOpcode() == Instruction::UDiv ||
87             DivInst->getOpcode() == Instruction::SDiv) &&
88            "Not a division.");
89     assert(DivInst->getType() == RemInst->getType() && "Types should match.");
90     // We can't check anything else about remainder instruction,
91     // it's not strictly required to be a urem/srem.
92   }
93 
94   /// The type for this pair, identical for both the div and rem.
95   Type *getType() const { return DivInst->getType(); }
96 
97   /// Is this pair signed or unsigned?
98   bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
99 
100   /// In this pair, what are the divident and divisor?
101   Value *getDividend() const { return DivInst->getOperand(0); }
102   Value *getDivisor() const { return DivInst->getOperand(1); }
103 
104   bool isRemExpanded() const {
105     switch (RemInst->getOpcode()) {
106     case Instruction::SRem:
107     case Instruction::URem:
108       return false; // single 'rem' instruction - unexpanded form.
109     default:
110       return true; // anything else means we have remainder in expanded form.
111     }
112   }
113 };
114 } // namespace
115 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
116 
117 /// Find matching pairs of integer div/rem ops (they have the same numerator,
118 /// denominator, and signedness). Place those pairs into a worklist for further
119 /// processing. This indirection is needed because we have to use TrackingVH<>
120 /// because we will be doing RAUW, and if one of the rem instructions we change
121 /// happens to be an input to another div/rem in the maps, we'd have problems.
122 static DivRemWorklistTy getWorklist(Function &F) {
123   // Insert all divide and remainder instructions into maps keyed by their
124   // operands and opcode (signed or unsigned).
125   DenseMap<DivRemMapKey, Instruction *> DivMap;
126   // Use a MapVector for RemMap so that instructions are moved/inserted in a
127   // deterministic order.
128   MapVector<DivRemMapKey, Instruction *> RemMap;
129   for (auto &BB : F) {
130     for (auto &I : BB) {
131       if (I.getOpcode() == Instruction::SDiv)
132         DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
133       else if (I.getOpcode() == Instruction::UDiv)
134         DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
135       else if (I.getOpcode() == Instruction::SRem)
136         RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
137       else if (I.getOpcode() == Instruction::URem)
138         RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
139       else if (auto Match = matchExpandedRem(I))
140         RemMap[Match->Key] = Match->Value;
141     }
142   }
143 
144   // We'll accumulate the matching pairs of div-rem instructions here.
145   DivRemWorklistTy Worklist;
146 
147   // We can iterate over either map because we are only looking for matched
148   // pairs. Choose remainders for efficiency because they are usually even more
149   // rare than division.
150   for (auto &RemPair : RemMap) {
151     // Find the matching division instruction from the division map.
152     auto It = DivMap.find(RemPair.first);
153     if (It == DivMap.end())
154       continue;
155 
156     // We have a matching pair of div/rem instructions.
157     NumPairs++;
158     Instruction *RemInst = RemPair.second;
159 
160     // Place it in the worklist.
161     Worklist.emplace_back(It->second, RemInst);
162   }
163 
164   return Worklist;
165 }
166 
167 /// Find matching pairs of integer div/rem ops (they have the same numerator,
168 /// denominator, and signedness). If they exist in different basic blocks, bring
169 /// them together by hoisting or replace the common division operation that is
170 /// implicit in the remainder:
171 /// X % Y <--> X - ((X / Y) * Y).
172 ///
173 /// We can largely ignore the normal safety and cost constraints on speculation
174 /// of these ops when we find a matching pair. This is because we are already
175 /// guaranteed that any exceptions and most cost are already incurred by the
176 /// first member of the pair.
177 ///
178 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
179 /// SimplifyCFG, but it's split off on its own because it's different enough
180 /// that it doesn't quite match the stated objectives of those passes.
181 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
182                            const DominatorTree &DT) {
183   bool Changed = false;
184 
185   // Get the matching pairs of div-rem instructions. We want this extra
186   // indirection to avoid dealing with having to RAUW the keys of the maps.
187   DivRemWorklistTy Worklist = getWorklist(F);
188 
189   // Process each entry in the worklist.
190   for (DivRemPairWorklistEntry &E : Worklist) {
191     if (!DebugCounter::shouldExecute(DRPCounter))
192       continue;
193 
194     bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
195 
196     auto &DivInst = E.DivInst;
197     auto &RemInst = E.RemInst;
198 
199     const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
200     (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
201 
202     if (HasDivRemOp && E.isRemExpanded()) {
203       // The target supports div+rem but the rem is expanded.
204       // We should recompose it first.
205       Value *X = E.getDividend();
206       Value *Y = E.getDivisor();
207       Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
208                                           : BinaryOperator::CreateURem(X, Y);
209       // Note that we place it right next to the original expanded instruction,
210       // and letting further handling to move it if needed.
211       RealRem->setName(RemInst->getName() + ".recomposed");
212       RealRem->insertAfter(RemInst);
213       Instruction *OrigRemInst = RemInst;
214       // Update AssertingVH<> with new instruction so it doesn't assert.
215       RemInst = RealRem;
216       // And replace the original instruction with the new one.
217       OrigRemInst->replaceAllUsesWith(RealRem);
218       RealRem->setDebugLoc(OrigRemInst->getDebugLoc());
219       OrigRemInst->eraseFromParent();
220       NumRecomposed++;
221       // Note that we have left ((X / Y) * Y) around.
222       // If it had other uses we could rewrite it as X - X % Y
223       Changed = true;
224     }
225 
226     assert((!E.isRemExpanded() || !HasDivRemOp) &&
227            "*If* the target supports div-rem, then by now the RemInst *is* "
228            "Instruction::[US]Rem.");
229 
230     // If the target supports div+rem and the instructions are in the same block
231     // already, there's nothing to do. The backend should handle this. If the
232     // target does not support div+rem, then we will decompose the rem.
233     if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
234       continue;
235 
236     bool DivDominates = DT.dominates(DivInst, RemInst);
237     if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
238       // We have matching div-rem pair, but they are in two different blocks,
239       // neither of which dominates one another.
240 
241       BasicBlock *PredBB = nullptr;
242       BasicBlock *DivBB = DivInst->getParent();
243       BasicBlock *RemBB = RemInst->getParent();
244 
245       // It's only safe to hoist if every instruction before the Div/Rem in the
246       // basic block is guaranteed to transfer execution.
247       auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) {
248         for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E;
249              ++I)
250           if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
251             return false;
252 
253         return true;
254       };
255 
256       // Look for something like this
257       // PredBB
258       //   |  \
259       //   |  Rem
260       //   |  /
261       //  Div
262       //
263       // If the Rem block has a single predecessor and successor, and all paths
264       // from PredBB go to either RemBB or DivBB, and execution of RemBB and
265       // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
266       // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
267       // Rem where it is and rewrite it to mul/sub.
268       if (RemBB->getSingleSuccessor() == DivBB) {
269         PredBB = RemBB->getUniquePredecessor();
270 
271         // Look for something like this
272         //     PredBB
273         //     /    \
274         //   Div   Rem
275         //
276         // If the Rem and Din blocks share a unique predecessor, and all
277         // paths from PredBB go to either RemBB or DivBB, and execution of RemBB
278         // and DivBB will always reach the Div/Rem, we can hoist Div to PredBB.
279         // If we have a DivRem operation we can also hoist Rem. By hoisting both
280         // ops to the same block, we reduce code size and allow the DivRem to
281         // issue sooner. Without a DivRem op, this transformation is
282         // unprofitable because we would end up performing an extra Mul+Sub on
283         // the Rem path.
284       } else if (BasicBlock *RemPredBB = RemBB->getUniquePredecessor()) {
285         // This hoist is only profitable when the target has a DivRem op.
286         if (HasDivRemOp && RemPredBB == DivBB->getUniquePredecessor())
287           PredBB = RemPredBB;
288       }
289       // FIXME: We could handle more hoisting cases.
290 
291       if (PredBB && !isa<CatchSwitchInst>(PredBB->getTerminator()) &&
292           isGuaranteedToTransferExecutionToSuccessor(PredBB->getTerminator()) &&
293           IsSafeToHoist(RemInst, RemBB) && IsSafeToHoist(DivInst, DivBB) &&
294           all_of(successors(PredBB),
295                  [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) &&
296           all_of(predecessors(DivBB),
297                  [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) {
298         DivDominates = true;
299         DivInst->moveBefore(PredBB->getTerminator());
300         Changed = true;
301         if (HasDivRemOp) {
302           RemInst->moveBefore(PredBB->getTerminator());
303           continue;
304         }
305       } else
306         continue;
307     }
308 
309     // The target does not have a single div/rem operation,
310     // and the rem is already in expanded form. Nothing to do.
311     if (!HasDivRemOp && E.isRemExpanded())
312       continue;
313 
314     if (HasDivRemOp) {
315       // The target has a single div/rem operation. Hoist the lower instruction
316       // to make the matched pair visible to the backend.
317       if (DivDominates)
318         RemInst->moveAfter(DivInst);
319       else
320         DivInst->moveAfter(RemInst);
321       NumHoisted++;
322     } else {
323       // The target does not have a single div/rem operation,
324       // and the rem is *not* in a already-expanded form.
325       // Decompose the remainder calculation as:
326       // X % Y --> X - ((X / Y) * Y).
327 
328       assert(!RemOriginallyWasInExpandedForm &&
329              "We should not be expanding if the rem was in expanded form to "
330              "begin with.");
331 
332       Value *X = E.getDividend();
333       Value *Y = E.getDivisor();
334       Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
335       Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
336 
337       // If the remainder dominates, then hoist the division up to that block:
338       //
339       // bb1:
340       //   %rem = srem %x, %y
341       // bb2:
342       //   %div = sdiv %x, %y
343       // -->
344       // bb1:
345       //   %div = sdiv %x, %y
346       //   %mul = mul %div, %y
347       //   %rem = sub %x, %mul
348       //
349       // If the division dominates, it's already in the right place. The mul+sub
350       // will be in a different block because we don't assume that they are
351       // cheap to speculatively execute:
352       //
353       // bb1:
354       //   %div = sdiv %x, %y
355       // bb2:
356       //   %rem = srem %x, %y
357       // -->
358       // bb1:
359       //   %div = sdiv %x, %y
360       // bb2:
361       //   %mul = mul %div, %y
362       //   %rem = sub %x, %mul
363       //
364       // If the div and rem are in the same block, we do the same transform,
365       // but any code movement would be within the same block.
366 
367       if (!DivDominates)
368         DivInst->moveBefore(RemInst);
369       Mul->insertAfter(RemInst);
370       Mul->setDebugLoc(RemInst->getDebugLoc());
371       Sub->insertAfter(Mul);
372       Sub->setDebugLoc(RemInst->getDebugLoc());
373 
374       // If DivInst has the exact flag, remove it. Otherwise this optimization
375       // may replace a well-defined value 'X % Y' with poison.
376       DivInst->dropPoisonGeneratingFlags();
377 
378       // If X can be undef, X should be frozen first.
379       // For example, let's assume that Y = 1 & X = undef:
380       //   %div = sdiv undef, 1 // %div = undef
381       //   %rem = srem undef, 1 // %rem = 0
382       // =>
383       //   %div = sdiv undef, 1 // %div = undef
384       //   %mul = mul %div, 1   // %mul = undef
385       //   %rem = sub %x, %mul  // %rem = undef - undef = undef
386       // If X is not frozen, %rem becomes undef after transformation.
387       if (!isGuaranteedNotToBeUndef(X, nullptr, DivInst, &DT)) {
388         auto *FrX =
389             new FreezeInst(X, X->getName() + ".frozen", DivInst->getIterator());
390         FrX->setDebugLoc(DivInst->getDebugLoc());
391         DivInst->setOperand(0, FrX);
392         Sub->setOperand(0, FrX);
393       }
394       // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
395       // but %rem in tgt can be one of many integer values.
396       if (!isGuaranteedNotToBeUndef(Y, nullptr, DivInst, &DT)) {
397         auto *FrY =
398             new FreezeInst(Y, Y->getName() + ".frozen", DivInst->getIterator());
399         FrY->setDebugLoc(DivInst->getDebugLoc());
400         DivInst->setOperand(1, FrY);
401         Mul->setOperand(1, FrY);
402       }
403 
404       // Now kill the explicit remainder. We have replaced it with:
405       // (sub X, (mul (div X, Y), Y)
406       Sub->setName(RemInst->getName() + ".decomposed");
407       Instruction *OrigRemInst = RemInst;
408       // Update AssertingVH<> with new instruction so it doesn't assert.
409       RemInst = Sub;
410       // And replace the original instruction with the new one.
411       OrigRemInst->replaceAllUsesWith(Sub);
412       OrigRemInst->eraseFromParent();
413       NumDecomposed++;
414     }
415     Changed = true;
416   }
417 
418   return Changed;
419 }
420 
421 // Pass manager boilerplate below here.
422 
423 PreservedAnalyses DivRemPairsPass::run(Function &F,
424                                        FunctionAnalysisManager &FAM) {
425   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
426   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
427   if (!optimizeDivRem(F, TTI, DT))
428     return PreservedAnalyses::all();
429   // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
430   PreservedAnalyses PA;
431   PA.preserveSet<CFGAnalyses>();
432   return PA;
433 }
434