1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/DebugCounter.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 28 29 using namespace llvm; 30 using namespace llvm::PatternMatch; 31 32 #define DEBUG_TYPE "div-rem-pairs" 33 STATISTIC(NumPairs, "Number of div/rem pairs"); 34 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 35 STATISTIC(NumHoisted, "Number of instructions hoisted"); 36 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 37 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 38 "Controls transformations in div-rem-pairs pass"); 39 40 namespace { 41 struct ExpandedMatch { 42 DivRemMapKey Key; 43 Instruction *Value; 44 }; 45 } // namespace 46 47 /// See if we can match: (which is the form we expand into) 48 /// X - ((X ?/ Y) * Y) 49 /// which is equivalent to: 50 /// X ?% Y 51 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 52 Value *Dividend, *XroundedDownToMultipleOfY; 53 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 54 return llvm::None; 55 56 Value *Divisor; 57 Instruction *Div; 58 // Look for ((X / Y) * Y) 59 if (!match( 60 XroundedDownToMultipleOfY, 61 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 62 m_Instruction(Div)), 63 m_Deferred(Divisor)))) 64 return llvm::None; 65 66 ExpandedMatch M; 67 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 68 M.Key.Dividend = Dividend; 69 M.Key.Divisor = Divisor; 70 M.Value = &I; 71 return M; 72 } 73 74 /// A thin wrapper to store two values that we matched as div-rem pair. 75 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 76 struct DivRemPairWorklistEntry { 77 /// The actual udiv/sdiv instruction. Source of truth. 78 AssertingVH<Instruction> DivInst; 79 80 /// The instruction that we have matched as a remainder instruction. 81 /// Should only be used as Value, don't introspect it. 82 AssertingVH<Instruction> RemInst; 83 84 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 85 : DivInst(DivInst_), RemInst(RemInst_) { 86 assert((DivInst->getOpcode() == Instruction::UDiv || 87 DivInst->getOpcode() == Instruction::SDiv) && 88 "Not a division."); 89 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 90 // We can't check anything else about remainder instruction, 91 // it's not strictly required to be a urem/srem. 92 } 93 94 /// The type for this pair, identical for both the div and rem. 95 Type *getType() const { return DivInst->getType(); } 96 97 /// Is this pair signed or unsigned? 98 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 99 100 /// In this pair, what are the divident and divisor? 101 Value *getDividend() const { return DivInst->getOperand(0); } 102 Value *getDivisor() const { return DivInst->getOperand(1); } 103 104 bool isRemExpanded() const { 105 switch (RemInst->getOpcode()) { 106 case Instruction::SRem: 107 case Instruction::URem: 108 return false; // single 'rem' instruction - unexpanded form. 109 default: 110 return true; // anything else means we have remainder in expanded form. 111 } 112 } 113 }; 114 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 115 116 /// Find matching pairs of integer div/rem ops (they have the same numerator, 117 /// denominator, and signedness). Place those pairs into a worklist for further 118 /// processing. This indirection is needed because we have to use TrackingVH<> 119 /// because we will be doing RAUW, and if one of the rem instructions we change 120 /// happens to be an input to another div/rem in the maps, we'd have problems. 121 static DivRemWorklistTy getWorklist(Function &F) { 122 // Insert all divide and remainder instructions into maps keyed by their 123 // operands and opcode (signed or unsigned). 124 DenseMap<DivRemMapKey, Instruction *> DivMap; 125 // Use a MapVector for RemMap so that instructions are moved/inserted in a 126 // deterministic order. 127 MapVector<DivRemMapKey, Instruction *> RemMap; 128 for (auto &BB : F) { 129 for (auto &I : BB) { 130 if (I.getOpcode() == Instruction::SDiv) 131 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 132 else if (I.getOpcode() == Instruction::UDiv) 133 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 134 else if (I.getOpcode() == Instruction::SRem) 135 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 136 else if (I.getOpcode() == Instruction::URem) 137 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 138 else if (auto Match = matchExpandedRem(I)) 139 RemMap[Match->Key] = Match->Value; 140 } 141 } 142 143 // We'll accumulate the matching pairs of div-rem instructions here. 144 DivRemWorklistTy Worklist; 145 146 // We can iterate over either map because we are only looking for matched 147 // pairs. Choose remainders for efficiency because they are usually even more 148 // rare than division. 149 for (auto &RemPair : RemMap) { 150 // Find the matching division instruction from the division map. 151 Instruction *DivInst = DivMap[RemPair.first]; 152 if (!DivInst) 153 continue; 154 155 // We have a matching pair of div/rem instructions. 156 NumPairs++; 157 Instruction *RemInst = RemPair.second; 158 159 // Place it in the worklist. 160 Worklist.emplace_back(DivInst, RemInst); 161 } 162 163 return Worklist; 164 } 165 166 /// Find matching pairs of integer div/rem ops (they have the same numerator, 167 /// denominator, and signedness). If they exist in different basic blocks, bring 168 /// them together by hoisting or replace the common division operation that is 169 /// implicit in the remainder: 170 /// X % Y <--> X - ((X / Y) * Y). 171 /// 172 /// We can largely ignore the normal safety and cost constraints on speculation 173 /// of these ops when we find a matching pair. This is because we are already 174 /// guaranteed that any exceptions and most cost are already incurred by the 175 /// first member of the pair. 176 /// 177 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 178 /// SimplifyCFG, but it's split off on its own because it's different enough 179 /// that it doesn't quite match the stated objectives of those passes. 180 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 181 const DominatorTree &DT) { 182 bool Changed = false; 183 184 // Get the matching pairs of div-rem instructions. We want this extra 185 // indirection to avoid dealing with having to RAUW the keys of the maps. 186 DivRemWorklistTy Worklist = getWorklist(F); 187 188 // Process each entry in the worklist. 189 for (DivRemPairWorklistEntry &E : Worklist) { 190 if (!DebugCounter::shouldExecute(DRPCounter)) 191 continue; 192 193 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 194 195 auto &DivInst = E.DivInst; 196 auto &RemInst = E.RemInst; 197 198 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 199 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 200 201 if (HasDivRemOp && E.isRemExpanded()) { 202 // The target supports div+rem but the rem is expanded. 203 // We should recompose it first. 204 Value *X = E.getDividend(); 205 Value *Y = E.getDivisor(); 206 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 207 : BinaryOperator::CreateURem(X, Y); 208 // Note that we place it right next to the original expanded instruction, 209 // and letting further handling to move it if needed. 210 RealRem->setName(RemInst->getName() + ".recomposed"); 211 RealRem->insertAfter(RemInst); 212 Instruction *OrigRemInst = RemInst; 213 // Update AssertingVH<> with new instruction so it doesn't assert. 214 RemInst = RealRem; 215 // And replace the original instruction with the new one. 216 OrigRemInst->replaceAllUsesWith(RealRem); 217 OrigRemInst->eraseFromParent(); 218 NumRecomposed++; 219 // Note that we have left ((X / Y) * Y) around. 220 // If it had other uses we could rewrite it as X - X % Y 221 } 222 223 assert((!E.isRemExpanded() || !HasDivRemOp) && 224 "*If* the target supports div-rem, then by now the RemInst *is* " 225 "Instruction::[US]Rem."); 226 227 // If the target supports div+rem and the instructions are in the same block 228 // already, there's nothing to do. The backend should handle this. If the 229 // target does not support div+rem, then we will decompose the rem. 230 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 231 continue; 232 233 bool DivDominates = DT.dominates(DivInst, RemInst); 234 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 235 // We have matching div-rem pair, but they are in two different blocks, 236 // neither of which dominates one another. 237 // FIXME: We could hoist both ops to the common predecessor block? 238 continue; 239 } 240 241 // The target does not have a single div/rem operation, 242 // and the rem is already in expanded form. Nothing to do. 243 if (!HasDivRemOp && E.isRemExpanded()) 244 continue; 245 246 if (HasDivRemOp) { 247 // The target has a single div/rem operation. Hoist the lower instruction 248 // to make the matched pair visible to the backend. 249 if (DivDominates) 250 RemInst->moveAfter(DivInst); 251 else 252 DivInst->moveAfter(RemInst); 253 NumHoisted++; 254 } else { 255 // The target does not have a single div/rem operation, 256 // and the rem is *not* in a already-expanded form. 257 // Decompose the remainder calculation as: 258 // X % Y --> X - ((X / Y) * Y). 259 260 assert(!RemOriginallyWasInExpandedForm && 261 "We should not be expanding if the rem was in expanded form to " 262 "begin with."); 263 264 Value *X = E.getDividend(); 265 Value *Y = E.getDivisor(); 266 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 267 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 268 269 // If the remainder dominates, then hoist the division up to that block: 270 // 271 // bb1: 272 // %rem = srem %x, %y 273 // bb2: 274 // %div = sdiv %x, %y 275 // --> 276 // bb1: 277 // %div = sdiv %x, %y 278 // %mul = mul %div, %y 279 // %rem = sub %x, %mul 280 // 281 // If the division dominates, it's already in the right place. The mul+sub 282 // will be in a different block because we don't assume that they are 283 // cheap to speculatively execute: 284 // 285 // bb1: 286 // %div = sdiv %x, %y 287 // bb2: 288 // %rem = srem %x, %y 289 // --> 290 // bb1: 291 // %div = sdiv %x, %y 292 // bb2: 293 // %mul = mul %div, %y 294 // %rem = sub %x, %mul 295 // 296 // If the div and rem are in the same block, we do the same transform, 297 // but any code movement would be within the same block. 298 299 if (!DivDominates) 300 DivInst->moveBefore(RemInst); 301 Mul->insertAfter(RemInst); 302 Sub->insertAfter(Mul); 303 304 // Now kill the explicit remainder. We have replaced it with: 305 // (sub X, (mul (div X, Y), Y) 306 Sub->setName(RemInst->getName() + ".decomposed"); 307 Instruction *OrigRemInst = RemInst; 308 // Update AssertingVH<> with new instruction so it doesn't assert. 309 RemInst = Sub; 310 // And replace the original instruction with the new one. 311 OrigRemInst->replaceAllUsesWith(Sub); 312 OrigRemInst->eraseFromParent(); 313 NumDecomposed++; 314 } 315 Changed = true; 316 } 317 318 return Changed; 319 } 320 321 // Pass manager boilerplate below here. 322 323 namespace { 324 struct DivRemPairsLegacyPass : public FunctionPass { 325 static char ID; 326 DivRemPairsLegacyPass() : FunctionPass(ID) { 327 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 328 } 329 330 void getAnalysisUsage(AnalysisUsage &AU) const override { 331 AU.addRequired<DominatorTreeWrapperPass>(); 332 AU.addRequired<TargetTransformInfoWrapperPass>(); 333 AU.setPreservesCFG(); 334 AU.addPreserved<DominatorTreeWrapperPass>(); 335 AU.addPreserved<GlobalsAAWrapperPass>(); 336 FunctionPass::getAnalysisUsage(AU); 337 } 338 339 bool runOnFunction(Function &F) override { 340 if (skipFunction(F)) 341 return false; 342 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 343 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 344 return optimizeDivRem(F, TTI, DT); 345 } 346 }; 347 } // namespace 348 349 char DivRemPairsLegacyPass::ID = 0; 350 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 351 "Hoist/decompose integer division and remainder", false, 352 false) 353 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 354 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 355 "Hoist/decompose integer division and remainder", false, 356 false) 357 FunctionPass *llvm::createDivRemPairsPass() { 358 return new DivRemPairsLegacyPass(); 359 } 360 361 PreservedAnalyses DivRemPairsPass::run(Function &F, 362 FunctionAnalysisManager &FAM) { 363 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 364 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 365 if (!optimizeDivRem(F, TTI, DT)) 366 return PreservedAnalyses::all(); 367 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 368 PreservedAnalyses PA; 369 PA.preserveSet<CFGAnalyses>(); 370 PA.preserve<GlobalsAA>(); 371 return PA; 372 } 373