1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/DebugCounter.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 29 #include <optional> 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 #define DEBUG_TYPE "div-rem-pairs" 35 STATISTIC(NumPairs, "Number of div/rem pairs"); 36 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 37 STATISTIC(NumHoisted, "Number of instructions hoisted"); 38 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 39 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 40 "Controls transformations in div-rem-pairs pass"); 41 42 namespace { 43 struct ExpandedMatch { 44 DivRemMapKey Key; 45 Instruction *Value; 46 }; 47 } // namespace 48 49 /// See if we can match: (which is the form we expand into) 50 /// X - ((X ?/ Y) * Y) 51 /// which is equivalent to: 52 /// X ?% Y 53 static std::optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 54 Value *Dividend, *XroundedDownToMultipleOfY; 55 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 56 return std::nullopt; 57 58 Value *Divisor; 59 Instruction *Div; 60 // Look for ((X / Y) * Y) 61 if (!match( 62 XroundedDownToMultipleOfY, 63 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 64 m_Instruction(Div)), 65 m_Deferred(Divisor)))) 66 return std::nullopt; 67 68 ExpandedMatch M; 69 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 70 M.Key.Dividend = Dividend; 71 M.Key.Divisor = Divisor; 72 M.Value = &I; 73 return M; 74 } 75 76 namespace { 77 /// A thin wrapper to store two values that we matched as div-rem pair. 78 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 79 struct DivRemPairWorklistEntry { 80 /// The actual udiv/sdiv instruction. Source of truth. 81 AssertingVH<Instruction> DivInst; 82 83 /// The instruction that we have matched as a remainder instruction. 84 /// Should only be used as Value, don't introspect it. 85 AssertingVH<Instruction> RemInst; 86 87 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 88 : DivInst(DivInst_), RemInst(RemInst_) { 89 assert((DivInst->getOpcode() == Instruction::UDiv || 90 DivInst->getOpcode() == Instruction::SDiv) && 91 "Not a division."); 92 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 93 // We can't check anything else about remainder instruction, 94 // it's not strictly required to be a urem/srem. 95 } 96 97 /// The type for this pair, identical for both the div and rem. 98 Type *getType() const { return DivInst->getType(); } 99 100 /// Is this pair signed or unsigned? 101 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 102 103 /// In this pair, what are the divident and divisor? 104 Value *getDividend() const { return DivInst->getOperand(0); } 105 Value *getDivisor() const { return DivInst->getOperand(1); } 106 107 bool isRemExpanded() const { 108 switch (RemInst->getOpcode()) { 109 case Instruction::SRem: 110 case Instruction::URem: 111 return false; // single 'rem' instruction - unexpanded form. 112 default: 113 return true; // anything else means we have remainder in expanded form. 114 } 115 } 116 }; 117 } // namespace 118 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 119 120 /// Find matching pairs of integer div/rem ops (they have the same numerator, 121 /// denominator, and signedness). Place those pairs into a worklist for further 122 /// processing. This indirection is needed because we have to use TrackingVH<> 123 /// because we will be doing RAUW, and if one of the rem instructions we change 124 /// happens to be an input to another div/rem in the maps, we'd have problems. 125 static DivRemWorklistTy getWorklist(Function &F) { 126 // Insert all divide and remainder instructions into maps keyed by their 127 // operands and opcode (signed or unsigned). 128 DenseMap<DivRemMapKey, Instruction *> DivMap; 129 // Use a MapVector for RemMap so that instructions are moved/inserted in a 130 // deterministic order. 131 MapVector<DivRemMapKey, Instruction *> RemMap; 132 for (auto &BB : F) { 133 for (auto &I : BB) { 134 if (I.getOpcode() == Instruction::SDiv) 135 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 136 else if (I.getOpcode() == Instruction::UDiv) 137 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 138 else if (I.getOpcode() == Instruction::SRem) 139 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 140 else if (I.getOpcode() == Instruction::URem) 141 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 142 else if (auto Match = matchExpandedRem(I)) 143 RemMap[Match->Key] = Match->Value; 144 } 145 } 146 147 // We'll accumulate the matching pairs of div-rem instructions here. 148 DivRemWorklistTy Worklist; 149 150 // We can iterate over either map because we are only looking for matched 151 // pairs. Choose remainders for efficiency because they are usually even more 152 // rare than division. 153 for (auto &RemPair : RemMap) { 154 // Find the matching division instruction from the division map. 155 auto It = DivMap.find(RemPair.first); 156 if (It == DivMap.end()) 157 continue; 158 159 // We have a matching pair of div/rem instructions. 160 NumPairs++; 161 Instruction *RemInst = RemPair.second; 162 163 // Place it in the worklist. 164 Worklist.emplace_back(It->second, RemInst); 165 } 166 167 return Worklist; 168 } 169 170 /// Find matching pairs of integer div/rem ops (they have the same numerator, 171 /// denominator, and signedness). If they exist in different basic blocks, bring 172 /// them together by hoisting or replace the common division operation that is 173 /// implicit in the remainder: 174 /// X % Y <--> X - ((X / Y) * Y). 175 /// 176 /// We can largely ignore the normal safety and cost constraints on speculation 177 /// of these ops when we find a matching pair. This is because we are already 178 /// guaranteed that any exceptions and most cost are already incurred by the 179 /// first member of the pair. 180 /// 181 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 182 /// SimplifyCFG, but it's split off on its own because it's different enough 183 /// that it doesn't quite match the stated objectives of those passes. 184 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 185 const DominatorTree &DT) { 186 bool Changed = false; 187 188 // Get the matching pairs of div-rem instructions. We want this extra 189 // indirection to avoid dealing with having to RAUW the keys of the maps. 190 DivRemWorklistTy Worklist = getWorklist(F); 191 192 // Process each entry in the worklist. 193 for (DivRemPairWorklistEntry &E : Worklist) { 194 if (!DebugCounter::shouldExecute(DRPCounter)) 195 continue; 196 197 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 198 199 auto &DivInst = E.DivInst; 200 auto &RemInst = E.RemInst; 201 202 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 203 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 204 205 if (HasDivRemOp && E.isRemExpanded()) { 206 // The target supports div+rem but the rem is expanded. 207 // We should recompose it first. 208 Value *X = E.getDividend(); 209 Value *Y = E.getDivisor(); 210 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 211 : BinaryOperator::CreateURem(X, Y); 212 // Note that we place it right next to the original expanded instruction, 213 // and letting further handling to move it if needed. 214 RealRem->setName(RemInst->getName() + ".recomposed"); 215 RealRem->insertAfter(RemInst); 216 Instruction *OrigRemInst = RemInst; 217 // Update AssertingVH<> with new instruction so it doesn't assert. 218 RemInst = RealRem; 219 // And replace the original instruction with the new one. 220 OrigRemInst->replaceAllUsesWith(RealRem); 221 OrigRemInst->eraseFromParent(); 222 NumRecomposed++; 223 // Note that we have left ((X / Y) * Y) around. 224 // If it had other uses we could rewrite it as X - X % Y 225 Changed = true; 226 } 227 228 assert((!E.isRemExpanded() || !HasDivRemOp) && 229 "*If* the target supports div-rem, then by now the RemInst *is* " 230 "Instruction::[US]Rem."); 231 232 // If the target supports div+rem and the instructions are in the same block 233 // already, there's nothing to do. The backend should handle this. If the 234 // target does not support div+rem, then we will decompose the rem. 235 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 236 continue; 237 238 bool DivDominates = DT.dominates(DivInst, RemInst); 239 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 240 // We have matching div-rem pair, but they are in two different blocks, 241 // neither of which dominates one another. 242 243 BasicBlock *PredBB = nullptr; 244 BasicBlock *DivBB = DivInst->getParent(); 245 BasicBlock *RemBB = RemInst->getParent(); 246 247 // It's only safe to hoist if every instruction before the Div/Rem in the 248 // basic block is guaranteed to transfer execution. 249 auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) { 250 for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E; 251 ++I) 252 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 253 return false; 254 255 return true; 256 }; 257 258 // Look for something like this 259 // PredBB 260 // | \ 261 // | Rem 262 // | / 263 // Div 264 // 265 // If the Rem block has a single predecessor and successor, and all paths 266 // from PredBB go to either RemBB or DivBB, and execution of RemBB and 267 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If 268 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave 269 // Rem where it is and rewrite it to mul/sub. 270 if (RemBB->getSingleSuccessor() == DivBB) { 271 PredBB = RemBB->getUniquePredecessor(); 272 273 // Look for something like this 274 // PredBB 275 // / \ 276 // Div Rem 277 // 278 // If the Rem and Din blocks share a unique predecessor, and all 279 // paths from PredBB go to either RemBB or DivBB, and execution of RemBB 280 // and DivBB will always reach the Div/Rem, we can hoist Div to PredBB. 281 // If we have a DivRem operation we can also hoist Rem. By hoisting both 282 // ops to the same block, we reduce code size and allow the DivRem to 283 // issue sooner. Without a DivRem op, this transformation is 284 // unprofitable because we would end up performing an extra Mul+Sub on 285 // the Rem path. 286 } else if (BasicBlock *RemPredBB = RemBB->getUniquePredecessor()) { 287 // This hoist is only profitable when the target has a DivRem op. 288 if (HasDivRemOp && RemPredBB == DivBB->getUniquePredecessor()) 289 PredBB = RemPredBB; 290 } 291 // FIXME: We could handle more hoisting cases. 292 293 if (PredBB && !isa<CatchSwitchInst>(PredBB->getTerminator()) && 294 isGuaranteedToTransferExecutionToSuccessor(PredBB->getTerminator()) && 295 IsSafeToHoist(RemInst, RemBB) && IsSafeToHoist(DivInst, DivBB) && 296 all_of(successors(PredBB), 297 [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) && 298 all_of(predecessors(DivBB), 299 [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) { 300 DivDominates = true; 301 DivInst->moveBefore(PredBB->getTerminator()); 302 Changed = true; 303 if (HasDivRemOp) { 304 RemInst->moveBefore(PredBB->getTerminator()); 305 continue; 306 } 307 } else 308 continue; 309 } 310 311 // The target does not have a single div/rem operation, 312 // and the rem is already in expanded form. Nothing to do. 313 if (!HasDivRemOp && E.isRemExpanded()) 314 continue; 315 316 if (HasDivRemOp) { 317 // The target has a single div/rem operation. Hoist the lower instruction 318 // to make the matched pair visible to the backend. 319 if (DivDominates) 320 RemInst->moveAfter(DivInst); 321 else 322 DivInst->moveAfter(RemInst); 323 NumHoisted++; 324 } else { 325 // The target does not have a single div/rem operation, 326 // and the rem is *not* in a already-expanded form. 327 // Decompose the remainder calculation as: 328 // X % Y --> X - ((X / Y) * Y). 329 330 assert(!RemOriginallyWasInExpandedForm && 331 "We should not be expanding if the rem was in expanded form to " 332 "begin with."); 333 334 Value *X = E.getDividend(); 335 Value *Y = E.getDivisor(); 336 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 337 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 338 339 // If the remainder dominates, then hoist the division up to that block: 340 // 341 // bb1: 342 // %rem = srem %x, %y 343 // bb2: 344 // %div = sdiv %x, %y 345 // --> 346 // bb1: 347 // %div = sdiv %x, %y 348 // %mul = mul %div, %y 349 // %rem = sub %x, %mul 350 // 351 // If the division dominates, it's already in the right place. The mul+sub 352 // will be in a different block because we don't assume that they are 353 // cheap to speculatively execute: 354 // 355 // bb1: 356 // %div = sdiv %x, %y 357 // bb2: 358 // %rem = srem %x, %y 359 // --> 360 // bb1: 361 // %div = sdiv %x, %y 362 // bb2: 363 // %mul = mul %div, %y 364 // %rem = sub %x, %mul 365 // 366 // If the div and rem are in the same block, we do the same transform, 367 // but any code movement would be within the same block. 368 369 if (!DivDominates) 370 DivInst->moveBefore(RemInst); 371 Mul->insertAfter(RemInst); 372 Sub->insertAfter(Mul); 373 374 // If X can be undef, X should be frozen first. 375 // For example, let's assume that Y = 1 & X = undef: 376 // %div = sdiv undef, 1 // %div = undef 377 // %rem = srem undef, 1 // %rem = 0 378 // => 379 // %div = sdiv undef, 1 // %div = undef 380 // %mul = mul %div, 1 // %mul = undef 381 // %rem = sub %x, %mul // %rem = undef - undef = undef 382 // If X is not frozen, %rem becomes undef after transformation. 383 // TODO: We need a undef-specific checking function in ValueTracking 384 if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) { 385 auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst); 386 DivInst->setOperand(0, FrX); 387 Sub->setOperand(0, FrX); 388 } 389 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, 390 // but %rem in tgt can be one of many integer values. 391 if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) { 392 auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst); 393 DivInst->setOperand(1, FrY); 394 Mul->setOperand(1, FrY); 395 } 396 397 // Now kill the explicit remainder. We have replaced it with: 398 // (sub X, (mul (div X, Y), Y) 399 Sub->setName(RemInst->getName() + ".decomposed"); 400 Instruction *OrigRemInst = RemInst; 401 // Update AssertingVH<> with new instruction so it doesn't assert. 402 RemInst = Sub; 403 // And replace the original instruction with the new one. 404 OrigRemInst->replaceAllUsesWith(Sub); 405 OrigRemInst->eraseFromParent(); 406 NumDecomposed++; 407 } 408 Changed = true; 409 } 410 411 return Changed; 412 } 413 414 // Pass manager boilerplate below here. 415 416 namespace { 417 struct DivRemPairsLegacyPass : public FunctionPass { 418 static char ID; 419 DivRemPairsLegacyPass() : FunctionPass(ID) { 420 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 421 } 422 423 void getAnalysisUsage(AnalysisUsage &AU) const override { 424 AU.addRequired<DominatorTreeWrapperPass>(); 425 AU.addRequired<TargetTransformInfoWrapperPass>(); 426 AU.setPreservesCFG(); 427 AU.addPreserved<DominatorTreeWrapperPass>(); 428 AU.addPreserved<GlobalsAAWrapperPass>(); 429 FunctionPass::getAnalysisUsage(AU); 430 } 431 432 bool runOnFunction(Function &F) override { 433 if (skipFunction(F)) 434 return false; 435 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 436 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 437 return optimizeDivRem(F, TTI, DT); 438 } 439 }; 440 } // namespace 441 442 char DivRemPairsLegacyPass::ID = 0; 443 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 444 "Hoist/decompose integer division and remainder", false, 445 false) 446 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 447 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 448 "Hoist/decompose integer division and remainder", false, 449 false) 450 FunctionPass *llvm::createDivRemPairsPass() { 451 return new DivRemPairsLegacyPass(); 452 } 453 454 PreservedAnalyses DivRemPairsPass::run(Function &F, 455 FunctionAnalysisManager &FAM) { 456 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 457 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 458 if (!optimizeDivRem(F, TTI, DT)) 459 return PreservedAnalyses::all(); 460 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 461 PreservedAnalyses PA; 462 PA.preserveSet<CFGAnalyses>(); 463 return PA; 464 } 465