1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/DebugCounter.h" 25 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 26 #include <optional> 27 28 using namespace llvm; 29 using namespace llvm::PatternMatch; 30 31 #define DEBUG_TYPE "div-rem-pairs" 32 STATISTIC(NumPairs, "Number of div/rem pairs"); 33 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 34 STATISTIC(NumHoisted, "Number of instructions hoisted"); 35 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 36 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 37 "Controls transformations in div-rem-pairs pass"); 38 39 namespace { 40 struct ExpandedMatch { 41 DivRemMapKey Key; 42 Instruction *Value; 43 }; 44 } // namespace 45 46 /// See if we can match: (which is the form we expand into) 47 /// X - ((X ?/ Y) * Y) 48 /// which is equivalent to: 49 /// X ?% Y 50 static std::optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 51 Value *Dividend, *XroundedDownToMultipleOfY; 52 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 53 return std::nullopt; 54 55 Value *Divisor; 56 Instruction *Div; 57 // Look for ((X / Y) * Y) 58 if (!match( 59 XroundedDownToMultipleOfY, 60 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 61 m_Instruction(Div)), 62 m_Deferred(Divisor)))) 63 return std::nullopt; 64 65 ExpandedMatch M; 66 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 67 M.Key.Dividend = Dividend; 68 M.Key.Divisor = Divisor; 69 M.Value = &I; 70 return M; 71 } 72 73 namespace { 74 /// A thin wrapper to store two values that we matched as div-rem pair. 75 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 76 struct DivRemPairWorklistEntry { 77 /// The actual udiv/sdiv instruction. Source of truth. 78 AssertingVH<Instruction> DivInst; 79 80 /// The instruction that we have matched as a remainder instruction. 81 /// Should only be used as Value, don't introspect it. 82 AssertingVH<Instruction> RemInst; 83 84 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 85 : DivInst(DivInst_), RemInst(RemInst_) { 86 assert((DivInst->getOpcode() == Instruction::UDiv || 87 DivInst->getOpcode() == Instruction::SDiv) && 88 "Not a division."); 89 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 90 // We can't check anything else about remainder instruction, 91 // it's not strictly required to be a urem/srem. 92 } 93 94 /// The type for this pair, identical for both the div and rem. 95 Type *getType() const { return DivInst->getType(); } 96 97 /// Is this pair signed or unsigned? 98 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 99 100 /// In this pair, what are the divident and divisor? 101 Value *getDividend() const { return DivInst->getOperand(0); } 102 Value *getDivisor() const { return DivInst->getOperand(1); } 103 104 bool isRemExpanded() const { 105 switch (RemInst->getOpcode()) { 106 case Instruction::SRem: 107 case Instruction::URem: 108 return false; // single 'rem' instruction - unexpanded form. 109 default: 110 return true; // anything else means we have remainder in expanded form. 111 } 112 } 113 }; 114 } // namespace 115 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 116 117 /// Find matching pairs of integer div/rem ops (they have the same numerator, 118 /// denominator, and signedness). Place those pairs into a worklist for further 119 /// processing. This indirection is needed because we have to use TrackingVH<> 120 /// because we will be doing RAUW, and if one of the rem instructions we change 121 /// happens to be an input to another div/rem in the maps, we'd have problems. 122 static DivRemWorklistTy getWorklist(Function &F) { 123 // Insert all divide and remainder instructions into maps keyed by their 124 // operands and opcode (signed or unsigned). 125 DenseMap<DivRemMapKey, Instruction *> DivMap; 126 // Use a MapVector for RemMap so that instructions are moved/inserted in a 127 // deterministic order. 128 MapVector<DivRemMapKey, Instruction *> RemMap; 129 for (auto &BB : F) { 130 for (auto &I : BB) { 131 if (I.getOpcode() == Instruction::SDiv) 132 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 133 else if (I.getOpcode() == Instruction::UDiv) 134 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 135 else if (I.getOpcode() == Instruction::SRem) 136 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 137 else if (I.getOpcode() == Instruction::URem) 138 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 139 else if (auto Match = matchExpandedRem(I)) 140 RemMap[Match->Key] = Match->Value; 141 } 142 } 143 144 // We'll accumulate the matching pairs of div-rem instructions here. 145 DivRemWorklistTy Worklist; 146 147 // We can iterate over either map because we are only looking for matched 148 // pairs. Choose remainders for efficiency because they are usually even more 149 // rare than division. 150 for (auto &RemPair : RemMap) { 151 // Find the matching division instruction from the division map. 152 auto It = DivMap.find(RemPair.first); 153 if (It == DivMap.end()) 154 continue; 155 156 // We have a matching pair of div/rem instructions. 157 NumPairs++; 158 Instruction *RemInst = RemPair.second; 159 160 // Place it in the worklist. 161 Worklist.emplace_back(It->second, RemInst); 162 } 163 164 return Worklist; 165 } 166 167 /// Find matching pairs of integer div/rem ops (they have the same numerator, 168 /// denominator, and signedness). If they exist in different basic blocks, bring 169 /// them together by hoisting or replace the common division operation that is 170 /// implicit in the remainder: 171 /// X % Y <--> X - ((X / Y) * Y). 172 /// 173 /// We can largely ignore the normal safety and cost constraints on speculation 174 /// of these ops when we find a matching pair. This is because we are already 175 /// guaranteed that any exceptions and most cost are already incurred by the 176 /// first member of the pair. 177 /// 178 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 179 /// SimplifyCFG, but it's split off on its own because it's different enough 180 /// that it doesn't quite match the stated objectives of those passes. 181 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 182 const DominatorTree &DT) { 183 bool Changed = false; 184 185 // Get the matching pairs of div-rem instructions. We want this extra 186 // indirection to avoid dealing with having to RAUW the keys of the maps. 187 DivRemWorklistTy Worklist = getWorklist(F); 188 189 // Process each entry in the worklist. 190 for (DivRemPairWorklistEntry &E : Worklist) { 191 if (!DebugCounter::shouldExecute(DRPCounter)) 192 continue; 193 194 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 195 196 auto &DivInst = E.DivInst; 197 auto &RemInst = E.RemInst; 198 199 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 200 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 201 202 if (HasDivRemOp && E.isRemExpanded()) { 203 // The target supports div+rem but the rem is expanded. 204 // We should recompose it first. 205 Value *X = E.getDividend(); 206 Value *Y = E.getDivisor(); 207 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 208 : BinaryOperator::CreateURem(X, Y); 209 // Note that we place it right next to the original expanded instruction, 210 // and letting further handling to move it if needed. 211 RealRem->setName(RemInst->getName() + ".recomposed"); 212 RealRem->insertAfter(RemInst); 213 Instruction *OrigRemInst = RemInst; 214 // Update AssertingVH<> with new instruction so it doesn't assert. 215 RemInst = RealRem; 216 // And replace the original instruction with the new one. 217 OrigRemInst->replaceAllUsesWith(RealRem); 218 RealRem->setDebugLoc(OrigRemInst->getDebugLoc()); 219 OrigRemInst->eraseFromParent(); 220 NumRecomposed++; 221 // Note that we have left ((X / Y) * Y) around. 222 // If it had other uses we could rewrite it as X - X % Y 223 Changed = true; 224 } 225 226 assert((!E.isRemExpanded() || !HasDivRemOp) && 227 "*If* the target supports div-rem, then by now the RemInst *is* " 228 "Instruction::[US]Rem."); 229 230 // If the target supports div+rem and the instructions are in the same block 231 // already, there's nothing to do. The backend should handle this. If the 232 // target does not support div+rem, then we will decompose the rem. 233 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 234 continue; 235 236 bool DivDominates = DT.dominates(DivInst, RemInst); 237 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 238 // We have matching div-rem pair, but they are in two different blocks, 239 // neither of which dominates one another. 240 241 BasicBlock *PredBB = nullptr; 242 BasicBlock *DivBB = DivInst->getParent(); 243 BasicBlock *RemBB = RemInst->getParent(); 244 245 // It's only safe to hoist if every instruction before the Div/Rem in the 246 // basic block is guaranteed to transfer execution. 247 auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) { 248 for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E; 249 ++I) 250 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 251 return false; 252 253 return true; 254 }; 255 256 // Look for something like this 257 // PredBB 258 // | \ 259 // | Rem 260 // | / 261 // Div 262 // 263 // If the Rem block has a single predecessor and successor, and all paths 264 // from PredBB go to either RemBB or DivBB, and execution of RemBB and 265 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If 266 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave 267 // Rem where it is and rewrite it to mul/sub. 268 if (RemBB->getSingleSuccessor() == DivBB) { 269 PredBB = RemBB->getUniquePredecessor(); 270 271 // Look for something like this 272 // PredBB 273 // / \ 274 // Div Rem 275 // 276 // If the Rem and Din blocks share a unique predecessor, and all 277 // paths from PredBB go to either RemBB or DivBB, and execution of RemBB 278 // and DivBB will always reach the Div/Rem, we can hoist Div to PredBB. 279 // If we have a DivRem operation we can also hoist Rem. By hoisting both 280 // ops to the same block, we reduce code size and allow the DivRem to 281 // issue sooner. Without a DivRem op, this transformation is 282 // unprofitable because we would end up performing an extra Mul+Sub on 283 // the Rem path. 284 } else if (BasicBlock *RemPredBB = RemBB->getUniquePredecessor()) { 285 // This hoist is only profitable when the target has a DivRem op. 286 if (HasDivRemOp && RemPredBB == DivBB->getUniquePredecessor()) 287 PredBB = RemPredBB; 288 } 289 // FIXME: We could handle more hoisting cases. 290 291 if (PredBB && !isa<CatchSwitchInst>(PredBB->getTerminator()) && 292 isGuaranteedToTransferExecutionToSuccessor(PredBB->getTerminator()) && 293 IsSafeToHoist(RemInst, RemBB) && IsSafeToHoist(DivInst, DivBB) && 294 all_of(successors(PredBB), 295 [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) && 296 all_of(predecessors(DivBB), 297 [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) { 298 DivDominates = true; 299 DivInst->moveBefore(PredBB->getTerminator()); 300 Changed = true; 301 if (HasDivRemOp) { 302 RemInst->moveBefore(PredBB->getTerminator()); 303 continue; 304 } 305 } else 306 continue; 307 } 308 309 // The target does not have a single div/rem operation, 310 // and the rem is already in expanded form. Nothing to do. 311 if (!HasDivRemOp && E.isRemExpanded()) 312 continue; 313 314 if (HasDivRemOp) { 315 // The target has a single div/rem operation. Hoist the lower instruction 316 // to make the matched pair visible to the backend. 317 if (DivDominates) 318 RemInst->moveAfter(DivInst); 319 else 320 DivInst->moveAfter(RemInst); 321 NumHoisted++; 322 } else { 323 // The target does not have a single div/rem operation, 324 // and the rem is *not* in a already-expanded form. 325 // Decompose the remainder calculation as: 326 // X % Y --> X - ((X / Y) * Y). 327 328 assert(!RemOriginallyWasInExpandedForm && 329 "We should not be expanding if the rem was in expanded form to " 330 "begin with."); 331 332 Value *X = E.getDividend(); 333 Value *Y = E.getDivisor(); 334 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 335 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 336 337 // If the remainder dominates, then hoist the division up to that block: 338 // 339 // bb1: 340 // %rem = srem %x, %y 341 // bb2: 342 // %div = sdiv %x, %y 343 // --> 344 // bb1: 345 // %div = sdiv %x, %y 346 // %mul = mul %div, %y 347 // %rem = sub %x, %mul 348 // 349 // If the division dominates, it's already in the right place. The mul+sub 350 // will be in a different block because we don't assume that they are 351 // cheap to speculatively execute: 352 // 353 // bb1: 354 // %div = sdiv %x, %y 355 // bb2: 356 // %rem = srem %x, %y 357 // --> 358 // bb1: 359 // %div = sdiv %x, %y 360 // bb2: 361 // %mul = mul %div, %y 362 // %rem = sub %x, %mul 363 // 364 // If the div and rem are in the same block, we do the same transform, 365 // but any code movement would be within the same block. 366 367 if (!DivDominates) 368 DivInst->moveBefore(RemInst); 369 Mul->insertAfter(RemInst); 370 Mul->setDebugLoc(RemInst->getDebugLoc()); 371 Sub->insertAfter(Mul); 372 Sub->setDebugLoc(RemInst->getDebugLoc()); 373 374 // If DivInst has the exact flag, remove it. Otherwise this optimization 375 // may replace a well-defined value 'X % Y' with poison. 376 DivInst->dropPoisonGeneratingFlags(); 377 378 // If X can be undef, X should be frozen first. 379 // For example, let's assume that Y = 1 & X = undef: 380 // %div = sdiv undef, 1 // %div = undef 381 // %rem = srem undef, 1 // %rem = 0 382 // => 383 // %div = sdiv undef, 1 // %div = undef 384 // %mul = mul %div, 1 // %mul = undef 385 // %rem = sub %x, %mul // %rem = undef - undef = undef 386 // If X is not frozen, %rem becomes undef after transformation. 387 if (!isGuaranteedNotToBeUndef(X, nullptr, DivInst, &DT)) { 388 auto *FrX = 389 new FreezeInst(X, X->getName() + ".frozen", DivInst->getIterator()); 390 FrX->setDebugLoc(DivInst->getDebugLoc()); 391 DivInst->setOperand(0, FrX); 392 Sub->setOperand(0, FrX); 393 } 394 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, 395 // but %rem in tgt can be one of many integer values. 396 if (!isGuaranteedNotToBeUndef(Y, nullptr, DivInst, &DT)) { 397 auto *FrY = 398 new FreezeInst(Y, Y->getName() + ".frozen", DivInst->getIterator()); 399 FrY->setDebugLoc(DivInst->getDebugLoc()); 400 DivInst->setOperand(1, FrY); 401 Mul->setOperand(1, FrY); 402 } 403 404 // Now kill the explicit remainder. We have replaced it with: 405 // (sub X, (mul (div X, Y), Y) 406 Sub->setName(RemInst->getName() + ".decomposed"); 407 Instruction *OrigRemInst = RemInst; 408 // Update AssertingVH<> with new instruction so it doesn't assert. 409 RemInst = Sub; 410 // And replace the original instruction with the new one. 411 OrigRemInst->replaceAllUsesWith(Sub); 412 OrigRemInst->eraseFromParent(); 413 NumDecomposed++; 414 } 415 Changed = true; 416 } 417 418 return Changed; 419 } 420 421 // Pass manager boilerplate below here. 422 423 PreservedAnalyses DivRemPairsPass::run(Function &F, 424 FunctionAnalysisManager &FAM) { 425 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 426 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 427 if (!optimizeDivRem(F, TTI, DT)) 428 return PreservedAnalyses::all(); 429 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 430 PreservedAnalyses PA; 431 PA.preserveSet<CFGAnalyses>(); 432 return PA; 433 } 434