1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/DebugCounter.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "div-rem-pairs" 34 STATISTIC(NumPairs, "Number of div/rem pairs"); 35 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 36 STATISTIC(NumHoisted, "Number of instructions hoisted"); 37 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 38 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 39 "Controls transformations in div-rem-pairs pass"); 40 41 namespace { 42 struct ExpandedMatch { 43 DivRemMapKey Key; 44 Instruction *Value; 45 }; 46 } // namespace 47 48 /// See if we can match: (which is the form we expand into) 49 /// X - ((X ?/ Y) * Y) 50 /// which is equivalent to: 51 /// X ?% Y 52 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 53 Value *Dividend, *XroundedDownToMultipleOfY; 54 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 55 return llvm::None; 56 57 Value *Divisor; 58 Instruction *Div; 59 // Look for ((X / Y) * Y) 60 if (!match( 61 XroundedDownToMultipleOfY, 62 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 63 m_Instruction(Div)), 64 m_Deferred(Divisor)))) 65 return llvm::None; 66 67 ExpandedMatch M; 68 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 69 M.Key.Dividend = Dividend; 70 M.Key.Divisor = Divisor; 71 M.Value = &I; 72 return M; 73 } 74 75 namespace { 76 /// A thin wrapper to store two values that we matched as div-rem pair. 77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 78 struct DivRemPairWorklistEntry { 79 /// The actual udiv/sdiv instruction. Source of truth. 80 AssertingVH<Instruction> DivInst; 81 82 /// The instruction that we have matched as a remainder instruction. 83 /// Should only be used as Value, don't introspect it. 84 AssertingVH<Instruction> RemInst; 85 86 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 87 : DivInst(DivInst_), RemInst(RemInst_) { 88 assert((DivInst->getOpcode() == Instruction::UDiv || 89 DivInst->getOpcode() == Instruction::SDiv) && 90 "Not a division."); 91 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 92 // We can't check anything else about remainder instruction, 93 // it's not strictly required to be a urem/srem. 94 } 95 96 /// The type for this pair, identical for both the div and rem. 97 Type *getType() const { return DivInst->getType(); } 98 99 /// Is this pair signed or unsigned? 100 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 101 102 /// In this pair, what are the divident and divisor? 103 Value *getDividend() const { return DivInst->getOperand(0); } 104 Value *getDivisor() const { return DivInst->getOperand(1); } 105 106 bool isRemExpanded() const { 107 switch (RemInst->getOpcode()) { 108 case Instruction::SRem: 109 case Instruction::URem: 110 return false; // single 'rem' instruction - unexpanded form. 111 default: 112 return true; // anything else means we have remainder in expanded form. 113 } 114 } 115 }; 116 } // namespace 117 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 118 119 /// Find matching pairs of integer div/rem ops (they have the same numerator, 120 /// denominator, and signedness). Place those pairs into a worklist for further 121 /// processing. This indirection is needed because we have to use TrackingVH<> 122 /// because we will be doing RAUW, and if one of the rem instructions we change 123 /// happens to be an input to another div/rem in the maps, we'd have problems. 124 static DivRemWorklistTy getWorklist(Function &F) { 125 // Insert all divide and remainder instructions into maps keyed by their 126 // operands and opcode (signed or unsigned). 127 DenseMap<DivRemMapKey, Instruction *> DivMap; 128 // Use a MapVector for RemMap so that instructions are moved/inserted in a 129 // deterministic order. 130 MapVector<DivRemMapKey, Instruction *> RemMap; 131 for (auto &BB : F) { 132 for (auto &I : BB) { 133 if (I.getOpcode() == Instruction::SDiv) 134 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 135 else if (I.getOpcode() == Instruction::UDiv) 136 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 137 else if (I.getOpcode() == Instruction::SRem) 138 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 139 else if (I.getOpcode() == Instruction::URem) 140 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 141 else if (auto Match = matchExpandedRem(I)) 142 RemMap[Match->Key] = Match->Value; 143 } 144 } 145 146 // We'll accumulate the matching pairs of div-rem instructions here. 147 DivRemWorklistTy Worklist; 148 149 // We can iterate over either map because we are only looking for matched 150 // pairs. Choose remainders for efficiency because they are usually even more 151 // rare than division. 152 for (auto &RemPair : RemMap) { 153 // Find the matching division instruction from the division map. 154 auto It = DivMap.find(RemPair.first); 155 if (It == DivMap.end()) 156 continue; 157 158 // We have a matching pair of div/rem instructions. 159 NumPairs++; 160 Instruction *RemInst = RemPair.second; 161 162 // Place it in the worklist. 163 Worklist.emplace_back(It->second, RemInst); 164 } 165 166 return Worklist; 167 } 168 169 /// Find matching pairs of integer div/rem ops (they have the same numerator, 170 /// denominator, and signedness). If they exist in different basic blocks, bring 171 /// them together by hoisting or replace the common division operation that is 172 /// implicit in the remainder: 173 /// X % Y <--> X - ((X / Y) * Y). 174 /// 175 /// We can largely ignore the normal safety and cost constraints on speculation 176 /// of these ops when we find a matching pair. This is because we are already 177 /// guaranteed that any exceptions and most cost are already incurred by the 178 /// first member of the pair. 179 /// 180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 181 /// SimplifyCFG, but it's split off on its own because it's different enough 182 /// that it doesn't quite match the stated objectives of those passes. 183 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 184 const DominatorTree &DT) { 185 bool Changed = false; 186 187 // Get the matching pairs of div-rem instructions. We want this extra 188 // indirection to avoid dealing with having to RAUW the keys of the maps. 189 DivRemWorklistTy Worklist = getWorklist(F); 190 191 // Process each entry in the worklist. 192 for (DivRemPairWorklistEntry &E : Worklist) { 193 if (!DebugCounter::shouldExecute(DRPCounter)) 194 continue; 195 196 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 197 198 auto &DivInst = E.DivInst; 199 auto &RemInst = E.RemInst; 200 201 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 202 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 203 204 if (HasDivRemOp && E.isRemExpanded()) { 205 // The target supports div+rem but the rem is expanded. 206 // We should recompose it first. 207 Value *X = E.getDividend(); 208 Value *Y = E.getDivisor(); 209 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 210 : BinaryOperator::CreateURem(X, Y); 211 // Note that we place it right next to the original expanded instruction, 212 // and letting further handling to move it if needed. 213 RealRem->setName(RemInst->getName() + ".recomposed"); 214 RealRem->insertAfter(RemInst); 215 Instruction *OrigRemInst = RemInst; 216 // Update AssertingVH<> with new instruction so it doesn't assert. 217 RemInst = RealRem; 218 // And replace the original instruction with the new one. 219 OrigRemInst->replaceAllUsesWith(RealRem); 220 OrigRemInst->eraseFromParent(); 221 NumRecomposed++; 222 // Note that we have left ((X / Y) * Y) around. 223 // If it had other uses we could rewrite it as X - X % Y 224 Changed = true; 225 } 226 227 assert((!E.isRemExpanded() || !HasDivRemOp) && 228 "*If* the target supports div-rem, then by now the RemInst *is* " 229 "Instruction::[US]Rem."); 230 231 // If the target supports div+rem and the instructions are in the same block 232 // already, there's nothing to do. The backend should handle this. If the 233 // target does not support div+rem, then we will decompose the rem. 234 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 235 continue; 236 237 bool DivDominates = DT.dominates(DivInst, RemInst); 238 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 239 // We have matching div-rem pair, but they are in two different blocks, 240 // neither of which dominates one another. 241 // FIXME: We could hoist both ops to the common predecessor block? 242 continue; 243 } 244 245 // The target does not have a single div/rem operation, 246 // and the rem is already in expanded form. Nothing to do. 247 if (!HasDivRemOp && E.isRemExpanded()) 248 continue; 249 250 if (HasDivRemOp) { 251 // The target has a single div/rem operation. Hoist the lower instruction 252 // to make the matched pair visible to the backend. 253 if (DivDominates) 254 RemInst->moveAfter(DivInst); 255 else 256 DivInst->moveAfter(RemInst); 257 NumHoisted++; 258 } else { 259 // The target does not have a single div/rem operation, 260 // and the rem is *not* in a already-expanded form. 261 // Decompose the remainder calculation as: 262 // X % Y --> X - ((X / Y) * Y). 263 264 assert(!RemOriginallyWasInExpandedForm && 265 "We should not be expanding if the rem was in expanded form to " 266 "begin with."); 267 268 Value *X = E.getDividend(); 269 Value *Y = E.getDivisor(); 270 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 271 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 272 273 // If the remainder dominates, then hoist the division up to that block: 274 // 275 // bb1: 276 // %rem = srem %x, %y 277 // bb2: 278 // %div = sdiv %x, %y 279 // --> 280 // bb1: 281 // %div = sdiv %x, %y 282 // %mul = mul %div, %y 283 // %rem = sub %x, %mul 284 // 285 // If the division dominates, it's already in the right place. The mul+sub 286 // will be in a different block because we don't assume that they are 287 // cheap to speculatively execute: 288 // 289 // bb1: 290 // %div = sdiv %x, %y 291 // bb2: 292 // %rem = srem %x, %y 293 // --> 294 // bb1: 295 // %div = sdiv %x, %y 296 // bb2: 297 // %mul = mul %div, %y 298 // %rem = sub %x, %mul 299 // 300 // If the div and rem are in the same block, we do the same transform, 301 // but any code movement would be within the same block. 302 303 if (!DivDominates) 304 DivInst->moveBefore(RemInst); 305 Mul->insertAfter(RemInst); 306 Sub->insertAfter(Mul); 307 308 // If X can be undef, X should be frozen first. 309 // For example, let's assume that Y = 1 & X = undef: 310 // %div = sdiv undef, 1 // %div = undef 311 // %rem = srem undef, 1 // %rem = 0 312 // => 313 // %div = sdiv undef, 1 // %div = undef 314 // %mul = mul %div, 1 // %mul = undef 315 // %rem = sub %x, %mul // %rem = undef - undef = undef 316 // If X is not frozen, %rem becomes undef after transformation. 317 // TODO: We need a undef-specific checking function in ValueTracking 318 if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) { 319 auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst); 320 DivInst->setOperand(0, FrX); 321 Sub->setOperand(0, FrX); 322 } 323 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, 324 // but %rem in tgt can be one of many integer values. 325 if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) { 326 auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst); 327 DivInst->setOperand(1, FrY); 328 Mul->setOperand(1, FrY); 329 } 330 331 // Now kill the explicit remainder. We have replaced it with: 332 // (sub X, (mul (div X, Y), Y) 333 Sub->setName(RemInst->getName() + ".decomposed"); 334 Instruction *OrigRemInst = RemInst; 335 // Update AssertingVH<> with new instruction so it doesn't assert. 336 RemInst = Sub; 337 // And replace the original instruction with the new one. 338 OrigRemInst->replaceAllUsesWith(Sub); 339 OrigRemInst->eraseFromParent(); 340 NumDecomposed++; 341 } 342 Changed = true; 343 } 344 345 return Changed; 346 } 347 348 // Pass manager boilerplate below here. 349 350 namespace { 351 struct DivRemPairsLegacyPass : public FunctionPass { 352 static char ID; 353 DivRemPairsLegacyPass() : FunctionPass(ID) { 354 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 355 } 356 357 void getAnalysisUsage(AnalysisUsage &AU) const override { 358 AU.addRequired<DominatorTreeWrapperPass>(); 359 AU.addRequired<TargetTransformInfoWrapperPass>(); 360 AU.setPreservesCFG(); 361 AU.addPreserved<DominatorTreeWrapperPass>(); 362 AU.addPreserved<GlobalsAAWrapperPass>(); 363 FunctionPass::getAnalysisUsage(AU); 364 } 365 366 bool runOnFunction(Function &F) override { 367 if (skipFunction(F)) 368 return false; 369 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 370 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 371 return optimizeDivRem(F, TTI, DT); 372 } 373 }; 374 } // namespace 375 376 char DivRemPairsLegacyPass::ID = 0; 377 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 378 "Hoist/decompose integer division and remainder", false, 379 false) 380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 381 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 382 "Hoist/decompose integer division and remainder", false, 383 false) 384 FunctionPass *llvm::createDivRemPairsPass() { 385 return new DivRemPairsLegacyPass(); 386 } 387 388 PreservedAnalyses DivRemPairsPass::run(Function &F, 389 FunctionAnalysisManager &FAM) { 390 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 391 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 392 if (!optimizeDivRem(F, TTI, DT)) 393 return PreservedAnalyses::all(); 394 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 395 PreservedAnalyses PA; 396 PA.preserveSet<CFGAnalyses>(); 397 PA.preserve<GlobalsAA>(); 398 return PA; 399 } 400