xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a trivial dead store elimination that only considers
10 // basic-block local redundant stores.
11 //
12 // FIXME: This should eventually be extended to be a post-dominator tree
13 // traversal.  Doing so would be pretty trivial.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OrderedBasicBlock.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <iterator>
67 #include <map>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "dse"
73 
74 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
75 STATISTIC(NumFastStores, "Number of stores deleted");
76 STATISTIC(NumFastOther, "Number of other instrs removed");
77 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
78 STATISTIC(NumModifiedStores, "Number of stores modified");
79 
80 static cl::opt<bool>
81 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
82   cl::init(true), cl::Hidden,
83   cl::desc("Enable partial-overwrite tracking in DSE"));
84 
85 static cl::opt<bool>
86 EnablePartialStoreMerging("enable-dse-partial-store-merging",
87   cl::init(true), cl::Hidden,
88   cl::desc("Enable partial store merging in DSE"));
89 
90 //===----------------------------------------------------------------------===//
91 // Helper functions
92 //===----------------------------------------------------------------------===//
93 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
94 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
95 
96 /// Delete this instruction.  Before we do, go through and zero out all the
97 /// operands of this instruction.  If any of them become dead, delete them and
98 /// the computation tree that feeds them.
99 /// If ValueSet is non-null, remove any deleted instructions from it as well.
100 static void
101 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
102                       MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
103                       InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
104                       MapVector<Instruction *, bool> &ThrowableInst,
105                       SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
106   SmallVector<Instruction*, 32> NowDeadInsts;
107 
108   NowDeadInsts.push_back(I);
109   --NumFastOther;
110 
111   // Keeping the iterator straight is a pain, so we let this routine tell the
112   // caller what the next instruction is after we're done mucking about.
113   BasicBlock::iterator NewIter = *BBI;
114 
115   // Before we touch this instruction, remove it from memdep!
116   do {
117     Instruction *DeadInst = NowDeadInsts.pop_back_val();
118     // Mark the DeadInst as dead in the list of throwable instructions.
119     auto It = ThrowableInst.find(DeadInst);
120     if (It != ThrowableInst.end())
121       ThrowableInst[It->first] = false;
122     ++NumFastOther;
123 
124     // Try to preserve debug information attached to the dead instruction.
125     salvageDebugInfo(*DeadInst);
126 
127     // This instruction is dead, zap it, in stages.  Start by removing it from
128     // MemDep, which needs to know the operands and needs it to be in the
129     // function.
130     MD.removeInstruction(DeadInst);
131 
132     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
133       Value *Op = DeadInst->getOperand(op);
134       DeadInst->setOperand(op, nullptr);
135 
136       // If this operand just became dead, add it to the NowDeadInsts list.
137       if (!Op->use_empty()) continue;
138 
139       if (Instruction *OpI = dyn_cast<Instruction>(Op))
140         if (isInstructionTriviallyDead(OpI, &TLI))
141           NowDeadInsts.push_back(OpI);
142     }
143 
144     if (ValueSet) ValueSet->remove(DeadInst);
145     IOL.erase(DeadInst);
146     OBB.eraseInstruction(DeadInst);
147 
148     if (NewIter == DeadInst->getIterator())
149       NewIter = DeadInst->eraseFromParent();
150     else
151       DeadInst->eraseFromParent();
152   } while (!NowDeadInsts.empty());
153   *BBI = NewIter;
154   // Pop dead entries from back of ThrowableInst till we find an alive entry.
155   while (!ThrowableInst.empty() && !ThrowableInst.back().second)
156     ThrowableInst.pop_back();
157 }
158 
159 /// Does this instruction write some memory?  This only returns true for things
160 /// that we can analyze with other helpers below.
161 static bool hasAnalyzableMemoryWrite(Instruction *I,
162                                      const TargetLibraryInfo &TLI) {
163   if (isa<StoreInst>(I))
164     return true;
165   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
166     switch (II->getIntrinsicID()) {
167     default:
168       return false;
169     case Intrinsic::memset:
170     case Intrinsic::memmove:
171     case Intrinsic::memcpy:
172     case Intrinsic::memcpy_element_unordered_atomic:
173     case Intrinsic::memmove_element_unordered_atomic:
174     case Intrinsic::memset_element_unordered_atomic:
175     case Intrinsic::init_trampoline:
176     case Intrinsic::lifetime_end:
177       return true;
178     }
179   }
180   if (auto CS = CallSite(I)) {
181     if (Function *F = CS.getCalledFunction()) {
182       LibFunc LF;
183       if (TLI.getLibFunc(*F, LF) && TLI.has(LF)) {
184         switch (LF) {
185         case LibFunc_strcpy:
186         case LibFunc_strncpy:
187         case LibFunc_strcat:
188         case LibFunc_strncat:
189           return true;
190         default:
191           return false;
192         }
193       }
194     }
195   }
196   return false;
197 }
198 
199 /// Return a Location stored to by the specified instruction. If isRemovable
200 /// returns true, this function and getLocForRead completely describe the memory
201 /// operations for this instruction.
202 static MemoryLocation getLocForWrite(Instruction *Inst) {
203 
204   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
205     return MemoryLocation::get(SI);
206 
207   if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
208     // memcpy/memmove/memset.
209     MemoryLocation Loc = MemoryLocation::getForDest(MI);
210     return Loc;
211   }
212 
213   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
214     switch (II->getIntrinsicID()) {
215     default:
216       return MemoryLocation(); // Unhandled intrinsic.
217     case Intrinsic::init_trampoline:
218       return MemoryLocation(II->getArgOperand(0));
219     case Intrinsic::lifetime_end: {
220       uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
221       return MemoryLocation(II->getArgOperand(1), Len);
222     }
223     }
224   }
225   if (auto CS = CallSite(Inst))
226     // All the supported TLI functions so far happen to have dest as their
227     // first argument.
228     return MemoryLocation(CS.getArgument(0));
229   return MemoryLocation();
230 }
231 
232 /// Return the location read by the specified "hasAnalyzableMemoryWrite"
233 /// instruction if any.
234 static MemoryLocation getLocForRead(Instruction *Inst,
235                                     const TargetLibraryInfo &TLI) {
236   assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
237 
238   // The only instructions that both read and write are the mem transfer
239   // instructions (memcpy/memmove).
240   if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
241     return MemoryLocation::getForSource(MTI);
242   return MemoryLocation();
243 }
244 
245 /// If the value of this instruction and the memory it writes to is unused, may
246 /// we delete this instruction?
247 static bool isRemovable(Instruction *I) {
248   // Don't remove volatile/atomic stores.
249   if (StoreInst *SI = dyn_cast<StoreInst>(I))
250     return SI->isUnordered();
251 
252   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
253     switch (II->getIntrinsicID()) {
254     default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
255     case Intrinsic::lifetime_end:
256       // Never remove dead lifetime_end's, e.g. because it is followed by a
257       // free.
258       return false;
259     case Intrinsic::init_trampoline:
260       // Always safe to remove init_trampoline.
261       return true;
262     case Intrinsic::memset:
263     case Intrinsic::memmove:
264     case Intrinsic::memcpy:
265       // Don't remove volatile memory intrinsics.
266       return !cast<MemIntrinsic>(II)->isVolatile();
267     case Intrinsic::memcpy_element_unordered_atomic:
268     case Intrinsic::memmove_element_unordered_atomic:
269     case Intrinsic::memset_element_unordered_atomic:
270       return true;
271     }
272   }
273 
274   // note: only get here for calls with analyzable writes - i.e. libcalls
275   if (auto CS = CallSite(I))
276     return CS.getInstruction()->use_empty();
277 
278   return false;
279 }
280 
281 /// Returns true if the end of this instruction can be safely shortened in
282 /// length.
283 static bool isShortenableAtTheEnd(Instruction *I) {
284   // Don't shorten stores for now
285   if (isa<StoreInst>(I))
286     return false;
287 
288   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
289     switch (II->getIntrinsicID()) {
290       default: return false;
291       case Intrinsic::memset:
292       case Intrinsic::memcpy:
293       case Intrinsic::memcpy_element_unordered_atomic:
294       case Intrinsic::memset_element_unordered_atomic:
295         // Do shorten memory intrinsics.
296         // FIXME: Add memmove if it's also safe to transform.
297         return true;
298     }
299   }
300 
301   // Don't shorten libcalls calls for now.
302 
303   return false;
304 }
305 
306 /// Returns true if the beginning of this instruction can be safely shortened
307 /// in length.
308 static bool isShortenableAtTheBeginning(Instruction *I) {
309   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
310   // easily done by offsetting the source address.
311   return isa<AnyMemSetInst>(I);
312 }
313 
314 /// Return the pointer that is being written to.
315 static Value *getStoredPointerOperand(Instruction *I) {
316   //TODO: factor this to reuse getLocForWrite
317   MemoryLocation Loc = getLocForWrite(I);
318   assert(Loc.Ptr &&
319          "unable to find pointer written for analyzable instruction?");
320   // TODO: most APIs don't expect const Value *
321   return const_cast<Value*>(Loc.Ptr);
322 }
323 
324 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
325                                const TargetLibraryInfo &TLI,
326                                const Function *F) {
327   uint64_t Size;
328   ObjectSizeOpts Opts;
329   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
330 
331   if (getObjectSize(V, Size, DL, &TLI, Opts))
332     return Size;
333   return MemoryLocation::UnknownSize;
334 }
335 
336 namespace {
337 
338 enum OverwriteResult {
339   OW_Begin,
340   OW_Complete,
341   OW_End,
342   OW_PartialEarlierWithFullLater,
343   OW_Unknown
344 };
345 
346 } // end anonymous namespace
347 
348 /// Return 'OW_Complete' if a store to the 'Later' location completely
349 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
350 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
351 /// beginning of the 'Earlier' location is overwritten by 'Later'.
352 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
353 /// overwritten by a latter (smaller) store which doesn't write outside the big
354 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
355 static OverwriteResult isOverwrite(const MemoryLocation &Later,
356                                    const MemoryLocation &Earlier,
357                                    const DataLayout &DL,
358                                    const TargetLibraryInfo &TLI,
359                                    int64_t &EarlierOff, int64_t &LaterOff,
360                                    Instruction *DepWrite,
361                                    InstOverlapIntervalsTy &IOL,
362                                    AliasAnalysis &AA,
363                                    const Function *F) {
364   // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
365   // get imprecise values here, though (except for unknown sizes).
366   if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
367     return OW_Unknown;
368 
369   const uint64_t LaterSize = Later.Size.getValue();
370   const uint64_t EarlierSize = Earlier.Size.getValue();
371 
372   const Value *P1 = Earlier.Ptr->stripPointerCasts();
373   const Value *P2 = Later.Ptr->stripPointerCasts();
374 
375   // If the start pointers are the same, we just have to compare sizes to see if
376   // the later store was larger than the earlier store.
377   if (P1 == P2 || AA.isMustAlias(P1, P2)) {
378     // Make sure that the Later size is >= the Earlier size.
379     if (LaterSize >= EarlierSize)
380       return OW_Complete;
381   }
382 
383   // Check to see if the later store is to the entire object (either a global,
384   // an alloca, or a byval/inalloca argument).  If so, then it clearly
385   // overwrites any other store to the same object.
386   const Value *UO1 = GetUnderlyingObject(P1, DL),
387               *UO2 = GetUnderlyingObject(P2, DL);
388 
389   // If we can't resolve the same pointers to the same object, then we can't
390   // analyze them at all.
391   if (UO1 != UO2)
392     return OW_Unknown;
393 
394   // If the "Later" store is to a recognizable object, get its size.
395   uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
396   if (ObjectSize != MemoryLocation::UnknownSize)
397     if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
398       return OW_Complete;
399 
400   // Okay, we have stores to two completely different pointers.  Try to
401   // decompose the pointer into a "base + constant_offset" form.  If the base
402   // pointers are equal, then we can reason about the two stores.
403   EarlierOff = 0;
404   LaterOff = 0;
405   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
406   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
407 
408   // If the base pointers still differ, we have two completely different stores.
409   if (BP1 != BP2)
410     return OW_Unknown;
411 
412   // The later store completely overlaps the earlier store if:
413   //
414   // 1. Both start at the same offset and the later one's size is greater than
415   //    or equal to the earlier one's, or
416   //
417   //      |--earlier--|
418   //      |--   later   --|
419   //
420   // 2. The earlier store has an offset greater than the later offset, but which
421   //    still lies completely within the later store.
422   //
423   //        |--earlier--|
424   //    |-----  later  ------|
425   //
426   // We have to be careful here as *Off is signed while *.Size is unsigned.
427   if (EarlierOff >= LaterOff &&
428       LaterSize >= EarlierSize &&
429       uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
430     return OW_Complete;
431 
432   // We may now overlap, although the overlap is not complete. There might also
433   // be other incomplete overlaps, and together, they might cover the complete
434   // earlier write.
435   // Note: The correctness of this logic depends on the fact that this function
436   // is not even called providing DepWrite when there are any intervening reads.
437   if (EnablePartialOverwriteTracking &&
438       LaterOff < int64_t(EarlierOff + EarlierSize) &&
439       int64_t(LaterOff + LaterSize) >= EarlierOff) {
440 
441     // Insert our part of the overlap into the map.
442     auto &IM = IOL[DepWrite];
443     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
444                       << ", " << int64_t(EarlierOff + EarlierSize)
445                       << ") Later [" << LaterOff << ", "
446                       << int64_t(LaterOff + LaterSize) << ")\n");
447 
448     // Make sure that we only insert non-overlapping intervals and combine
449     // adjacent intervals. The intervals are stored in the map with the ending
450     // offset as the key (in the half-open sense) and the starting offset as
451     // the value.
452     int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
453 
454     // Find any intervals ending at, or after, LaterIntStart which start
455     // before LaterIntEnd.
456     auto ILI = IM.lower_bound(LaterIntStart);
457     if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
458       // This existing interval is overlapped with the current store somewhere
459       // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
460       // intervals and adjusting our start and end.
461       LaterIntStart = std::min(LaterIntStart, ILI->second);
462       LaterIntEnd = std::max(LaterIntEnd, ILI->first);
463       ILI = IM.erase(ILI);
464 
465       // Continue erasing and adjusting our end in case other previous
466       // intervals are also overlapped with the current store.
467       //
468       // |--- ealier 1 ---|  |--- ealier 2 ---|
469       //     |------- later---------|
470       //
471       while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
472         assert(ILI->second > LaterIntStart && "Unexpected interval");
473         LaterIntEnd = std::max(LaterIntEnd, ILI->first);
474         ILI = IM.erase(ILI);
475       }
476     }
477 
478     IM[LaterIntEnd] = LaterIntStart;
479 
480     ILI = IM.begin();
481     if (ILI->second <= EarlierOff &&
482         ILI->first >= int64_t(EarlierOff + EarlierSize)) {
483       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
484                         << EarlierOff << ", "
485                         << int64_t(EarlierOff + EarlierSize)
486                         << ") Composite Later [" << ILI->second << ", "
487                         << ILI->first << ")\n");
488       ++NumCompletePartials;
489       return OW_Complete;
490     }
491   }
492 
493   // Check for an earlier store which writes to all the memory locations that
494   // the later store writes to.
495   if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
496       int64_t(EarlierOff + EarlierSize) > LaterOff &&
497       uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
498     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
499                       << EarlierOff << ", "
500                       << int64_t(EarlierOff + EarlierSize)
501                       << ") by a later store [" << LaterOff << ", "
502                       << int64_t(LaterOff + LaterSize) << ")\n");
503     // TODO: Maybe come up with a better name?
504     return OW_PartialEarlierWithFullLater;
505   }
506 
507   // Another interesting case is if the later store overwrites the end of the
508   // earlier store.
509   //
510   //      |--earlier--|
511   //                |--   later   --|
512   //
513   // In this case we may want to trim the size of earlier to avoid generating
514   // writes to addresses which will definitely be overwritten later
515   if (!EnablePartialOverwriteTracking &&
516       (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
517        int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
518     return OW_End;
519 
520   // Finally, we also need to check if the later store overwrites the beginning
521   // of the earlier store.
522   //
523   //                |--earlier--|
524   //      |--   later   --|
525   //
526   // In this case we may want to move the destination address and trim the size
527   // of earlier to avoid generating writes to addresses which will definitely
528   // be overwritten later.
529   if (!EnablePartialOverwriteTracking &&
530       (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
531     assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
532            "Expect to be handled as OW_Complete");
533     return OW_Begin;
534   }
535   // Otherwise, they don't completely overlap.
536   return OW_Unknown;
537 }
538 
539 /// If 'Inst' might be a self read (i.e. a noop copy of a
540 /// memory region into an identical pointer) then it doesn't actually make its
541 /// input dead in the traditional sense.  Consider this case:
542 ///
543 ///   memmove(A <- B)
544 ///   memmove(A <- A)
545 ///
546 /// In this case, the second store to A does not make the first store to A dead.
547 /// The usual situation isn't an explicit A<-A store like this (which can be
548 /// trivially removed) but a case where two pointers may alias.
549 ///
550 /// This function detects when it is unsafe to remove a dependent instruction
551 /// because the DSE inducing instruction may be a self-read.
552 static bool isPossibleSelfRead(Instruction *Inst,
553                                const MemoryLocation &InstStoreLoc,
554                                Instruction *DepWrite,
555                                const TargetLibraryInfo &TLI,
556                                AliasAnalysis &AA) {
557   // Self reads can only happen for instructions that read memory.  Get the
558   // location read.
559   MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
560   if (!InstReadLoc.Ptr)
561     return false; // Not a reading instruction.
562 
563   // If the read and written loc obviously don't alias, it isn't a read.
564   if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
565     return false;
566 
567   if (isa<AnyMemCpyInst>(Inst)) {
568     // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
569     // but in practice memcpy(A <- B) either means that A and B are disjoint or
570     // are equal (i.e. there are not partial overlaps).  Given that, if we have:
571     //
572     //   memcpy/memmove(A <- B)  // DepWrite
573     //   memcpy(A <- B)  // Inst
574     //
575     // with Inst reading/writing a >= size than DepWrite, we can reason as
576     // follows:
577     //
578     //   - If A == B then both the copies are no-ops, so the DepWrite can be
579     //     removed.
580     //   - If A != B then A and B are disjoint locations in Inst.  Since
581     //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
582     //     Therefore DepWrite can be removed.
583     MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
584 
585     if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
586       return false;
587   }
588 
589   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
590   // then it can't be considered dead.
591   return true;
592 }
593 
594 /// Returns true if the memory which is accessed by the second instruction is not
595 /// modified between the first and the second instruction.
596 /// Precondition: Second instruction must be dominated by the first
597 /// instruction.
598 static bool memoryIsNotModifiedBetween(Instruction *FirstI,
599                                        Instruction *SecondI,
600                                        AliasAnalysis *AA) {
601   SmallVector<BasicBlock *, 16> WorkList;
602   SmallPtrSet<BasicBlock *, 8> Visited;
603   BasicBlock::iterator FirstBBI(FirstI);
604   ++FirstBBI;
605   BasicBlock::iterator SecondBBI(SecondI);
606   BasicBlock *FirstBB = FirstI->getParent();
607   BasicBlock *SecondBB = SecondI->getParent();
608   MemoryLocation MemLoc = MemoryLocation::get(SecondI);
609 
610   // Start checking the store-block.
611   WorkList.push_back(SecondBB);
612   bool isFirstBlock = true;
613 
614   // Check all blocks going backward until we reach the load-block.
615   while (!WorkList.empty()) {
616     BasicBlock *B = WorkList.pop_back_val();
617 
618     // Ignore instructions before LI if this is the FirstBB.
619     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
620 
621     BasicBlock::iterator EI;
622     if (isFirstBlock) {
623       // Ignore instructions after SI if this is the first visit of SecondBB.
624       assert(B == SecondBB && "first block is not the store block");
625       EI = SecondBBI;
626       isFirstBlock = false;
627     } else {
628       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
629       // In this case we also have to look at instructions after SI.
630       EI = B->end();
631     }
632     for (; BI != EI; ++BI) {
633       Instruction *I = &*BI;
634       if (I->mayWriteToMemory() && I != SecondI)
635         if (isModSet(AA->getModRefInfo(I, MemLoc)))
636           return false;
637     }
638     if (B != FirstBB) {
639       assert(B != &FirstBB->getParent()->getEntryBlock() &&
640           "Should not hit the entry block because SI must be dominated by LI");
641       for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
642         if (!Visited.insert(*PredI).second)
643           continue;
644         WorkList.push_back(*PredI);
645       }
646     }
647   }
648   return true;
649 }
650 
651 /// Find all blocks that will unconditionally lead to the block BB and append
652 /// them to F.
653 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
654                                    BasicBlock *BB, DominatorTree *DT) {
655   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
656     BasicBlock *Pred = *I;
657     if (Pred == BB) continue;
658     Instruction *PredTI = Pred->getTerminator();
659     if (PredTI->getNumSuccessors() != 1)
660       continue;
661 
662     if (DT->isReachableFromEntry(Pred))
663       Blocks.push_back(Pred);
664   }
665 }
666 
667 /// Handle frees of entire structures whose dependency is a store
668 /// to a field of that structure.
669 static bool handleFree(CallInst *F, AliasAnalysis *AA,
670                        MemoryDependenceResults *MD, DominatorTree *DT,
671                        const TargetLibraryInfo *TLI,
672                        InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
673                        MapVector<Instruction *, bool> &ThrowableInst) {
674   bool MadeChange = false;
675 
676   MemoryLocation Loc = MemoryLocation(F->getOperand(0));
677   SmallVector<BasicBlock *, 16> Blocks;
678   Blocks.push_back(F->getParent());
679   const DataLayout &DL = F->getModule()->getDataLayout();
680 
681   while (!Blocks.empty()) {
682     BasicBlock *BB = Blocks.pop_back_val();
683     Instruction *InstPt = BB->getTerminator();
684     if (BB == F->getParent()) InstPt = F;
685 
686     MemDepResult Dep =
687         MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
688     while (Dep.isDef() || Dep.isClobber()) {
689       Instruction *Dependency = Dep.getInst();
690       if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
691           !isRemovable(Dependency))
692         break;
693 
694       Value *DepPointer =
695           GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
696 
697       // Check for aliasing.
698       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
699         break;
700 
701       LLVM_DEBUG(
702           dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
703                  << *Dependency << '\n');
704 
705       // DCE instructions only used to calculate that store.
706       BasicBlock::iterator BBI(Dependency);
707       deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB,
708                             ThrowableInst);
709       ++NumFastStores;
710       MadeChange = true;
711 
712       // Inst's old Dependency is now deleted. Compute the next dependency,
713       // which may also be dead, as in
714       //    s[0] = 0;
715       //    s[1] = 0; // This has just been deleted.
716       //    free(s);
717       Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
718     }
719 
720     if (Dep.isNonLocal())
721       findUnconditionalPreds(Blocks, BB, DT);
722   }
723 
724   return MadeChange;
725 }
726 
727 /// Check to see if the specified location may alias any of the stack objects in
728 /// the DeadStackObjects set. If so, they become live because the location is
729 /// being loaded.
730 static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
731                                   SmallSetVector<const Value *, 16> &DeadStackObjects,
732                                   const DataLayout &DL, AliasAnalysis *AA,
733                                   const TargetLibraryInfo *TLI,
734                                   const Function *F) {
735   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
736 
737   // A constant can't be in the dead pointer set.
738   if (isa<Constant>(UnderlyingPointer))
739     return;
740 
741   // If the kill pointer can be easily reduced to an alloca, don't bother doing
742   // extraneous AA queries.
743   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
744     DeadStackObjects.remove(UnderlyingPointer);
745     return;
746   }
747 
748   // Remove objects that could alias LoadedLoc.
749   DeadStackObjects.remove_if([&](const Value *I) {
750     // See if the loaded location could alias the stack location.
751     MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
752     return !AA->isNoAlias(StackLoc, LoadedLoc);
753   });
754 }
755 
756 /// Remove dead stores to stack-allocated locations in the function end block.
757 /// Ex:
758 /// %A = alloca i32
759 /// ...
760 /// store i32 1, i32* %A
761 /// ret void
762 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
763                            MemoryDependenceResults *MD,
764                            const TargetLibraryInfo *TLI,
765                            InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
766                            MapVector<Instruction *, bool> &ThrowableInst) {
767   bool MadeChange = false;
768 
769   // Keep track of all of the stack objects that are dead at the end of the
770   // function.
771   SmallSetVector<const Value*, 16> DeadStackObjects;
772 
773   // Find all of the alloca'd pointers in the entry block.
774   BasicBlock &Entry = BB.getParent()->front();
775   for (Instruction &I : Entry) {
776     if (isa<AllocaInst>(&I))
777       DeadStackObjects.insert(&I);
778 
779     // Okay, so these are dead heap objects, but if the pointer never escapes
780     // then it's leaked by this function anyways.
781     else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
782       DeadStackObjects.insert(&I);
783   }
784 
785   // Treat byval or inalloca arguments the same, stores to them are dead at the
786   // end of the function.
787   for (Argument &AI : BB.getParent()->args())
788     if (AI.hasByValOrInAllocaAttr())
789       DeadStackObjects.insert(&AI);
790 
791   const DataLayout &DL = BB.getModule()->getDataLayout();
792 
793   // Scan the basic block backwards
794   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
795     --BBI;
796 
797     // If we find a store, check to see if it points into a dead stack value.
798     if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
799       // See through pointer-to-pointer bitcasts
800       SmallVector<const Value *, 4> Pointers;
801       GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
802 
803       // Stores to stack values are valid candidates for removal.
804       bool AllDead = true;
805       for (const Value *Pointer : Pointers)
806         if (!DeadStackObjects.count(Pointer)) {
807           AllDead = false;
808           break;
809         }
810 
811       if (AllDead) {
812         Instruction *Dead = &*BBI;
813 
814         LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
815                           << *Dead << "\n  Objects: ";
816                    for (SmallVectorImpl<const Value *>::iterator I =
817                             Pointers.begin(),
818                         E = Pointers.end();
819                         I != E; ++I) {
820                      dbgs() << **I;
821                      if (std::next(I) != E)
822                        dbgs() << ", ";
823                    } dbgs()
824                    << '\n');
825 
826         // DCE instructions only used to calculate that store.
827         deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst,
828                               &DeadStackObjects);
829         ++NumFastStores;
830         MadeChange = true;
831         continue;
832       }
833     }
834 
835     // Remove any dead non-memory-mutating instructions.
836     if (isInstructionTriviallyDead(&*BBI, TLI)) {
837       LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
838                         << *&*BBI << '\n');
839       deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst,
840                             &DeadStackObjects);
841       ++NumFastOther;
842       MadeChange = true;
843       continue;
844     }
845 
846     if (isa<AllocaInst>(BBI)) {
847       // Remove allocas from the list of dead stack objects; there can't be
848       // any references before the definition.
849       DeadStackObjects.remove(&*BBI);
850       continue;
851     }
852 
853     if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
854       // Remove allocation function calls from the list of dead stack objects;
855       // there can't be any references before the definition.
856       if (isAllocLikeFn(&*BBI, TLI))
857         DeadStackObjects.remove(&*BBI);
858 
859       // If this call does not access memory, it can't be loading any of our
860       // pointers.
861       if (AA->doesNotAccessMemory(Call))
862         continue;
863 
864       // If the call might load from any of our allocas, then any store above
865       // the call is live.
866       DeadStackObjects.remove_if([&](const Value *I) {
867         // See if the call site touches the value.
868         return isRefSet(AA->getModRefInfo(
869             Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
870       });
871 
872       // If all of the allocas were clobbered by the call then we're not going
873       // to find anything else to process.
874       if (DeadStackObjects.empty())
875         break;
876 
877       continue;
878     }
879 
880     // We can remove the dead stores, irrespective of the fence and its ordering
881     // (release/acquire/seq_cst). Fences only constraints the ordering of
882     // already visible stores, it does not make a store visible to other
883     // threads. So, skipping over a fence does not change a store from being
884     // dead.
885     if (isa<FenceInst>(*BBI))
886       continue;
887 
888     MemoryLocation LoadedLoc;
889 
890     // If we encounter a use of the pointer, it is no longer considered dead
891     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
892       if (!L->isUnordered()) // Be conservative with atomic/volatile load
893         break;
894       LoadedLoc = MemoryLocation::get(L);
895     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
896       LoadedLoc = MemoryLocation::get(V);
897     } else if (!BBI->mayReadFromMemory()) {
898       // Instruction doesn't read memory.  Note that stores that weren't removed
899       // above will hit this case.
900       continue;
901     } else {
902       // Unknown inst; assume it clobbers everything.
903       break;
904     }
905 
906     // Remove any allocas from the DeadPointer set that are loaded, as this
907     // makes any stores above the access live.
908     removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
909 
910     // If all of the allocas were clobbered by the access then we're not going
911     // to find anything else to process.
912     if (DeadStackObjects.empty())
913       break;
914   }
915 
916   return MadeChange;
917 }
918 
919 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
920                          int64_t &EarlierSize, int64_t LaterOffset,
921                          int64_t LaterSize, bool IsOverwriteEnd) {
922   // TODO: base this on the target vector size so that if the earlier
923   // store was too small to get vector writes anyway then its likely
924   // a good idea to shorten it
925   // Power of 2 vector writes are probably always a bad idea to optimize
926   // as any store/memset/memcpy is likely using vector instructions so
927   // shortening it to not vector size is likely to be slower
928   auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
929   unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
930   if (!IsOverwriteEnd)
931     LaterOffset = int64_t(LaterOffset + LaterSize);
932 
933   if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
934       !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
935     return false;
936 
937   int64_t NewLength = IsOverwriteEnd
938                           ? LaterOffset - EarlierOffset
939                           : EarlierSize - (LaterOffset - EarlierOffset);
940 
941   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
942     // When shortening an atomic memory intrinsic, the newly shortened
943     // length must remain an integer multiple of the element size.
944     const uint32_t ElementSize = AMI->getElementSizeInBytes();
945     if (0 != NewLength % ElementSize)
946       return false;
947   }
948 
949   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
950                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
951                     << *EarlierWrite << "\n  KILLER (offset " << LaterOffset
952                     << ", " << EarlierSize << ")\n");
953 
954   Value *EarlierWriteLength = EarlierIntrinsic->getLength();
955   Value *TrimmedLength =
956       ConstantInt::get(EarlierWriteLength->getType(), NewLength);
957   EarlierIntrinsic->setLength(TrimmedLength);
958 
959   EarlierSize = NewLength;
960   if (!IsOverwriteEnd) {
961     int64_t OffsetMoved = (LaterOffset - EarlierOffset);
962     Value *Indices[1] = {
963         ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
964     GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
965         EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
966         EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
967     NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
968     EarlierIntrinsic->setDest(NewDestGEP);
969     EarlierOffset = EarlierOffset + OffsetMoved;
970   }
971   return true;
972 }
973 
974 static bool tryToShortenEnd(Instruction *EarlierWrite,
975                             OverlapIntervalsTy &IntervalMap,
976                             int64_t &EarlierStart, int64_t &EarlierSize) {
977   if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
978     return false;
979 
980   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
981   int64_t LaterStart = OII->second;
982   int64_t LaterSize = OII->first - LaterStart;
983 
984   if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
985       LaterStart + LaterSize >= EarlierStart + EarlierSize) {
986     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
987                      LaterSize, true)) {
988       IntervalMap.erase(OII);
989       return true;
990     }
991   }
992   return false;
993 }
994 
995 static bool tryToShortenBegin(Instruction *EarlierWrite,
996                               OverlapIntervalsTy &IntervalMap,
997                               int64_t &EarlierStart, int64_t &EarlierSize) {
998   if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
999     return false;
1000 
1001   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
1002   int64_t LaterStart = OII->second;
1003   int64_t LaterSize = OII->first - LaterStart;
1004 
1005   if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
1006     assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
1007            "Should have been handled as OW_Complete");
1008     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
1009                      LaterSize, false)) {
1010       IntervalMap.erase(OII);
1011       return true;
1012     }
1013   }
1014   return false;
1015 }
1016 
1017 static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
1018                                             const DataLayout &DL,
1019                                             InstOverlapIntervalsTy &IOL) {
1020   bool Changed = false;
1021   for (auto OI : IOL) {
1022     Instruction *EarlierWrite = OI.first;
1023     MemoryLocation Loc = getLocForWrite(EarlierWrite);
1024     assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
1025 
1026     const Value *Ptr = Loc.Ptr->stripPointerCasts();
1027     int64_t EarlierStart = 0;
1028     int64_t EarlierSize = int64_t(Loc.Size.getValue());
1029     GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
1030     OverlapIntervalsTy &IntervalMap = OI.second;
1031     Changed |=
1032         tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1033     if (IntervalMap.empty())
1034       continue;
1035     Changed |=
1036         tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1037   }
1038   return Changed;
1039 }
1040 
1041 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
1042                                AliasAnalysis *AA, MemoryDependenceResults *MD,
1043                                const DataLayout &DL,
1044                                const TargetLibraryInfo *TLI,
1045                                InstOverlapIntervalsTy &IOL,
1046                                OrderedBasicBlock &OBB,
1047                                MapVector<Instruction *, bool> &ThrowableInst) {
1048   // Must be a store instruction.
1049   StoreInst *SI = dyn_cast<StoreInst>(Inst);
1050   if (!SI)
1051     return false;
1052 
1053   // If we're storing the same value back to a pointer that we just loaded from,
1054   // then the store can be removed.
1055   if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
1056     if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
1057         isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
1058 
1059       LLVM_DEBUG(
1060           dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
1061                  << *DepLoad << "\n  STORE: " << *SI << '\n');
1062 
1063       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst);
1064       ++NumRedundantStores;
1065       return true;
1066     }
1067   }
1068 
1069   // Remove null stores into the calloc'ed objects
1070   Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
1071   if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
1072     Instruction *UnderlyingPointer =
1073         dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
1074 
1075     if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
1076         memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
1077       LLVM_DEBUG(
1078           dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
1079                  << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
1080 
1081       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst);
1082       ++NumRedundantStores;
1083       return true;
1084     }
1085   }
1086   return false;
1087 }
1088 
1089 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
1090                                 MemoryDependenceResults *MD, DominatorTree *DT,
1091                                 const TargetLibraryInfo *TLI) {
1092   const DataLayout &DL = BB.getModule()->getDataLayout();
1093   bool MadeChange = false;
1094 
1095   OrderedBasicBlock OBB(&BB);
1096   MapVector<Instruction *, bool> ThrowableInst;
1097 
1098   // A map of interval maps representing partially-overwritten value parts.
1099   InstOverlapIntervalsTy IOL;
1100 
1101   // Do a top-down walk on the BB.
1102   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
1103     // Handle 'free' calls specially.
1104     if (CallInst *F = isFreeCall(&*BBI, TLI)) {
1105       MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB, ThrowableInst);
1106       // Increment BBI after handleFree has potentially deleted instructions.
1107       // This ensures we maintain a valid iterator.
1108       ++BBI;
1109       continue;
1110     }
1111 
1112     Instruction *Inst = &*BBI++;
1113 
1114     if (Inst->mayThrow()) {
1115       ThrowableInst[Inst] = true;
1116       continue;
1117     }
1118 
1119     // Check to see if Inst writes to memory.  If not, continue.
1120     if (!hasAnalyzableMemoryWrite(Inst, *TLI))
1121       continue;
1122 
1123     // eliminateNoopStore will update in iterator, if necessary.
1124     if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB,
1125                            ThrowableInst)) {
1126       MadeChange = true;
1127       continue;
1128     }
1129 
1130     // If we find something that writes memory, get its memory dependence.
1131     MemDepResult InstDep = MD->getDependency(Inst, &OBB);
1132 
1133     // Ignore any store where we can't find a local dependence.
1134     // FIXME: cross-block DSE would be fun. :)
1135     if (!InstDep.isDef() && !InstDep.isClobber())
1136       continue;
1137 
1138     // Figure out what location is being stored to.
1139     MemoryLocation Loc = getLocForWrite(Inst);
1140 
1141     // If we didn't get a useful location, fail.
1142     if (!Loc.Ptr)
1143       continue;
1144 
1145     // Loop until we find a store we can eliminate or a load that
1146     // invalidates the analysis. Without an upper bound on the number of
1147     // instructions examined, this analysis can become very time-consuming.
1148     // However, the potential gain diminishes as we process more instructions
1149     // without eliminating any of them. Therefore, we limit the number of
1150     // instructions we look at.
1151     auto Limit = MD->getDefaultBlockScanLimit();
1152     while (InstDep.isDef() || InstDep.isClobber()) {
1153       // Get the memory clobbered by the instruction we depend on.  MemDep will
1154       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
1155       // end up depending on a may- or must-aliased load, then we can't optimize
1156       // away the store and we bail out.  However, if we depend on something
1157       // that overwrites the memory location we *can* potentially optimize it.
1158       //
1159       // Find out what memory location the dependent instruction stores.
1160       Instruction *DepWrite = InstDep.getInst();
1161       if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
1162         break;
1163       MemoryLocation DepLoc = getLocForWrite(DepWrite);
1164       // If we didn't get a useful location, or if it isn't a size, bail out.
1165       if (!DepLoc.Ptr)
1166         break;
1167 
1168       // Find the last throwable instruction not removed by call to
1169       // deleteDeadInstruction.
1170       Instruction *LastThrowing = nullptr;
1171       if (!ThrowableInst.empty())
1172         LastThrowing = ThrowableInst.back().first;
1173 
1174       // Make sure we don't look past a call which might throw. This is an
1175       // issue because MemoryDependenceAnalysis works in the wrong direction:
1176       // it finds instructions which dominate the current instruction, rather than
1177       // instructions which are post-dominated by the current instruction.
1178       //
1179       // If the underlying object is a non-escaping memory allocation, any store
1180       // to it is dead along the unwind edge. Otherwise, we need to preserve
1181       // the store.
1182       if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) {
1183         const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
1184         bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
1185         if (!IsStoreDeadOnUnwind) {
1186             // We're looking for a call to an allocation function
1187             // where the allocation doesn't escape before the last
1188             // throwing instruction; PointerMayBeCaptured
1189             // reasonably fast approximation.
1190             IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
1191                 !PointerMayBeCaptured(Underlying, false, true);
1192         }
1193         if (!IsStoreDeadOnUnwind)
1194           break;
1195       }
1196 
1197       // If we find a write that is a) removable (i.e., non-volatile), b) is
1198       // completely obliterated by the store to 'Loc', and c) which we know that
1199       // 'Inst' doesn't load from, then we can remove it.
1200       // Also try to merge two stores if a later one only touches memory written
1201       // to by the earlier one.
1202       if (isRemovable(DepWrite) &&
1203           !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
1204         int64_t InstWriteOffset, DepWriteOffset;
1205         OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
1206                                          InstWriteOffset, DepWrite, IOL, *AA,
1207                                          BB.getParent());
1208         if (OR == OW_Complete) {
1209           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DepWrite
1210                             << "\n  KILLER: " << *Inst << '\n');
1211 
1212           // Delete the store and now-dead instructions that feed it.
1213           deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB,
1214                                 ThrowableInst);
1215           ++NumFastStores;
1216           MadeChange = true;
1217 
1218           // We erased DepWrite; start over.
1219           InstDep = MD->getDependency(Inst, &OBB);
1220           continue;
1221         } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
1222                    ((OR == OW_Begin &&
1223                      isShortenableAtTheBeginning(DepWrite)))) {
1224           assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
1225                                                     "when partial-overwrite "
1226                                                     "tracking is enabled");
1227           // The overwrite result is known, so these must be known, too.
1228           int64_t EarlierSize = DepLoc.Size.getValue();
1229           int64_t LaterSize = Loc.Size.getValue();
1230           bool IsOverwriteEnd = (OR == OW_End);
1231           MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
1232                                     InstWriteOffset, LaterSize, IsOverwriteEnd);
1233         } else if (EnablePartialStoreMerging &&
1234                    OR == OW_PartialEarlierWithFullLater) {
1235           auto *Earlier = dyn_cast<StoreInst>(DepWrite);
1236           auto *Later = dyn_cast<StoreInst>(Inst);
1237           if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
1238               DL.typeSizeEqualsStoreSize(
1239                   Earlier->getValueOperand()->getType()) &&
1240               Later && isa<ConstantInt>(Later->getValueOperand()) &&
1241               DL.typeSizeEqualsStoreSize(
1242                   Later->getValueOperand()->getType()) &&
1243               memoryIsNotModifiedBetween(Earlier, Later, AA)) {
1244             // If the store we find is:
1245             //   a) partially overwritten by the store to 'Loc'
1246             //   b) the later store is fully contained in the earlier one and
1247             //   c) they both have a constant value
1248             //   d) none of the two stores need padding
1249             // Merge the two stores, replacing the earlier store's value with a
1250             // merge of both values.
1251             // TODO: Deal with other constant types (vectors, etc), and probably
1252             // some mem intrinsics (if needed)
1253 
1254             APInt EarlierValue =
1255                 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
1256             APInt LaterValue =
1257                 cast<ConstantInt>(Later->getValueOperand())->getValue();
1258             unsigned LaterBits = LaterValue.getBitWidth();
1259             assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
1260             LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
1261 
1262             // Offset of the smaller store inside the larger store
1263             unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
1264             unsigned LShiftAmount =
1265                 DL.isBigEndian()
1266                     ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
1267                     : BitOffsetDiff;
1268             APInt Mask =
1269                 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
1270                                   LShiftAmount + LaterBits);
1271             // Clear the bits we'll be replacing, then OR with the smaller
1272             // store, shifted appropriately.
1273             APInt Merged =
1274                 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
1275             LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *DepWrite
1276                               << "\n  Later: " << *Inst
1277                               << "\n  Merged Value: " << Merged << '\n');
1278 
1279             auto *SI = new StoreInst(
1280                 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
1281                 Earlier->getPointerOperand(), false,
1282                 MaybeAlign(Earlier->getAlignment()), Earlier->getOrdering(),
1283                 Earlier->getSyncScopeID(), DepWrite);
1284 
1285             unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
1286                                    LLVMContext::MD_alias_scope,
1287                                    LLVMContext::MD_noalias,
1288                                    LLVMContext::MD_nontemporal};
1289             SI->copyMetadata(*DepWrite, MDToKeep);
1290             ++NumModifiedStores;
1291 
1292             // Remove earlier, wider, store
1293             OBB.replaceInstruction(DepWrite, SI);
1294 
1295             // Delete the old stores and now-dead instructions that feed them.
1296             deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB,
1297                                   ThrowableInst);
1298             deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB,
1299                                   ThrowableInst);
1300             MadeChange = true;
1301 
1302             // We erased DepWrite and Inst (Loc); start over.
1303             break;
1304           }
1305         }
1306       }
1307 
1308       // If this is a may-aliased store that is clobbering the store value, we
1309       // can keep searching past it for another must-aliased pointer that stores
1310       // to the same location.  For example, in:
1311       //   store -> P
1312       //   store -> Q
1313       //   store -> P
1314       // we can remove the first store to P even though we don't know if P and Q
1315       // alias.
1316       if (DepWrite == &BB.front()) break;
1317 
1318       // Can't look past this instruction if it might read 'Loc'.
1319       if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
1320         break;
1321 
1322       InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
1323                                              DepWrite->getIterator(), &BB,
1324                                              /*QueryInst=*/ nullptr, &Limit);
1325     }
1326   }
1327 
1328   if (EnablePartialOverwriteTracking)
1329     MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
1330 
1331   // If this block ends in a return, unwind, or unreachable, all allocas are
1332   // dead at its end, which means stores to them are also dead.
1333   if (BB.getTerminator()->getNumSuccessors() == 0)
1334     MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB, ThrowableInst);
1335 
1336   return MadeChange;
1337 }
1338 
1339 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
1340                                 MemoryDependenceResults *MD, DominatorTree *DT,
1341                                 const TargetLibraryInfo *TLI) {
1342   bool MadeChange = false;
1343   for (BasicBlock &BB : F)
1344     // Only check non-dead blocks.  Dead blocks may have strange pointer
1345     // cycles that will confuse alias analysis.
1346     if (DT->isReachableFromEntry(&BB))
1347       MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
1348 
1349   return MadeChange;
1350 }
1351 
1352 //===----------------------------------------------------------------------===//
1353 // DSE Pass
1354 //===----------------------------------------------------------------------===//
1355 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
1356   AliasAnalysis *AA = &AM.getResult<AAManager>(F);
1357   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1358   MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
1359   const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1360 
1361   if (!eliminateDeadStores(F, AA, MD, DT, TLI))
1362     return PreservedAnalyses::all();
1363 
1364   PreservedAnalyses PA;
1365   PA.preserveSet<CFGAnalyses>();
1366   PA.preserve<GlobalsAA>();
1367   PA.preserve<MemoryDependenceAnalysis>();
1368   return PA;
1369 }
1370 
1371 namespace {
1372 
1373 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
1374 class DSELegacyPass : public FunctionPass {
1375 public:
1376   static char ID; // Pass identification, replacement for typeid
1377 
1378   DSELegacyPass() : FunctionPass(ID) {
1379     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
1380   }
1381 
1382   bool runOnFunction(Function &F) override {
1383     if (skipFunction(F))
1384       return false;
1385 
1386     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1387     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1388     MemoryDependenceResults *MD =
1389         &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1390     const TargetLibraryInfo *TLI =
1391         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1392 
1393     return eliminateDeadStores(F, AA, MD, DT, TLI);
1394   }
1395 
1396   void getAnalysisUsage(AnalysisUsage &AU) const override {
1397     AU.setPreservesCFG();
1398     AU.addRequired<DominatorTreeWrapperPass>();
1399     AU.addRequired<AAResultsWrapperPass>();
1400     AU.addRequired<MemoryDependenceWrapperPass>();
1401     AU.addRequired<TargetLibraryInfoWrapperPass>();
1402     AU.addPreserved<DominatorTreeWrapperPass>();
1403     AU.addPreserved<GlobalsAAWrapperPass>();
1404     AU.addPreserved<MemoryDependenceWrapperPass>();
1405   }
1406 };
1407 
1408 } // end anonymous namespace
1409 
1410 char DSELegacyPass::ID = 0;
1411 
1412 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
1413                       false)
1414 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1415 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1416 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1417 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1418 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1419 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
1420                     false)
1421 
1422 FunctionPass *llvm::createDeadStoreEliminationPass() {
1423   return new DSELegacyPass();
1424 }
1425