xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp (revision a4a491e2238b12ccd64d3faf9e6401487f6f1f1b)
1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 //    upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 //    checking all uses starting at MaybeDeadAccess and walking until we see
20 //    StartDef.
21 // 3. For each found CurrentDef, check that:
22 //   1. There are no barrier instructions between CurrentDef and StartDef (like
23 //       throws or stores with ordering constraints).
24 //   2. StartDef is executed whenever CurrentDef is executed.
25 //   3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/CaptureTracking.h"
43 #include "llvm/Analysis/CodeMetrics.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/LoopInfo.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/MemorySSA.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/MustExecute.h"
51 #include "llvm/Analysis/PostDominators.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Argument.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Constant.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/InstrTypes.h"
64 #include "llvm/IR/Instruction.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/DebugCounter.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
81 #include "llvm/Transforms/Utils/BuildLibCalls.h"
82 #include "llvm/Transforms/Utils/Local.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdint>
86 #include <iterator>
87 #include <map>
88 #include <utility>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "dse"
94 
95 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
96 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
97 STATISTIC(NumFastStores, "Number of stores deleted");
98 STATISTIC(NumFastOther, "Number of other instrs removed");
99 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
100 STATISTIC(NumModifiedStores, "Number of stores modified");
101 STATISTIC(NumCFGChecks, "Number of stores modified");
102 STATISTIC(NumCFGTries, "Number of stores modified");
103 STATISTIC(NumCFGSuccess, "Number of stores modified");
104 STATISTIC(NumGetDomMemoryDefPassed,
105           "Number of times a valid candidate is returned from getDomMemoryDef");
106 STATISTIC(NumDomMemDefChecks,
107           "Number iterations check for reads in getDomMemoryDef");
108 
109 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
110               "Controls which MemoryDefs are eliminated.");
111 
112 static cl::opt<bool>
113 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
114   cl::init(true), cl::Hidden,
115   cl::desc("Enable partial-overwrite tracking in DSE"));
116 
117 static cl::opt<bool>
118 EnablePartialStoreMerging("enable-dse-partial-store-merging",
119   cl::init(true), cl::Hidden,
120   cl::desc("Enable partial store merging in DSE"));
121 
122 static cl::opt<unsigned>
123     MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
124                        cl::desc("The number of memory instructions to scan for "
125                                 "dead store elimination (default = 150)"));
126 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
127     "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
128     cl::desc("The maximum number of steps while walking upwards to find "
129              "MemoryDefs that may be killed (default = 90)"));
130 
131 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
132     "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
133     cl::desc("The maximum number candidates that only partially overwrite the "
134              "killing MemoryDef to consider"
135              " (default = 5)"));
136 
137 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
138     "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
139     cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
140              "other stores per basic block (default = 5000)"));
141 
142 static cl::opt<unsigned> MemorySSASameBBStepCost(
143     "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
144     cl::desc(
145         "The cost of a step in the same basic block as the killing MemoryDef"
146         "(default = 1)"));
147 
148 static cl::opt<unsigned>
149     MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
150                              cl::Hidden,
151                              cl::desc("The cost of a step in a different basic "
152                                       "block than the killing MemoryDef"
153                                       "(default = 5)"));
154 
155 static cl::opt<unsigned> MemorySSAPathCheckLimit(
156     "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
157     cl::desc("The maximum number of blocks to check when trying to prove that "
158              "all paths to an exit go through a killing block (default = 50)"));
159 
160 // This flags allows or disallows DSE to optimize MemorySSA during its
161 // traversal. Note that DSE optimizing MemorySSA may impact other passes
162 // downstream of the DSE invocation and can lead to issues not being
163 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
164 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
165 // impact follow-up passes.
166 static cl::opt<bool>
167     OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
168                       cl::desc("Allow DSE to optimize memory accesses."));
169 
170 //===----------------------------------------------------------------------===//
171 // Helper functions
172 //===----------------------------------------------------------------------===//
173 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
174 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
175 
176 /// Returns true if the end of this instruction can be safely shortened in
177 /// length.
178 static bool isShortenableAtTheEnd(Instruction *I) {
179   // Don't shorten stores for now
180   if (isa<StoreInst>(I))
181     return false;
182 
183   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
184     switch (II->getIntrinsicID()) {
185       default: return false;
186       case Intrinsic::memset:
187       case Intrinsic::memcpy:
188       case Intrinsic::memcpy_element_unordered_atomic:
189       case Intrinsic::memset_element_unordered_atomic:
190         // Do shorten memory intrinsics.
191         // FIXME: Add memmove if it's also safe to transform.
192         return true;
193     }
194   }
195 
196   // Don't shorten libcalls calls for now.
197 
198   return false;
199 }
200 
201 /// Returns true if the beginning of this instruction can be safely shortened
202 /// in length.
203 static bool isShortenableAtTheBeginning(Instruction *I) {
204   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
205   // easily done by offsetting the source address.
206   return isa<AnyMemSetInst>(I);
207 }
208 
209 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
210                                const TargetLibraryInfo &TLI,
211                                const Function *F) {
212   uint64_t Size;
213   ObjectSizeOpts Opts;
214   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
215 
216   if (getObjectSize(V, Size, DL, &TLI, Opts))
217     return Size;
218   return MemoryLocation::UnknownSize;
219 }
220 
221 namespace {
222 
223 enum OverwriteResult {
224   OW_Begin,
225   OW_Complete,
226   OW_End,
227   OW_PartialEarlierWithFullLater,
228   OW_MaybePartial,
229   OW_None,
230   OW_Unknown
231 };
232 
233 } // end anonymous namespace
234 
235 /// Check if two instruction are masked stores that completely
236 /// overwrite one another. More specifically, \p KillingI has to
237 /// overwrite \p DeadI.
238 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
239                                               const Instruction *DeadI,
240                                               BatchAAResults &AA) {
241   const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
242   const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
243   if (KillingII == nullptr || DeadII == nullptr)
244     return OW_Unknown;
245   if (KillingII->getIntrinsicID() != Intrinsic::masked_store ||
246       DeadII->getIntrinsicID() != Intrinsic::masked_store)
247     return OW_Unknown;
248   // Pointers.
249   Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
250   Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
251   if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
252     return OW_Unknown;
253   // Masks.
254   // TODO: check that KillingII's mask is a superset of the DeadII's mask.
255   if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
256     return OW_Unknown;
257   return OW_Complete;
258 }
259 
260 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
261 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
262 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
263 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
264 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
265 /// overwritten by a killing (smaller) store which doesn't write outside the big
266 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
267 /// NOTE: This function must only be called if both \p KillingLoc and \p
268 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
269 /// \p DeadOff.
270 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
271                                           const MemoryLocation &DeadLoc,
272                                           int64_t KillingOff, int64_t DeadOff,
273                                           Instruction *DeadI,
274                                           InstOverlapIntervalsTy &IOL) {
275   const uint64_t KillingSize = KillingLoc.Size.getValue();
276   const uint64_t DeadSize = DeadLoc.Size.getValue();
277   // We may now overlap, although the overlap is not complete. There might also
278   // be other incomplete overlaps, and together, they might cover the complete
279   // dead store.
280   // Note: The correctness of this logic depends on the fact that this function
281   // is not even called providing DepWrite when there are any intervening reads.
282   if (EnablePartialOverwriteTracking &&
283       KillingOff < int64_t(DeadOff + DeadSize) &&
284       int64_t(KillingOff + KillingSize) >= DeadOff) {
285 
286     // Insert our part of the overlap into the map.
287     auto &IM = IOL[DeadI];
288     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
289                       << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
290                       << KillingOff << ", " << int64_t(KillingOff + KillingSize)
291                       << ")\n");
292 
293     // Make sure that we only insert non-overlapping intervals and combine
294     // adjacent intervals. The intervals are stored in the map with the ending
295     // offset as the key (in the half-open sense) and the starting offset as
296     // the value.
297     int64_t KillingIntStart = KillingOff;
298     int64_t KillingIntEnd = KillingOff + KillingSize;
299 
300     // Find any intervals ending at, or after, KillingIntStart which start
301     // before KillingIntEnd.
302     auto ILI = IM.lower_bound(KillingIntStart);
303     if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
304       // This existing interval is overlapped with the current store somewhere
305       // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
306       // intervals and adjusting our start and end.
307       KillingIntStart = std::min(KillingIntStart, ILI->second);
308       KillingIntEnd = std::max(KillingIntEnd, ILI->first);
309       ILI = IM.erase(ILI);
310 
311       // Continue erasing and adjusting our end in case other previous
312       // intervals are also overlapped with the current store.
313       //
314       // |--- dead 1 ---|  |--- dead 2 ---|
315       //     |------- killing---------|
316       //
317       while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
318         assert(ILI->second > KillingIntStart && "Unexpected interval");
319         KillingIntEnd = std::max(KillingIntEnd, ILI->first);
320         ILI = IM.erase(ILI);
321       }
322     }
323 
324     IM[KillingIntEnd] = KillingIntStart;
325 
326     ILI = IM.begin();
327     if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
328       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
329                         << DeadOff << ", " << int64_t(DeadOff + DeadSize)
330                         << ") Composite KillingLoc [" << ILI->second << ", "
331                         << ILI->first << ")\n");
332       ++NumCompletePartials;
333       return OW_Complete;
334     }
335   }
336 
337   // Check for a dead store which writes to all the memory locations that
338   // the killing store writes to.
339   if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
340       int64_t(DeadOff + DeadSize) > KillingOff &&
341       uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
342     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
343                       << ", " << int64_t(DeadOff + DeadSize)
344                       << ") by a killing store [" << KillingOff << ", "
345                       << int64_t(KillingOff + KillingSize) << ")\n");
346     // TODO: Maybe come up with a better name?
347     return OW_PartialEarlierWithFullLater;
348   }
349 
350   // Another interesting case is if the killing store overwrites the end of the
351   // dead store.
352   //
353   //      |--dead--|
354   //                |--   killing   --|
355   //
356   // In this case we may want to trim the size of dead store to avoid
357   // generating stores to addresses which will definitely be overwritten killing
358   // store.
359   if (!EnablePartialOverwriteTracking &&
360       (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
361        int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
362     return OW_End;
363 
364   // Finally, we also need to check if the killing store overwrites the
365   // beginning of the dead store.
366   //
367   //                |--dead--|
368   //      |--  killing  --|
369   //
370   // In this case we may want to move the destination address and trim the size
371   // of dead store to avoid generating stores to addresses which will definitely
372   // be overwritten killing store.
373   if (!EnablePartialOverwriteTracking &&
374       (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
375     assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
376            "Expect to be handled as OW_Complete");
377     return OW_Begin;
378   }
379   // Otherwise, they don't completely overlap.
380   return OW_Unknown;
381 }
382 
383 /// Returns true if the memory which is accessed by the second instruction is not
384 /// modified between the first and the second instruction.
385 /// Precondition: Second instruction must be dominated by the first
386 /// instruction.
387 static bool
388 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
389                            BatchAAResults &AA, const DataLayout &DL,
390                            DominatorTree *DT) {
391   // Do a backwards scan through the CFG from SecondI to FirstI. Look for
392   // instructions which can modify the memory location accessed by SecondI.
393   //
394   // While doing the walk keep track of the address to check. It might be
395   // different in different basic blocks due to PHI translation.
396   using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
397   SmallVector<BlockAddressPair, 16> WorkList;
398   // Keep track of the address we visited each block with. Bail out if we
399   // visit a block with different addresses.
400   DenseMap<BasicBlock *, Value *> Visited;
401 
402   BasicBlock::iterator FirstBBI(FirstI);
403   ++FirstBBI;
404   BasicBlock::iterator SecondBBI(SecondI);
405   BasicBlock *FirstBB = FirstI->getParent();
406   BasicBlock *SecondBB = SecondI->getParent();
407   MemoryLocation MemLoc;
408   if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
409     MemLoc = MemoryLocation::getForDest(MemSet);
410   else
411     MemLoc = MemoryLocation::get(SecondI);
412 
413   auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
414 
415   // Start checking the SecondBB.
416   WorkList.push_back(
417       std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
418   bool isFirstBlock = true;
419 
420   // Check all blocks going backward until we reach the FirstBB.
421   while (!WorkList.empty()) {
422     BlockAddressPair Current = WorkList.pop_back_val();
423     BasicBlock *B = Current.first;
424     PHITransAddr &Addr = Current.second;
425     Value *Ptr = Addr.getAddr();
426 
427     // Ignore instructions before FirstI if this is the FirstBB.
428     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
429 
430     BasicBlock::iterator EI;
431     if (isFirstBlock) {
432       // Ignore instructions after SecondI if this is the first visit of SecondBB.
433       assert(B == SecondBB && "first block is not the store block");
434       EI = SecondBBI;
435       isFirstBlock = false;
436     } else {
437       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
438       // In this case we also have to look at instructions after SecondI.
439       EI = B->end();
440     }
441     for (; BI != EI; ++BI) {
442       Instruction *I = &*BI;
443       if (I->mayWriteToMemory() && I != SecondI)
444         if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
445           return false;
446     }
447     if (B != FirstBB) {
448       assert(B != &FirstBB->getParent()->getEntryBlock() &&
449           "Should not hit the entry block because SI must be dominated by LI");
450       for (BasicBlock *Pred : predecessors(B)) {
451         PHITransAddr PredAddr = Addr;
452         if (PredAddr.NeedsPHITranslationFromBlock(B)) {
453           if (!PredAddr.IsPotentiallyPHITranslatable())
454             return false;
455           if (PredAddr.PHITranslateValue(B, Pred, DT, false))
456             return false;
457         }
458         Value *TranslatedPtr = PredAddr.getAddr();
459         auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
460         if (!Inserted.second) {
461           // We already visited this block before. If it was with a different
462           // address - bail out!
463           if (TranslatedPtr != Inserted.first->second)
464             return false;
465           // ... otherwise just skip it.
466           continue;
467         }
468         WorkList.push_back(std::make_pair(Pred, PredAddr));
469       }
470     }
471   }
472   return true;
473 }
474 
475 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
476                          uint64_t &DeadSize, int64_t KillingStart,
477                          uint64_t KillingSize, bool IsOverwriteEnd) {
478   auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
479   Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
480 
481   // We assume that memet/memcpy operates in chunks of the "largest" native
482   // type size and aligned on the same value. That means optimal start and size
483   // of memset/memcpy should be modulo of preferred alignment of that type. That
484   // is it there is no any sense in trying to reduce store size any further
485   // since any "extra" stores comes for free anyway.
486   // On the other hand, maximum alignment we can achieve is limited by alignment
487   // of initial store.
488 
489   // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
490   // "largest" native type.
491   // Note: What is the proper way to get that value?
492   // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
493   // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
494 
495   int64_t ToRemoveStart = 0;
496   uint64_t ToRemoveSize = 0;
497   // Compute start and size of the region to remove. Make sure 'PrefAlign' is
498   // maintained on the remaining store.
499   if (IsOverwriteEnd) {
500     // Calculate required adjustment for 'KillingStart' in order to keep
501     // remaining store size aligned on 'PerfAlign'.
502     uint64_t Off =
503         offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
504     ToRemoveStart = KillingStart + Off;
505     if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
506       return false;
507     ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
508   } else {
509     ToRemoveStart = DeadStart;
510     assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
511            "Not overlapping accesses?");
512     ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
513     // Calculate required adjustment for 'ToRemoveSize'in order to keep
514     // start of the remaining store aligned on 'PerfAlign'.
515     uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
516     if (Off != 0) {
517       if (ToRemoveSize <= (PrefAlign.value() - Off))
518         return false;
519       ToRemoveSize -= PrefAlign.value() - Off;
520     }
521     assert(isAligned(PrefAlign, ToRemoveSize) &&
522            "Should preserve selected alignment");
523   }
524 
525   assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
526   assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
527 
528   uint64_t NewSize = DeadSize - ToRemoveSize;
529   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
530     // When shortening an atomic memory intrinsic, the newly shortened
531     // length must remain an integer multiple of the element size.
532     const uint32_t ElementSize = AMI->getElementSizeInBytes();
533     if (0 != NewSize % ElementSize)
534       return false;
535   }
536 
537   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
538                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
539                     << "\n  KILLER [" << ToRemoveStart << ", "
540                     << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
541 
542   Value *DeadWriteLength = DeadIntrinsic->getLength();
543   Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
544   DeadIntrinsic->setLength(TrimmedLength);
545   DeadIntrinsic->setDestAlignment(PrefAlign);
546 
547   if (!IsOverwriteEnd) {
548     Value *OrigDest = DeadIntrinsic->getRawDest();
549     Type *Int8PtrTy =
550         Type::getInt8PtrTy(DeadIntrinsic->getContext(),
551                            OrigDest->getType()->getPointerAddressSpace());
552     Value *Dest = OrigDest;
553     if (OrigDest->getType() != Int8PtrTy)
554       Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
555     Value *Indices[1] = {
556         ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
557     Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
558         Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
559     NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
560     if (NewDestGEP->getType() != OrigDest->getType())
561       NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
562                                                "", DeadI);
563     DeadIntrinsic->setDest(NewDestGEP);
564   }
565 
566   // Finally update start and size of dead access.
567   if (!IsOverwriteEnd)
568     DeadStart += ToRemoveSize;
569   DeadSize = NewSize;
570 
571   return true;
572 }
573 
574 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
575                             int64_t &DeadStart, uint64_t &DeadSize) {
576   if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
577     return false;
578 
579   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
580   int64_t KillingStart = OII->second;
581   uint64_t KillingSize = OII->first - KillingStart;
582 
583   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
584 
585   if (KillingStart > DeadStart &&
586       // Note: "KillingStart - KillingStart" is known to be positive due to
587       // preceding check.
588       (uint64_t)(KillingStart - DeadStart) < DeadSize &&
589       // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
590       // be non negative due to preceding checks.
591       KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
592     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
593                      true)) {
594       IntervalMap.erase(OII);
595       return true;
596     }
597   }
598   return false;
599 }
600 
601 static bool tryToShortenBegin(Instruction *DeadI,
602                               OverlapIntervalsTy &IntervalMap,
603                               int64_t &DeadStart, uint64_t &DeadSize) {
604   if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
605     return false;
606 
607   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
608   int64_t KillingStart = OII->second;
609   uint64_t KillingSize = OII->first - KillingStart;
610 
611   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
612 
613   if (KillingStart <= DeadStart &&
614       // Note: "DeadStart - KillingStart" is known to be non negative due to
615       // preceding check.
616       KillingSize > (uint64_t)(DeadStart - KillingStart)) {
617     // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
618     // be positive due to preceding checks.
619     assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
620            "Should have been handled as OW_Complete");
621     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
622                      false)) {
623       IntervalMap.erase(OII);
624       return true;
625     }
626   }
627   return false;
628 }
629 
630 static Constant *
631 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
632                                    int64_t KillingOffset, int64_t DeadOffset,
633                                    const DataLayout &DL, BatchAAResults &AA,
634                                    DominatorTree *DT) {
635 
636   if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
637       DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
638       KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
639       DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
640       memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
641     // If the store we find is:
642     //   a) partially overwritten by the store to 'Loc'
643     //   b) the killing store is fully contained in the dead one and
644     //   c) they both have a constant value
645     //   d) none of the two stores need padding
646     // Merge the two stores, replacing the dead store's value with a
647     // merge of both values.
648     // TODO: Deal with other constant types (vectors, etc), and probably
649     // some mem intrinsics (if needed)
650 
651     APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
652     APInt KillingValue =
653         cast<ConstantInt>(KillingI->getValueOperand())->getValue();
654     unsigned KillingBits = KillingValue.getBitWidth();
655     assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
656     KillingValue = KillingValue.zext(DeadValue.getBitWidth());
657 
658     // Offset of the smaller store inside the larger store
659     unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
660     unsigned LShiftAmount =
661         DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
662                          : BitOffsetDiff;
663     APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
664                                    LShiftAmount + KillingBits);
665     // Clear the bits we'll be replacing, then OR with the smaller
666     // store, shifted appropriately.
667     APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
668     LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
669                       << "\n  Killing: " << *KillingI
670                       << "\n  Merged Value: " << Merged << '\n');
671     return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
672   }
673   return nullptr;
674 }
675 
676 namespace {
677 // Returns true if \p I is an intrisnic that does not read or write memory.
678 bool isNoopIntrinsic(Instruction *I) {
679   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
680     switch (II->getIntrinsicID()) {
681     case Intrinsic::lifetime_start:
682     case Intrinsic::lifetime_end:
683     case Intrinsic::invariant_end:
684     case Intrinsic::launder_invariant_group:
685     case Intrinsic::assume:
686       return true;
687     case Intrinsic::dbg_addr:
688     case Intrinsic::dbg_declare:
689     case Intrinsic::dbg_label:
690     case Intrinsic::dbg_value:
691       llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
692     default:
693       return false;
694     }
695   }
696   return false;
697 }
698 
699 // Check if we can ignore \p D for DSE.
700 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
701   Instruction *DI = D->getMemoryInst();
702   // Calls that only access inaccessible memory cannot read or write any memory
703   // locations we consider for elimination.
704   if (auto *CB = dyn_cast<CallBase>(DI))
705     if (CB->onlyAccessesInaccessibleMemory())
706       return true;
707 
708   // We can eliminate stores to locations not visible to the caller across
709   // throwing instructions.
710   if (DI->mayThrow() && !DefVisibleToCaller)
711     return true;
712 
713   // We can remove the dead stores, irrespective of the fence and its ordering
714   // (release/acquire/seq_cst). Fences only constraints the ordering of
715   // already visible stores, it does not make a store visible to other
716   // threads. So, skipping over a fence does not change a store from being
717   // dead.
718   if (isa<FenceInst>(DI))
719     return true;
720 
721   // Skip intrinsics that do not really read or modify memory.
722   if (isNoopIntrinsic(DI))
723     return true;
724 
725   return false;
726 }
727 
728 struct DSEState {
729   Function &F;
730   AliasAnalysis &AA;
731   EarliestEscapeInfo EI;
732 
733   /// The single BatchAA instance that is used to cache AA queries. It will
734   /// not be invalidated over the whole run. This is safe, because:
735   /// 1. Only memory writes are removed, so the alias cache for memory
736   ///    locations remains valid.
737   /// 2. No new instructions are added (only instructions removed), so cached
738   ///    information for a deleted value cannot be accessed by a re-used new
739   ///    value pointer.
740   BatchAAResults BatchAA;
741 
742   MemorySSA &MSSA;
743   DominatorTree &DT;
744   PostDominatorTree &PDT;
745   const TargetLibraryInfo &TLI;
746   const DataLayout &DL;
747   const LoopInfo &LI;
748 
749   // Whether the function contains any irreducible control flow, useful for
750   // being accurately able to detect loops.
751   bool ContainsIrreducibleLoops;
752 
753   // All MemoryDefs that potentially could kill other MemDefs.
754   SmallVector<MemoryDef *, 64> MemDefs;
755   // Any that should be skipped as they are already deleted
756   SmallPtrSet<MemoryAccess *, 4> SkipStores;
757   // Keep track whether a given object is captured before return or not.
758   DenseMap<const Value *, bool> CapturedBeforeReturn;
759   // Keep track of all of the objects that are invisible to the caller after
760   // the function returns.
761   DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
762   // Keep track of blocks with throwing instructions not modeled in MemorySSA.
763   SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
764   // Post-order numbers for each basic block. Used to figure out if memory
765   // accesses are executed before another access.
766   DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
767   // Values that are only used with assumes. Used to refine pointer escape
768   // analysis.
769   SmallPtrSet<const Value *, 32> EphValues;
770 
771   /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
772   /// basic block.
773   MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
774   // Check if there are root nodes that are terminated by UnreachableInst.
775   // Those roots pessimize post-dominance queries. If there are such roots,
776   // fall back to CFG scan starting from all non-unreachable roots.
777   bool AnyUnreachableExit;
778 
779   // Whether or not we should iterate on removing dead stores at the end of the
780   // function due to removing a store causing a previously captured pointer to
781   // no longer be captured.
782   bool ShouldIterateEndOfFunctionDSE;
783 
784   // Class contains self-reference, make sure it's not copied/moved.
785   DSEState(const DSEState &) = delete;
786   DSEState &operator=(const DSEState &) = delete;
787 
788   DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
789            PostDominatorTree &PDT, AssumptionCache &AC,
790            const TargetLibraryInfo &TLI, const LoopInfo &LI)
791       : F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA),
792         DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
793     // Collect blocks with throwing instructions not modeled in MemorySSA and
794     // alloc-like objects.
795     unsigned PO = 0;
796     for (BasicBlock *BB : post_order(&F)) {
797       PostOrderNumbers[BB] = PO++;
798       for (Instruction &I : *BB) {
799         MemoryAccess *MA = MSSA.getMemoryAccess(&I);
800         if (I.mayThrow() && !MA)
801           ThrowingBlocks.insert(I.getParent());
802 
803         auto *MD = dyn_cast_or_null<MemoryDef>(MA);
804         if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
805             (getLocForWrite(&I) || isMemTerminatorInst(&I)))
806           MemDefs.push_back(MD);
807       }
808     }
809 
810     // Treat byval or inalloca arguments the same as Allocas, stores to them are
811     // dead at the end of the function.
812     for (Argument &AI : F.args())
813       if (AI.hasPassPointeeByValueCopyAttr())
814         InvisibleToCallerAfterRet.insert({&AI, true});
815 
816     // Collect whether there is any irreducible control flow in the function.
817     ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
818 
819     AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
820       return isa<UnreachableInst>(E->getTerminator());
821     });
822 
823     CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
824   }
825 
826   /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
827   /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
828   /// location (by \p DeadI instruction).
829   /// Return OW_MaybePartial if \p KillingI does not completely overwrite
830   /// \p DeadI, but they both write to the same underlying object. In that
831   /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
832   /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
833   /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
834   OverwriteResult isOverwrite(const Instruction *KillingI,
835                               const Instruction *DeadI,
836                               const MemoryLocation &KillingLoc,
837                               const MemoryLocation &DeadLoc,
838                               int64_t &KillingOff, int64_t &DeadOff) {
839     // AliasAnalysis does not always account for loops. Limit overwrite checks
840     // to dependencies for which we can guarantee they are independent of any
841     // loops they are in.
842     if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
843       return OW_Unknown;
844 
845     const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
846     const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
847     const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
848     const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
849 
850     // Check whether the killing store overwrites the whole object, in which
851     // case the size/offset of the dead store does not matter.
852     if (DeadUndObj == KillingUndObj && KillingLoc.Size.isPrecise()) {
853       uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
854       if (KillingUndObjSize != MemoryLocation::UnknownSize &&
855           KillingUndObjSize == KillingLoc.Size.getValue())
856         return OW_Complete;
857     }
858 
859     // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
860     // get imprecise values here, though (except for unknown sizes).
861     if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) {
862       // In case no constant size is known, try to an IR values for the number
863       // of bytes written and check if they match.
864       const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
865       const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
866       if (KillingMemI && DeadMemI) {
867         const Value *KillingV = KillingMemI->getLength();
868         const Value *DeadV = DeadMemI->getLength();
869         if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
870           return OW_Complete;
871       }
872 
873       // Masked stores have imprecise locations, but we can reason about them
874       // to some extent.
875       return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
876     }
877 
878     const uint64_t KillingSize = KillingLoc.Size.getValue();
879     const uint64_t DeadSize = DeadLoc.Size.getValue();
880 
881     // Query the alias information
882     AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
883 
884     // If the start pointers are the same, we just have to compare sizes to see if
885     // the killing store was larger than the dead store.
886     if (AAR == AliasResult::MustAlias) {
887       // Make sure that the KillingSize size is >= the DeadSize size.
888       if (KillingSize >= DeadSize)
889         return OW_Complete;
890     }
891 
892     // If we hit a partial alias we may have a full overwrite
893     if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
894       int32_t Off = AAR.getOffset();
895       if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
896         return OW_Complete;
897     }
898 
899     // If we can't resolve the same pointers to the same object, then we can't
900     // analyze them at all.
901     if (DeadUndObj != KillingUndObj) {
902       // Non aliasing stores to different objects don't overlap. Note that
903       // if the killing store is known to overwrite whole object (out of
904       // bounds access overwrites whole object as well) then it is assumed to
905       // completely overwrite any store to the same object even if they don't
906       // actually alias (see next check).
907       if (AAR == AliasResult::NoAlias)
908         return OW_None;
909       return OW_Unknown;
910     }
911 
912     // Okay, we have stores to two completely different pointers.  Try to
913     // decompose the pointer into a "base + constant_offset" form.  If the base
914     // pointers are equal, then we can reason about the two stores.
915     DeadOff = 0;
916     KillingOff = 0;
917     const Value *DeadBasePtr =
918         GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
919     const Value *KillingBasePtr =
920         GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
921 
922     // If the base pointers still differ, we have two completely different
923     // stores.
924     if (DeadBasePtr != KillingBasePtr)
925       return OW_Unknown;
926 
927     // The killing access completely overlaps the dead store if and only if
928     // both start and end of the dead one is "inside" the killing one:
929     //    |<->|--dead--|<->|
930     //    |-----killing------|
931     // Accesses may overlap if and only if start of one of them is "inside"
932     // another one:
933     //    |<->|--dead--|<-------->|
934     //    |-------killing--------|
935     //           OR
936     //    |-------dead-------|
937     //    |<->|---killing---|<----->|
938     //
939     // We have to be careful here as *Off is signed while *.Size is unsigned.
940 
941     // Check if the dead access starts "not before" the killing one.
942     if (DeadOff >= KillingOff) {
943       // If the dead access ends "not after" the killing access then the
944       // dead one is completely overwritten by the killing one.
945       if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
946         return OW_Complete;
947       // If start of the dead access is "before" end of the killing access
948       // then accesses overlap.
949       else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
950         return OW_MaybePartial;
951     }
952     // If start of the killing access is "before" end of the dead access then
953     // accesses overlap.
954     else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
955       return OW_MaybePartial;
956     }
957 
958     // Can reach here only if accesses are known not to overlap.
959     return OW_None;
960   }
961 
962   bool isInvisibleToCallerAfterRet(const Value *V) {
963     if (isa<AllocaInst>(V))
964       return true;
965     auto I = InvisibleToCallerAfterRet.insert({V, false});
966     if (I.second) {
967       if (!isInvisibleToCallerOnUnwind(V)) {
968         I.first->second = false;
969       } else if (isNoAliasCall(V)) {
970         I.first->second = !PointerMayBeCaptured(V, true, false, EphValues);
971       }
972     }
973     return I.first->second;
974   }
975 
976   bool isInvisibleToCallerOnUnwind(const Value *V) {
977     bool RequiresNoCaptureBeforeUnwind;
978     if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
979       return false;
980     if (!RequiresNoCaptureBeforeUnwind)
981       return true;
982 
983     auto I = CapturedBeforeReturn.insert({V, true});
984     if (I.second)
985       // NOTE: This could be made more precise by PointerMayBeCapturedBefore
986       // with the killing MemoryDef. But we refrain from doing so for now to
987       // limit compile-time and this does not cause any changes to the number
988       // of stores removed on a large test set in practice.
989       I.first->second = PointerMayBeCaptured(V, false, true, EphValues);
990     return !I.first->second;
991   }
992 
993   Optional<MemoryLocation> getLocForWrite(Instruction *I) const {
994     if (!I->mayWriteToMemory())
995       return None;
996 
997     if (auto *CB = dyn_cast<CallBase>(I))
998       return MemoryLocation::getForDest(CB, TLI);
999 
1000     return MemoryLocation::getOrNone(I);
1001   }
1002 
1003   /// Assuming this instruction has a dead analyzable write, can we delete
1004   /// this instruction?
1005   bool isRemovable(Instruction *I) {
1006     assert(getLocForWrite(I) && "Must have analyzable write");
1007 
1008     // Don't remove volatile/atomic stores.
1009     if (StoreInst *SI = dyn_cast<StoreInst>(I))
1010       return SI->isUnordered();
1011 
1012     if (auto *CB = dyn_cast<CallBase>(I)) {
1013       // Don't remove volatile memory intrinsics.
1014       if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1015         return !MI->isVolatile();
1016 
1017       // Never remove dead lifetime intrinsics, e.g. because they are followed
1018       // by a free.
1019       if (CB->isLifetimeStartOrEnd())
1020         return false;
1021 
1022       return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1023              !CB->isTerminator();
1024     }
1025 
1026     return false;
1027   }
1028 
1029   /// Returns true if \p UseInst completely overwrites \p DefLoc
1030   /// (stored by \p DefInst).
1031   bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1032                            Instruction *UseInst) {
1033     // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1034     // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1035     // MemoryDef.
1036     if (!UseInst->mayWriteToMemory())
1037       return false;
1038 
1039     if (auto *CB = dyn_cast<CallBase>(UseInst))
1040       if (CB->onlyAccessesInaccessibleMemory())
1041         return false;
1042 
1043     int64_t InstWriteOffset, DepWriteOffset;
1044     if (auto CC = getLocForWrite(UseInst))
1045       return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1046                          DepWriteOffset) == OW_Complete;
1047     return false;
1048   }
1049 
1050   /// Returns true if \p Def is not read before returning from the function.
1051   bool isWriteAtEndOfFunction(MemoryDef *Def) {
1052     LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1053                       << *Def->getMemoryInst()
1054                       << ") is at the end the function \n");
1055 
1056     auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1057     if (!MaybeLoc) {
1058       LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1059       return false;
1060     }
1061 
1062     SmallVector<MemoryAccess *, 4> WorkList;
1063     SmallPtrSet<MemoryAccess *, 8> Visited;
1064     auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1065       if (!Visited.insert(Acc).second)
1066         return;
1067       for (Use &U : Acc->uses())
1068         WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1069     };
1070     PushMemUses(Def);
1071     for (unsigned I = 0; I < WorkList.size(); I++) {
1072       if (WorkList.size() >= MemorySSAScanLimit) {
1073         LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1074         return false;
1075       }
1076 
1077       MemoryAccess *UseAccess = WorkList[I];
1078       // Simply adding the users of MemoryPhi to the worklist is not enough,
1079       // because we might miss read clobbers in different iterations of a loop,
1080       // for example.
1081       // TODO: Add support for phi translation to handle the loop case.
1082       if (isa<MemoryPhi>(UseAccess))
1083         return false;
1084 
1085       // TODO: Checking for aliasing is expensive. Consider reducing the amount
1086       // of times this is called and/or caching it.
1087       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1088       if (isReadClobber(*MaybeLoc, UseInst)) {
1089         LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1090         return false;
1091       }
1092 
1093       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1094         PushMemUses(UseDef);
1095     }
1096     return true;
1097   }
1098 
1099   /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1100   /// pair with the MemoryLocation terminated by \p I and a boolean flag
1101   /// indicating whether \p I is a free-like call.
1102   Optional<std::pair<MemoryLocation, bool>>
1103   getLocForTerminator(Instruction *I) const {
1104     uint64_t Len;
1105     Value *Ptr;
1106     if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1107                                                       m_Value(Ptr))))
1108       return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1109 
1110     if (auto *CB = dyn_cast<CallBase>(I)) {
1111       if (Value *FreedOp = getFreedOperand(CB, &TLI))
1112         return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1113     }
1114 
1115     return None;
1116   }
1117 
1118   /// Returns true if \p I is a memory terminator instruction like
1119   /// llvm.lifetime.end or free.
1120   bool isMemTerminatorInst(Instruction *I) const {
1121     auto *CB = dyn_cast<CallBase>(I);
1122     return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1123                   getFreedOperand(CB, &TLI) != nullptr);
1124   }
1125 
1126   /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1127   /// instruction \p AccessI.
1128   bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1129                        Instruction *MaybeTerm) {
1130     Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1131         getLocForTerminator(MaybeTerm);
1132 
1133     if (!MaybeTermLoc)
1134       return false;
1135 
1136     // If the terminator is a free-like call, all accesses to the underlying
1137     // object can be considered terminated.
1138     if (getUnderlyingObject(Loc.Ptr) !=
1139         getUnderlyingObject(MaybeTermLoc->first.Ptr))
1140       return false;
1141 
1142     auto TermLoc = MaybeTermLoc->first;
1143     if (MaybeTermLoc->second) {
1144       const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1145       return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1146     }
1147     int64_t InstWriteOffset = 0;
1148     int64_t DepWriteOffset = 0;
1149     return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1150                        DepWriteOffset) == OW_Complete;
1151   }
1152 
1153   // Returns true if \p Use may read from \p DefLoc.
1154   bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1155     if (isNoopIntrinsic(UseInst))
1156       return false;
1157 
1158     // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1159     // treated as read clobber.
1160     if (auto SI = dyn_cast<StoreInst>(UseInst))
1161       return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1162 
1163     if (!UseInst->mayReadFromMemory())
1164       return false;
1165 
1166     if (auto *CB = dyn_cast<CallBase>(UseInst))
1167       if (CB->onlyAccessesInaccessibleMemory())
1168         return false;
1169 
1170     return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1171   }
1172 
1173   /// Returns true if a dependency between \p Current and \p KillingDef is
1174   /// guaranteed to be loop invariant for the loops that they are in. Either
1175   /// because they are known to be in the same block, in the same loop level or
1176   /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1177   /// during execution of the containing function.
1178   bool isGuaranteedLoopIndependent(const Instruction *Current,
1179                                    const Instruction *KillingDef,
1180                                    const MemoryLocation &CurrentLoc) {
1181     // If the dependency is within the same block or loop level (being careful
1182     // of irreducible loops), we know that AA will return a valid result for the
1183     // memory dependency. (Both at the function level, outside of any loop,
1184     // would also be valid but we currently disable that to limit compile time).
1185     if (Current->getParent() == KillingDef->getParent())
1186       return true;
1187     const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1188     if (!ContainsIrreducibleLoops && CurrentLI &&
1189         CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1190       return true;
1191     // Otherwise check the memory location is invariant to any loops.
1192     return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1193   }
1194 
1195   /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1196   /// loop. In particular, this guarantees that it only references a single
1197   /// MemoryLocation during execution of the containing function.
1198   bool isGuaranteedLoopInvariant(const Value *Ptr) {
1199     Ptr = Ptr->stripPointerCasts();
1200     if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1201       if (GEP->hasAllConstantIndices())
1202         Ptr = GEP->getPointerOperand()->stripPointerCasts();
1203 
1204     if (auto *I = dyn_cast<Instruction>(Ptr))
1205       return I->getParent()->isEntryBlock();
1206     return true;
1207   }
1208 
1209   // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1210   // with no read access between them or on any other path to a function exit
1211   // block if \p KillingLoc is not accessible after the function returns. If
1212   // there is no such MemoryDef, return None. The returned value may not
1213   // (completely) overwrite \p KillingLoc. Currently we bail out when we
1214   // encounter an aliasing MemoryUse (read).
1215   Optional<MemoryAccess *>
1216   getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1217                   const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1218                   unsigned &ScanLimit, unsigned &WalkerStepLimit,
1219                   bool IsMemTerm, unsigned &PartialLimit) {
1220     if (ScanLimit == 0 || WalkerStepLimit == 0) {
1221       LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1222       return None;
1223     }
1224 
1225     MemoryAccess *Current = StartAccess;
1226     Instruction *KillingI = KillingDef->getMemoryInst();
1227     LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1228 
1229     // Only optimize defining access of KillingDef when directly starting at its
1230     // defining access. The defining access also must only access KillingLoc. At
1231     // the moment we only support instructions with a single write location, so
1232     // it should be sufficient to disable optimizations for instructions that
1233     // also read from memory.
1234     bool CanOptimize = OptimizeMemorySSA &&
1235                        KillingDef->getDefiningAccess() == StartAccess &&
1236                        !KillingI->mayReadFromMemory();
1237 
1238     // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1239     Optional<MemoryLocation> CurrentLoc;
1240     for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1241       LLVM_DEBUG({
1242         dbgs() << "   visiting " << *Current;
1243         if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1244           dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1245                  << ")";
1246         dbgs() << "\n";
1247       });
1248 
1249       // Reached TOP.
1250       if (MSSA.isLiveOnEntryDef(Current)) {
1251         LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1252         if (CanOptimize && Current != KillingDef->getDefiningAccess())
1253           // The first clobbering def is... none.
1254           KillingDef->setOptimized(Current);
1255         return None;
1256       }
1257 
1258       // Cost of a step. Accesses in the same block are more likely to be valid
1259       // candidates for elimination, hence consider them cheaper.
1260       unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1261                               ? MemorySSASameBBStepCost
1262                               : MemorySSAOtherBBStepCost;
1263       if (WalkerStepLimit <= StepCost) {
1264         LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1265         return None;
1266       }
1267       WalkerStepLimit -= StepCost;
1268 
1269       // Return for MemoryPhis. They cannot be eliminated directly and the
1270       // caller is responsible for traversing them.
1271       if (isa<MemoryPhi>(Current)) {
1272         LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1273         return Current;
1274       }
1275 
1276       // Below, check if CurrentDef is a valid candidate to be eliminated by
1277       // KillingDef. If it is not, check the next candidate.
1278       MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1279       Instruction *CurrentI = CurrentDef->getMemoryInst();
1280 
1281       if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1282         CanOptimize = false;
1283         continue;
1284       }
1285 
1286       // Before we try to remove anything, check for any extra throwing
1287       // instructions that block us from DSEing
1288       if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1289         LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1290         return None;
1291       }
1292 
1293       // Check for anything that looks like it will be a barrier to further
1294       // removal
1295       if (isDSEBarrier(KillingUndObj, CurrentI)) {
1296         LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1297         return None;
1298       }
1299 
1300       // If Current is known to be on path that reads DefLoc or is a read
1301       // clobber, bail out, as the path is not profitable. We skip this check
1302       // for intrinsic calls, because the code knows how to handle memcpy
1303       // intrinsics.
1304       if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1305         return None;
1306 
1307       // Quick check if there are direct uses that are read-clobbers.
1308       if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1309             if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1310               return !MSSA.dominates(StartAccess, UseOrDef) &&
1311                      isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1312             return false;
1313           })) {
1314         LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1315         return None;
1316       }
1317 
1318       // If Current does not have an analyzable write location or is not
1319       // removable, skip it.
1320       CurrentLoc = getLocForWrite(CurrentI);
1321       if (!CurrentLoc || !isRemovable(CurrentI)) {
1322         CanOptimize = false;
1323         continue;
1324       }
1325 
1326       // AliasAnalysis does not account for loops. Limit elimination to
1327       // candidates for which we can guarantee they always store to the same
1328       // memory location and not located in different loops.
1329       if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1330         LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1331         CanOptimize = false;
1332         continue;
1333       }
1334 
1335       if (IsMemTerm) {
1336         // If the killing def is a memory terminator (e.g. lifetime.end), check
1337         // the next candidate if the current Current does not write the same
1338         // underlying object as the terminator.
1339         if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1340           CanOptimize = false;
1341           continue;
1342         }
1343       } else {
1344         int64_t KillingOffset = 0;
1345         int64_t DeadOffset = 0;
1346         auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1347                               KillingOffset, DeadOffset);
1348         if (CanOptimize) {
1349           // CurrentDef is the earliest write clobber of KillingDef. Use it as
1350           // optimized access. Do not optimize if CurrentDef is already the
1351           // defining access of KillingDef.
1352           if (CurrentDef != KillingDef->getDefiningAccess() &&
1353               (OR == OW_Complete || OR == OW_MaybePartial))
1354             KillingDef->setOptimized(CurrentDef);
1355 
1356           // Once a may-aliasing def is encountered do not set an optimized
1357           // access.
1358           if (OR != OW_None)
1359             CanOptimize = false;
1360         }
1361 
1362         // If Current does not write to the same object as KillingDef, check
1363         // the next candidate.
1364         if (OR == OW_Unknown || OR == OW_None)
1365           continue;
1366         else if (OR == OW_MaybePartial) {
1367           // If KillingDef only partially overwrites Current, check the next
1368           // candidate if the partial step limit is exceeded. This aggressively
1369           // limits the number of candidates for partial store elimination,
1370           // which are less likely to be removable in the end.
1371           if (PartialLimit <= 1) {
1372             WalkerStepLimit -= 1;
1373             LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1374             continue;
1375           }
1376           PartialLimit -= 1;
1377         }
1378       }
1379       break;
1380     };
1381 
1382     // Accesses to objects accessible after the function returns can only be
1383     // eliminated if the access is dead along all paths to the exit. Collect
1384     // the blocks with killing (=completely overwriting MemoryDefs) and check if
1385     // they cover all paths from MaybeDeadAccess to any function exit.
1386     SmallPtrSet<Instruction *, 16> KillingDefs;
1387     KillingDefs.insert(KillingDef->getMemoryInst());
1388     MemoryAccess *MaybeDeadAccess = Current;
1389     MemoryLocation MaybeDeadLoc = *CurrentLoc;
1390     Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1391     LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1392                       << *MaybeDeadI << ")\n");
1393 
1394     SmallSetVector<MemoryAccess *, 32> WorkList;
1395     auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1396       for (Use &U : Acc->uses())
1397         WorkList.insert(cast<MemoryAccess>(U.getUser()));
1398     };
1399     PushMemUses(MaybeDeadAccess);
1400 
1401     // Check if DeadDef may be read.
1402     for (unsigned I = 0; I < WorkList.size(); I++) {
1403       MemoryAccess *UseAccess = WorkList[I];
1404 
1405       LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1406       // Bail out if the number of accesses to check exceeds the scan limit.
1407       if (ScanLimit < (WorkList.size() - I)) {
1408         LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1409         return None;
1410       }
1411       --ScanLimit;
1412       NumDomMemDefChecks++;
1413 
1414       if (isa<MemoryPhi>(UseAccess)) {
1415         if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1416               return DT.properlyDominates(KI->getParent(),
1417                                           UseAccess->getBlock());
1418             })) {
1419           LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1420           continue;
1421         }
1422         LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1423         PushMemUses(UseAccess);
1424         continue;
1425       }
1426 
1427       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1428       LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1429 
1430       if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1431             return DT.dominates(KI, UseInst);
1432           })) {
1433         LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1434         continue;
1435       }
1436 
1437       // A memory terminator kills all preceeding MemoryDefs and all succeeding
1438       // MemoryAccesses. We do not have to check it's users.
1439       if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1440         LLVM_DEBUG(
1441             dbgs()
1442             << " ... skipping, memterminator invalidates following accesses\n");
1443         continue;
1444       }
1445 
1446       if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1447         LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1448         PushMemUses(UseAccess);
1449         continue;
1450       }
1451 
1452       if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1453         LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1454         return None;
1455       }
1456 
1457       // Uses which may read the original MemoryDef mean we cannot eliminate the
1458       // original MD. Stop walk.
1459       if (isReadClobber(MaybeDeadLoc, UseInst)) {
1460         LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1461         return None;
1462       }
1463 
1464       // If this worklist walks back to the original memory access (and the
1465       // pointer is not guarenteed loop invariant) then we cannot assume that a
1466       // store kills itself.
1467       if (MaybeDeadAccess == UseAccess &&
1468           !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1469         LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1470         return None;
1471       }
1472       // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1473       // if it reads the memory location.
1474       // TODO: It would probably be better to check for self-reads before
1475       // calling the function.
1476       if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1477         LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1478         continue;
1479       }
1480 
1481       // Check all uses for MemoryDefs, except for defs completely overwriting
1482       // the original location. Otherwise we have to check uses of *all*
1483       // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1484       // miss cases like the following
1485       //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1486       //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1487       //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1488       //                  (The Use points to the *first* Def it may alias)
1489       //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1490       //                  stores [0,1]
1491       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1492         if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1493           BasicBlock *MaybeKillingBlock = UseInst->getParent();
1494           if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1495               PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1496             if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1497               LLVM_DEBUG(dbgs()
1498                          << "    ... found killing def " << *UseInst << "\n");
1499               KillingDefs.insert(UseInst);
1500             }
1501           } else {
1502             LLVM_DEBUG(dbgs()
1503                        << "    ... found preceeding def " << *UseInst << "\n");
1504             return None;
1505           }
1506         } else
1507           PushMemUses(UseDef);
1508       }
1509     }
1510 
1511     // For accesses to locations visible after the function returns, make sure
1512     // that the location is dead (=overwritten) along all paths from
1513     // MaybeDeadAccess to the exit.
1514     if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1515       SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1516       for (Instruction *KD : KillingDefs)
1517         KillingBlocks.insert(KD->getParent());
1518       assert(!KillingBlocks.empty() &&
1519              "Expected at least a single killing block");
1520 
1521       // Find the common post-dominator of all killing blocks.
1522       BasicBlock *CommonPred = *KillingBlocks.begin();
1523       for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1524         if (!CommonPred)
1525           break;
1526         CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1527       }
1528 
1529       // If the common post-dominator does not post-dominate MaybeDeadAccess,
1530       // there is a path from MaybeDeadAccess to an exit not going through a
1531       // killing block.
1532       if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1533         if (!AnyUnreachableExit)
1534           return None;
1535 
1536         // Fall back to CFG scan starting at all non-unreachable roots if not
1537         // all paths to the exit go through CommonPred.
1538         CommonPred = nullptr;
1539       }
1540 
1541       // If CommonPred itself is in the set of killing blocks, we're done.
1542       if (KillingBlocks.count(CommonPred))
1543         return {MaybeDeadAccess};
1544 
1545       SetVector<BasicBlock *> WorkList;
1546       // If CommonPred is null, there are multiple exits from the function.
1547       // They all have to be added to the worklist.
1548       if (CommonPred)
1549         WorkList.insert(CommonPred);
1550       else
1551         for (BasicBlock *R : PDT.roots()) {
1552           if (!isa<UnreachableInst>(R->getTerminator()))
1553             WorkList.insert(R);
1554         }
1555 
1556       NumCFGTries++;
1557       // Check if all paths starting from an exit node go through one of the
1558       // killing blocks before reaching MaybeDeadAccess.
1559       for (unsigned I = 0; I < WorkList.size(); I++) {
1560         NumCFGChecks++;
1561         BasicBlock *Current = WorkList[I];
1562         if (KillingBlocks.count(Current))
1563           continue;
1564         if (Current == MaybeDeadAccess->getBlock())
1565           return None;
1566 
1567         // MaybeDeadAccess is reachable from the entry, so we don't have to
1568         // explore unreachable blocks further.
1569         if (!DT.isReachableFromEntry(Current))
1570           continue;
1571 
1572         for (BasicBlock *Pred : predecessors(Current))
1573           WorkList.insert(Pred);
1574 
1575         if (WorkList.size() >= MemorySSAPathCheckLimit)
1576           return None;
1577       }
1578       NumCFGSuccess++;
1579     }
1580 
1581     // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1582     // potentially dead.
1583     return {MaybeDeadAccess};
1584   }
1585 
1586   // Delete dead memory defs
1587   void deleteDeadInstruction(Instruction *SI) {
1588     MemorySSAUpdater Updater(&MSSA);
1589     SmallVector<Instruction *, 32> NowDeadInsts;
1590     NowDeadInsts.push_back(SI);
1591     --NumFastOther;
1592 
1593     while (!NowDeadInsts.empty()) {
1594       Instruction *DeadInst = NowDeadInsts.pop_back_val();
1595       ++NumFastOther;
1596 
1597       // Try to preserve debug information attached to the dead instruction.
1598       salvageDebugInfo(*DeadInst);
1599       salvageKnowledge(DeadInst);
1600 
1601       // Remove the Instruction from MSSA.
1602       if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1603         if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1604           SkipStores.insert(MD);
1605           if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1606             if (SI->getValueOperand()->getType()->isPointerTy()) {
1607               const Value *UO = getUnderlyingObject(SI->getValueOperand());
1608               if (CapturedBeforeReturn.erase(UO))
1609                 ShouldIterateEndOfFunctionDSE = true;
1610               InvisibleToCallerAfterRet.erase(UO);
1611             }
1612           }
1613         }
1614 
1615         Updater.removeMemoryAccess(MA);
1616       }
1617 
1618       auto I = IOLs.find(DeadInst->getParent());
1619       if (I != IOLs.end())
1620         I->second.erase(DeadInst);
1621       // Remove its operands
1622       for (Use &O : DeadInst->operands())
1623         if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1624           O = nullptr;
1625           if (isInstructionTriviallyDead(OpI, &TLI))
1626             NowDeadInsts.push_back(OpI);
1627         }
1628 
1629       EI.removeInstruction(DeadInst);
1630       DeadInst->eraseFromParent();
1631     }
1632   }
1633 
1634   // Check for any extra throws between \p KillingI and \p DeadI that block
1635   // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1636   // MemoryDef that may throw are handled during the walk from one def to the
1637   // next.
1638   bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1639                        const Value *KillingUndObj) {
1640     // First see if we can ignore it by using the fact that KillingI is an
1641     // alloca/alloca like object that is not visible to the caller during
1642     // execution of the function.
1643     if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1644       return false;
1645 
1646     if (KillingI->getParent() == DeadI->getParent())
1647       return ThrowingBlocks.count(KillingI->getParent());
1648     return !ThrowingBlocks.empty();
1649   }
1650 
1651   // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1652   // instructions act as barriers:
1653   //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1654   //  object.
1655   //  * Atomic stores stronger that monotonic.
1656   bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1657     // If DeadI may throw it acts as a barrier, unless we are to an
1658     // alloca/alloca like object that does not escape.
1659     if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1660       return true;
1661 
1662     // If DeadI is an atomic load/store stronger than monotonic, do not try to
1663     // eliminate/reorder it.
1664     if (DeadI->isAtomic()) {
1665       if (auto *LI = dyn_cast<LoadInst>(DeadI))
1666         return isStrongerThanMonotonic(LI->getOrdering());
1667       if (auto *SI = dyn_cast<StoreInst>(DeadI))
1668         return isStrongerThanMonotonic(SI->getOrdering());
1669       if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1670         return isStrongerThanMonotonic(ARMW->getOrdering());
1671       if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1672         return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1673                isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1674       llvm_unreachable("other instructions should be skipped in MemorySSA");
1675     }
1676     return false;
1677   }
1678 
1679   /// Eliminate writes to objects that are not visible in the caller and are not
1680   /// accessed before returning from the function.
1681   bool eliminateDeadWritesAtEndOfFunction() {
1682     bool MadeChange = false;
1683     LLVM_DEBUG(
1684         dbgs()
1685         << "Trying to eliminate MemoryDefs at the end of the function\n");
1686     do {
1687       ShouldIterateEndOfFunctionDSE = false;
1688       for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1689         if (SkipStores.contains(Def))
1690           continue;
1691 
1692         Instruction *DefI = Def->getMemoryInst();
1693         auto DefLoc = getLocForWrite(DefI);
1694         if (!DefLoc || !isRemovable(DefI))
1695           continue;
1696 
1697         // NOTE: Currently eliminating writes at the end of a function is
1698         // limited to MemoryDefs with a single underlying object, to save
1699         // compile-time. In practice it appears the case with multiple
1700         // underlying objects is very uncommon. If it turns out to be important,
1701         // we can use getUnderlyingObjects here instead.
1702         const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1703         if (!isInvisibleToCallerAfterRet(UO))
1704           continue;
1705 
1706         if (isWriteAtEndOfFunction(Def)) {
1707           // See through pointer-to-pointer bitcasts
1708           LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1709                                "of the function\n");
1710           deleteDeadInstruction(DefI);
1711           ++NumFastStores;
1712           MadeChange = true;
1713         }
1714       }
1715     } while (ShouldIterateEndOfFunctionDSE);
1716     return MadeChange;
1717   }
1718 
1719   /// If we have a zero initializing memset following a call to malloc,
1720   /// try folding it into a call to calloc.
1721   bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1722     Instruction *DefI = Def->getMemoryInst();
1723     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1724     if (!MemSet)
1725       // TODO: Could handle zero store to small allocation as well.
1726       return false;
1727     Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1728     if (!StoredConstant || !StoredConstant->isNullValue())
1729       return false;
1730 
1731     if (!isRemovable(DefI))
1732       // The memset might be volatile..
1733       return false;
1734 
1735     if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1736         F.hasFnAttribute(Attribute::SanitizeAddress) ||
1737         F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1738         F.getName() == "calloc")
1739       return false;
1740     auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1741     if (!Malloc)
1742       return false;
1743     auto *InnerCallee = Malloc->getCalledFunction();
1744     if (!InnerCallee)
1745       return false;
1746     LibFunc Func;
1747     if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1748         Func != LibFunc_malloc)
1749       return false;
1750 
1751     auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1752       // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1753       // of malloc block
1754       auto *MallocBB = Malloc->getParent(),
1755         *MemsetBB = Memset->getParent();
1756       if (MallocBB == MemsetBB)
1757         return true;
1758       auto *Ptr = Memset->getArgOperand(0);
1759       auto *TI = MallocBB->getTerminator();
1760       ICmpInst::Predicate Pred;
1761       BasicBlock *TrueBB, *FalseBB;
1762       if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1763                           FalseBB)))
1764         return false;
1765       if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1766         return false;
1767       return true;
1768     };
1769 
1770     if (Malloc->getOperand(0) != MemSet->getLength())
1771       return false;
1772     if (!shouldCreateCalloc(Malloc, MemSet) ||
1773         !DT.dominates(Malloc, MemSet) ||
1774         !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1775       return false;
1776     IRBuilder<> IRB(Malloc);
1777     const auto &DL = Malloc->getModule()->getDataLayout();
1778     auto *Calloc =
1779       emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1),
1780                  Malloc->getArgOperand(0), IRB, TLI);
1781     if (!Calloc)
1782       return false;
1783     MemorySSAUpdater Updater(&MSSA);
1784     auto *LastDef =
1785       cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
1786     auto *NewAccess =
1787       Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
1788                                       LastDef);
1789     auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1790     Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1791     Updater.removeMemoryAccess(Malloc);
1792     Malloc->replaceAllUsesWith(Calloc);
1793     Malloc->eraseFromParent();
1794     return true;
1795   }
1796 
1797   /// \returns true if \p Def is a no-op store, either because it
1798   /// directly stores back a loaded value or stores zero to a calloced object.
1799   bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1800     Instruction *DefI = Def->getMemoryInst();
1801     StoreInst *Store = dyn_cast<StoreInst>(DefI);
1802     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1803     Constant *StoredConstant = nullptr;
1804     if (Store)
1805       StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1806     else if (MemSet)
1807       StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1808     else
1809       return false;
1810 
1811     if (!isRemovable(DefI))
1812       return false;
1813 
1814     if (StoredConstant) {
1815       Constant *InitC =
1816           getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1817       // If the clobbering access is LiveOnEntry, no instructions between them
1818       // can modify the memory location.
1819       if (InitC && InitC == StoredConstant)
1820         return MSSA.isLiveOnEntryDef(
1821             MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def));
1822     }
1823 
1824     if (!Store)
1825       return false;
1826 
1827     if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1828       if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1829         // Get the defining access for the load.
1830         auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1831         // Fast path: the defining accesses are the same.
1832         if (LoadAccess == Def->getDefiningAccess())
1833           return true;
1834 
1835         // Look through phi accesses. Recursively scan all phi accesses by
1836         // adding them to a worklist. Bail when we run into a memory def that
1837         // does not match LoadAccess.
1838         SetVector<MemoryAccess *> ToCheck;
1839         MemoryAccess *Current =
1840             MSSA.getWalker()->getClobberingMemoryAccess(Def);
1841         // We don't want to bail when we run into the store memory def. But,
1842         // the phi access may point to it. So, pretend like we've already
1843         // checked it.
1844         ToCheck.insert(Def);
1845         ToCheck.insert(Current);
1846         // Start at current (1) to simulate already having checked Def.
1847         for (unsigned I = 1; I < ToCheck.size(); ++I) {
1848           Current = ToCheck[I];
1849           if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1850             // Check all the operands.
1851             for (auto &Use : PhiAccess->incoming_values())
1852               ToCheck.insert(cast<MemoryAccess>(&Use));
1853             continue;
1854           }
1855 
1856           // If we found a memory def, bail. This happens when we have an
1857           // unrelated write in between an otherwise noop store.
1858           assert(isa<MemoryDef>(Current) &&
1859                  "Only MemoryDefs should reach here.");
1860           // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1861           // We are searching for the definition of the store's destination.
1862           // So, if that is the same definition as the load, then this is a
1863           // noop. Otherwise, fail.
1864           if (LoadAccess != Current)
1865             return false;
1866         }
1867         return true;
1868       }
1869     }
1870 
1871     return false;
1872   }
1873 
1874   bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
1875     bool Changed = false;
1876     for (auto OI : IOL) {
1877       Instruction *DeadI = OI.first;
1878       MemoryLocation Loc = *getLocForWrite(DeadI);
1879       assert(isRemovable(DeadI) && "Expect only removable instruction");
1880 
1881       const Value *Ptr = Loc.Ptr->stripPointerCasts();
1882       int64_t DeadStart = 0;
1883       uint64_t DeadSize = Loc.Size.getValue();
1884       GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
1885       OverlapIntervalsTy &IntervalMap = OI.second;
1886       Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
1887       if (IntervalMap.empty())
1888         continue;
1889       Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
1890     }
1891     return Changed;
1892   }
1893 
1894   /// Eliminates writes to locations where the value that is being written
1895   /// is already stored at the same location.
1896   bool eliminateRedundantStoresOfExistingValues() {
1897     bool MadeChange = false;
1898     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
1899                          "already existing value\n");
1900     for (auto *Def : MemDefs) {
1901       if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
1902         continue;
1903 
1904       Instruction *DefInst = Def->getMemoryInst();
1905       auto MaybeDefLoc = getLocForWrite(DefInst);
1906       if (!MaybeDefLoc || !isRemovable(DefInst))
1907         continue;
1908 
1909       MemoryDef *UpperDef;
1910       // To conserve compile-time, we avoid walking to the next clobbering def.
1911       // Instead, we just try to get the optimized access, if it exists. DSE
1912       // will try to optimize defs during the earlier traversal.
1913       if (Def->isOptimized())
1914         UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
1915       else
1916         UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
1917       if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
1918         continue;
1919 
1920       Instruction *UpperInst = UpperDef->getMemoryInst();
1921       auto IsRedundantStore = [&]() {
1922         if (DefInst->isIdenticalTo(UpperInst))
1923           return true;
1924         if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
1925           if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
1926             // MemSetInst must have a write location.
1927             MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
1928             int64_t InstWriteOffset = 0;
1929             int64_t DepWriteOffset = 0;
1930             auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
1931                                   InstWriteOffset, DepWriteOffset);
1932             Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
1933             return StoredByte && StoredByte == MemSetI->getOperand(1) &&
1934                    OR == OW_Complete;
1935           }
1936         }
1937         return false;
1938       };
1939 
1940       if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
1941         continue;
1942       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
1943                         << '\n');
1944       deleteDeadInstruction(DefInst);
1945       NumRedundantStores++;
1946       MadeChange = true;
1947     }
1948     return MadeChange;
1949   }
1950 };
1951 
1952 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
1953                                 DominatorTree &DT, PostDominatorTree &PDT,
1954                                 AssumptionCache &AC,
1955                                 const TargetLibraryInfo &TLI,
1956                                 const LoopInfo &LI) {
1957   bool MadeChange = false;
1958 
1959   MSSA.ensureOptimizedUses();
1960   DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI);
1961   // For each store:
1962   for (unsigned I = 0; I < State.MemDefs.size(); I++) {
1963     MemoryDef *KillingDef = State.MemDefs[I];
1964     if (State.SkipStores.count(KillingDef))
1965       continue;
1966     Instruction *KillingI = KillingDef->getMemoryInst();
1967 
1968     Optional<MemoryLocation> MaybeKillingLoc;
1969     if (State.isMemTerminatorInst(KillingI))
1970       MaybeKillingLoc = State.getLocForTerminator(KillingI).map(
1971           [](const std::pair<MemoryLocation, bool> &P) { return P.first; });
1972     else
1973       MaybeKillingLoc = State.getLocForWrite(KillingI);
1974 
1975     if (!MaybeKillingLoc) {
1976       LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
1977                         << *KillingI << "\n");
1978       continue;
1979     }
1980     MemoryLocation KillingLoc = *MaybeKillingLoc;
1981     assert(KillingLoc.Ptr && "KillingLoc should not be null");
1982     const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
1983     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
1984                       << *KillingDef << " (" << *KillingI << ")\n");
1985 
1986     unsigned ScanLimit = MemorySSAScanLimit;
1987     unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
1988     unsigned PartialLimit = MemorySSAPartialStoreLimit;
1989     // Worklist of MemoryAccesses that may be killed by KillingDef.
1990     SetVector<MemoryAccess *> ToCheck;
1991     ToCheck.insert(KillingDef->getDefiningAccess());
1992 
1993     bool Shortend = false;
1994     bool IsMemTerm = State.isMemTerminatorInst(KillingI);
1995     // Check if MemoryAccesses in the worklist are killed by KillingDef.
1996     for (unsigned I = 0; I < ToCheck.size(); I++) {
1997       MemoryAccess *Current = ToCheck[I];
1998       if (State.SkipStores.count(Current))
1999         continue;
2000 
2001       Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2002           KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2003           WalkerStepLimit, IsMemTerm, PartialLimit);
2004 
2005       if (!MaybeDeadAccess) {
2006         LLVM_DEBUG(dbgs() << "  finished walk\n");
2007         continue;
2008       }
2009 
2010       MemoryAccess *DeadAccess = *MaybeDeadAccess;
2011       LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2012       if (isa<MemoryPhi>(DeadAccess)) {
2013         LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
2014         for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2015           MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2016           BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2017           BasicBlock *PhiBlock = DeadAccess->getBlock();
2018 
2019           // We only consider incoming MemoryAccesses that come before the
2020           // MemoryPhi. Otherwise we could discover candidates that do not
2021           // strictly dominate our starting def.
2022           if (State.PostOrderNumbers[IncomingBlock] >
2023               State.PostOrderNumbers[PhiBlock])
2024             ToCheck.insert(IncomingAccess);
2025         }
2026         continue;
2027       }
2028       auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2029       Instruction *DeadI = DeadDefAccess->getMemoryInst();
2030       LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2031       ToCheck.insert(DeadDefAccess->getDefiningAccess());
2032       NumGetDomMemoryDefPassed++;
2033 
2034       if (!DebugCounter::shouldExecute(MemorySSACounter))
2035         continue;
2036 
2037       MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2038 
2039       if (IsMemTerm) {
2040         const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2041         if (KillingUndObj != DeadUndObj)
2042           continue;
2043         LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2044                           << "\n  KILLER: " << *KillingI << '\n');
2045         State.deleteDeadInstruction(DeadI);
2046         ++NumFastStores;
2047         MadeChange = true;
2048       } else {
2049         // Check if DeadI overwrites KillingI.
2050         int64_t KillingOffset = 0;
2051         int64_t DeadOffset = 0;
2052         OverwriteResult OR = State.isOverwrite(
2053             KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2054         if (OR == OW_MaybePartial) {
2055           auto Iter = State.IOLs.insert(
2056               std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2057                   DeadI->getParent(), InstOverlapIntervalsTy()));
2058           auto &IOL = Iter.first->second;
2059           OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2060                                   DeadOffset, DeadI, IOL);
2061         }
2062 
2063         if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2064           auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2065           auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2066           // We are re-using tryToMergePartialOverlappingStores, which requires
2067           // DeadSI to dominate DeadSI.
2068           // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2069           if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2070             if (Constant *Merged = tryToMergePartialOverlappingStores(
2071                     KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2072                     State.BatchAA, &DT)) {
2073 
2074               // Update stored value of earlier store to merged constant.
2075               DeadSI->setOperand(0, Merged);
2076               ++NumModifiedStores;
2077               MadeChange = true;
2078 
2079               Shortend = true;
2080               // Remove killing store and remove any outstanding overlap
2081               // intervals for the updated store.
2082               State.deleteDeadInstruction(KillingSI);
2083               auto I = State.IOLs.find(DeadSI->getParent());
2084               if (I != State.IOLs.end())
2085                 I->second.erase(DeadSI);
2086               break;
2087             }
2088           }
2089         }
2090 
2091         if (OR == OW_Complete) {
2092           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2093                             << "\n  KILLER: " << *KillingI << '\n');
2094           State.deleteDeadInstruction(DeadI);
2095           ++NumFastStores;
2096           MadeChange = true;
2097         }
2098       }
2099     }
2100 
2101     // Check if the store is a no-op.
2102     if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2103       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2104                         << '\n');
2105       State.deleteDeadInstruction(KillingI);
2106       NumRedundantStores++;
2107       MadeChange = true;
2108       continue;
2109     }
2110 
2111     // Can we form a calloc from a memset/malloc pair?
2112     if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2113       LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2114                         << "  DEAD: " << *KillingI << '\n');
2115       State.deleteDeadInstruction(KillingI);
2116       MadeChange = true;
2117       continue;
2118     }
2119   }
2120 
2121   if (EnablePartialOverwriteTracking)
2122     for (auto &KV : State.IOLs)
2123       MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2124 
2125   MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2126   MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2127   return MadeChange;
2128 }
2129 } // end anonymous namespace
2130 
2131 //===----------------------------------------------------------------------===//
2132 // DSE Pass
2133 //===----------------------------------------------------------------------===//
2134 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2135   AliasAnalysis &AA = AM.getResult<AAManager>(F);
2136   const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2137   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2138   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2139   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2140   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
2141   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2142 
2143   bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2144 
2145 #ifdef LLVM_ENABLE_STATS
2146   if (AreStatisticsEnabled())
2147     for (auto &I : instructions(F))
2148       NumRemainingStores += isa<StoreInst>(&I);
2149 #endif
2150 
2151   if (!Changed)
2152     return PreservedAnalyses::all();
2153 
2154   PreservedAnalyses PA;
2155   PA.preserveSet<CFGAnalyses>();
2156   PA.preserve<MemorySSAAnalysis>();
2157   PA.preserve<LoopAnalysis>();
2158   return PA;
2159 }
2160 
2161 namespace {
2162 
2163 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
2164 class DSELegacyPass : public FunctionPass {
2165 public:
2166   static char ID; // Pass identification, replacement for typeid
2167 
2168   DSELegacyPass() : FunctionPass(ID) {
2169     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
2170   }
2171 
2172   bool runOnFunction(Function &F) override {
2173     if (skipFunction(F))
2174       return false;
2175 
2176     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2177     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2178     const TargetLibraryInfo &TLI =
2179         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2180     MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2181     PostDominatorTree &PDT =
2182         getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
2183     AssumptionCache &AC =
2184         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2185     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2186 
2187     bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2188 
2189 #ifdef LLVM_ENABLE_STATS
2190     if (AreStatisticsEnabled())
2191       for (auto &I : instructions(F))
2192         NumRemainingStores += isa<StoreInst>(&I);
2193 #endif
2194 
2195     return Changed;
2196   }
2197 
2198   void getAnalysisUsage(AnalysisUsage &AU) const override {
2199     AU.setPreservesCFG();
2200     AU.addRequired<AAResultsWrapperPass>();
2201     AU.addRequired<TargetLibraryInfoWrapperPass>();
2202     AU.addPreserved<GlobalsAAWrapperPass>();
2203     AU.addRequired<DominatorTreeWrapperPass>();
2204     AU.addPreserved<DominatorTreeWrapperPass>();
2205     AU.addRequired<PostDominatorTreeWrapperPass>();
2206     AU.addRequired<MemorySSAWrapperPass>();
2207     AU.addPreserved<PostDominatorTreeWrapperPass>();
2208     AU.addPreserved<MemorySSAWrapperPass>();
2209     AU.addRequired<LoopInfoWrapperPass>();
2210     AU.addPreserved<LoopInfoWrapperPass>();
2211     AU.addRequired<AssumptionCacheTracker>();
2212   }
2213 };
2214 
2215 } // end anonymous namespace
2216 
2217 char DSELegacyPass::ID = 0;
2218 
2219 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
2220                       false)
2221 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2222 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2223 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2224 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2225 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2226 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2227 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2228 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2229 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2230 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
2231                     false)
2232 
2233 FunctionPass *llvm::createDeadStoreEliminationPass() {
2234   return new DSELegacyPass();
2235 }
2236