xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 //    upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 //    checking all uses starting at MaybeDeadAccess and walking until we see
20 //    StartDef.
21 // 3. For each found CurrentDef, check that:
22 //   1. There are no barrier instructions between CurrentDef and StartDef (like
23 //       throws or stores with ordering constraints).
24 //   2. StartDef is executed whenever CurrentDef is executed.
25 //   3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/CaptureTracking.h"
43 #include "llvm/Analysis/CodeMetrics.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/LoopInfo.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/MemorySSA.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/MustExecute.h"
51 #include "llvm/Analysis/PostDominators.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Argument.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Constant.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/IRBuilder.h"
63 #include "llvm/IR/InstIterator.h"
64 #include "llvm/IR/InstrTypes.h"
65 #include "llvm/IR/Instruction.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/DebugCounter.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BuildLibCalls.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstdint>
87 #include <iterator>
88 #include <map>
89 #include <optional>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace PatternMatch;
94 
95 #define DEBUG_TYPE "dse"
96 
97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
99 STATISTIC(NumFastStores, "Number of stores deleted");
100 STATISTIC(NumFastOther, "Number of other instrs removed");
101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
102 STATISTIC(NumModifiedStores, "Number of stores modified");
103 STATISTIC(NumCFGChecks, "Number of stores modified");
104 STATISTIC(NumCFGTries, "Number of stores modified");
105 STATISTIC(NumCFGSuccess, "Number of stores modified");
106 STATISTIC(NumGetDomMemoryDefPassed,
107           "Number of times a valid candidate is returned from getDomMemoryDef");
108 STATISTIC(NumDomMemDefChecks,
109           "Number iterations check for reads in getDomMemoryDef");
110 
111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
112               "Controls which MemoryDefs are eliminated.");
113 
114 static cl::opt<bool>
115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
116   cl::init(true), cl::Hidden,
117   cl::desc("Enable partial-overwrite tracking in DSE"));
118 
119 static cl::opt<bool>
120 EnablePartialStoreMerging("enable-dse-partial-store-merging",
121   cl::init(true), cl::Hidden,
122   cl::desc("Enable partial store merging in DSE"));
123 
124 static cl::opt<unsigned>
125     MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
126                        cl::desc("The number of memory instructions to scan for "
127                                 "dead store elimination (default = 150)"));
128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
129     "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
130     cl::desc("The maximum number of steps while walking upwards to find "
131              "MemoryDefs that may be killed (default = 90)"));
132 
133 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
134     "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
135     cl::desc("The maximum number candidates that only partially overwrite the "
136              "killing MemoryDef to consider"
137              " (default = 5)"));
138 
139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
140     "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
141     cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
142              "other stores per basic block (default = 5000)"));
143 
144 static cl::opt<unsigned> MemorySSASameBBStepCost(
145     "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
146     cl::desc(
147         "The cost of a step in the same basic block as the killing MemoryDef"
148         "(default = 1)"));
149 
150 static cl::opt<unsigned>
151     MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
152                              cl::Hidden,
153                              cl::desc("The cost of a step in a different basic "
154                                       "block than the killing MemoryDef"
155                                       "(default = 5)"));
156 
157 static cl::opt<unsigned> MemorySSAPathCheckLimit(
158     "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
159     cl::desc("The maximum number of blocks to check when trying to prove that "
160              "all paths to an exit go through a killing block (default = 50)"));
161 
162 // This flags allows or disallows DSE to optimize MemorySSA during its
163 // traversal. Note that DSE optimizing MemorySSA may impact other passes
164 // downstream of the DSE invocation and can lead to issues not being
165 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
166 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
167 // impact follow-up passes.
168 static cl::opt<bool>
169     OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
170                       cl::desc("Allow DSE to optimize memory accesses."));
171 
172 //===----------------------------------------------------------------------===//
173 // Helper functions
174 //===----------------------------------------------------------------------===//
175 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
177 
178 /// Returns true if the end of this instruction can be safely shortened in
179 /// length.
180 static bool isShortenableAtTheEnd(Instruction *I) {
181   // Don't shorten stores for now
182   if (isa<StoreInst>(I))
183     return false;
184 
185   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
186     switch (II->getIntrinsicID()) {
187       default: return false;
188       case Intrinsic::memset:
189       case Intrinsic::memcpy:
190       case Intrinsic::memcpy_element_unordered_atomic:
191       case Intrinsic::memset_element_unordered_atomic:
192         // Do shorten memory intrinsics.
193         // FIXME: Add memmove if it's also safe to transform.
194         return true;
195     }
196   }
197 
198   // Don't shorten libcalls calls for now.
199 
200   return false;
201 }
202 
203 /// Returns true if the beginning of this instruction can be safely shortened
204 /// in length.
205 static bool isShortenableAtTheBeginning(Instruction *I) {
206   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
207   // easily done by offsetting the source address.
208   return isa<AnyMemSetInst>(I);
209 }
210 
211 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
212                                const TargetLibraryInfo &TLI,
213                                const Function *F) {
214   uint64_t Size;
215   ObjectSizeOpts Opts;
216   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
217 
218   if (getObjectSize(V, Size, DL, &TLI, Opts))
219     return Size;
220   return MemoryLocation::UnknownSize;
221 }
222 
223 namespace {
224 
225 enum OverwriteResult {
226   OW_Begin,
227   OW_Complete,
228   OW_End,
229   OW_PartialEarlierWithFullLater,
230   OW_MaybePartial,
231   OW_None,
232   OW_Unknown
233 };
234 
235 } // end anonymous namespace
236 
237 /// Check if two instruction are masked stores that completely
238 /// overwrite one another. More specifically, \p KillingI has to
239 /// overwrite \p DeadI.
240 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
241                                               const Instruction *DeadI,
242                                               BatchAAResults &AA) {
243   const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
244   const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
245   if (KillingII == nullptr || DeadII == nullptr)
246     return OW_Unknown;
247   if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
248     return OW_Unknown;
249   if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
250     // Type size.
251     VectorType *KillingTy =
252         cast<VectorType>(KillingII->getArgOperand(0)->getType());
253     VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType());
254     if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
255       return OW_Unknown;
256     // Element count.
257     if (KillingTy->getElementCount() != DeadTy->getElementCount())
258       return OW_Unknown;
259     // Pointers.
260     Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
261     Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
262     if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
263       return OW_Unknown;
264     // Masks.
265     // TODO: check that KillingII's mask is a superset of the DeadII's mask.
266     if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
267       return OW_Unknown;
268     return OW_Complete;
269   }
270   return OW_Unknown;
271 }
272 
273 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
274 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
275 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
276 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
277 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
278 /// overwritten by a killing (smaller) store which doesn't write outside the big
279 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
280 /// NOTE: This function must only be called if both \p KillingLoc and \p
281 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
282 /// \p DeadOff.
283 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
284                                           const MemoryLocation &DeadLoc,
285                                           int64_t KillingOff, int64_t DeadOff,
286                                           Instruction *DeadI,
287                                           InstOverlapIntervalsTy &IOL) {
288   const uint64_t KillingSize = KillingLoc.Size.getValue();
289   const uint64_t DeadSize = DeadLoc.Size.getValue();
290   // We may now overlap, although the overlap is not complete. There might also
291   // be other incomplete overlaps, and together, they might cover the complete
292   // dead store.
293   // Note: The correctness of this logic depends on the fact that this function
294   // is not even called providing DepWrite when there are any intervening reads.
295   if (EnablePartialOverwriteTracking &&
296       KillingOff < int64_t(DeadOff + DeadSize) &&
297       int64_t(KillingOff + KillingSize) >= DeadOff) {
298 
299     // Insert our part of the overlap into the map.
300     auto &IM = IOL[DeadI];
301     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
302                       << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
303                       << KillingOff << ", " << int64_t(KillingOff + KillingSize)
304                       << ")\n");
305 
306     // Make sure that we only insert non-overlapping intervals and combine
307     // adjacent intervals. The intervals are stored in the map with the ending
308     // offset as the key (in the half-open sense) and the starting offset as
309     // the value.
310     int64_t KillingIntStart = KillingOff;
311     int64_t KillingIntEnd = KillingOff + KillingSize;
312 
313     // Find any intervals ending at, or after, KillingIntStart which start
314     // before KillingIntEnd.
315     auto ILI = IM.lower_bound(KillingIntStart);
316     if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
317       // This existing interval is overlapped with the current store somewhere
318       // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
319       // intervals and adjusting our start and end.
320       KillingIntStart = std::min(KillingIntStart, ILI->second);
321       KillingIntEnd = std::max(KillingIntEnd, ILI->first);
322       ILI = IM.erase(ILI);
323 
324       // Continue erasing and adjusting our end in case other previous
325       // intervals are also overlapped with the current store.
326       //
327       // |--- dead 1 ---|  |--- dead 2 ---|
328       //     |------- killing---------|
329       //
330       while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
331         assert(ILI->second > KillingIntStart && "Unexpected interval");
332         KillingIntEnd = std::max(KillingIntEnd, ILI->first);
333         ILI = IM.erase(ILI);
334       }
335     }
336 
337     IM[KillingIntEnd] = KillingIntStart;
338 
339     ILI = IM.begin();
340     if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
341       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
342                         << DeadOff << ", " << int64_t(DeadOff + DeadSize)
343                         << ") Composite KillingLoc [" << ILI->second << ", "
344                         << ILI->first << ")\n");
345       ++NumCompletePartials;
346       return OW_Complete;
347     }
348   }
349 
350   // Check for a dead store which writes to all the memory locations that
351   // the killing store writes to.
352   if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
353       int64_t(DeadOff + DeadSize) > KillingOff &&
354       uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
355     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
356                       << ", " << int64_t(DeadOff + DeadSize)
357                       << ") by a killing store [" << KillingOff << ", "
358                       << int64_t(KillingOff + KillingSize) << ")\n");
359     // TODO: Maybe come up with a better name?
360     return OW_PartialEarlierWithFullLater;
361   }
362 
363   // Another interesting case is if the killing store overwrites the end of the
364   // dead store.
365   //
366   //      |--dead--|
367   //                |--   killing   --|
368   //
369   // In this case we may want to trim the size of dead store to avoid
370   // generating stores to addresses which will definitely be overwritten killing
371   // store.
372   if (!EnablePartialOverwriteTracking &&
373       (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
374        int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
375     return OW_End;
376 
377   // Finally, we also need to check if the killing store overwrites the
378   // beginning of the dead store.
379   //
380   //                |--dead--|
381   //      |--  killing  --|
382   //
383   // In this case we may want to move the destination address and trim the size
384   // of dead store to avoid generating stores to addresses which will definitely
385   // be overwritten killing store.
386   if (!EnablePartialOverwriteTracking &&
387       (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
388     assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
389            "Expect to be handled as OW_Complete");
390     return OW_Begin;
391   }
392   // Otherwise, they don't completely overlap.
393   return OW_Unknown;
394 }
395 
396 /// Returns true if the memory which is accessed by the second instruction is not
397 /// modified between the first and the second instruction.
398 /// Precondition: Second instruction must be dominated by the first
399 /// instruction.
400 static bool
401 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
402                            BatchAAResults &AA, const DataLayout &DL,
403                            DominatorTree *DT) {
404   // Do a backwards scan through the CFG from SecondI to FirstI. Look for
405   // instructions which can modify the memory location accessed by SecondI.
406   //
407   // While doing the walk keep track of the address to check. It might be
408   // different in different basic blocks due to PHI translation.
409   using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
410   SmallVector<BlockAddressPair, 16> WorkList;
411   // Keep track of the address we visited each block with. Bail out if we
412   // visit a block with different addresses.
413   DenseMap<BasicBlock *, Value *> Visited;
414 
415   BasicBlock::iterator FirstBBI(FirstI);
416   ++FirstBBI;
417   BasicBlock::iterator SecondBBI(SecondI);
418   BasicBlock *FirstBB = FirstI->getParent();
419   BasicBlock *SecondBB = SecondI->getParent();
420   MemoryLocation MemLoc;
421   if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
422     MemLoc = MemoryLocation::getForDest(MemSet);
423   else
424     MemLoc = MemoryLocation::get(SecondI);
425 
426   auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
427 
428   // Start checking the SecondBB.
429   WorkList.push_back(
430       std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
431   bool isFirstBlock = true;
432 
433   // Check all blocks going backward until we reach the FirstBB.
434   while (!WorkList.empty()) {
435     BlockAddressPair Current = WorkList.pop_back_val();
436     BasicBlock *B = Current.first;
437     PHITransAddr &Addr = Current.second;
438     Value *Ptr = Addr.getAddr();
439 
440     // Ignore instructions before FirstI if this is the FirstBB.
441     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
442 
443     BasicBlock::iterator EI;
444     if (isFirstBlock) {
445       // Ignore instructions after SecondI if this is the first visit of SecondBB.
446       assert(B == SecondBB && "first block is not the store block");
447       EI = SecondBBI;
448       isFirstBlock = false;
449     } else {
450       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
451       // In this case we also have to look at instructions after SecondI.
452       EI = B->end();
453     }
454     for (; BI != EI; ++BI) {
455       Instruction *I = &*BI;
456       if (I->mayWriteToMemory() && I != SecondI)
457         if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
458           return false;
459     }
460     if (B != FirstBB) {
461       assert(B != &FirstBB->getParent()->getEntryBlock() &&
462           "Should not hit the entry block because SI must be dominated by LI");
463       for (BasicBlock *Pred : predecessors(B)) {
464         PHITransAddr PredAddr = Addr;
465         if (PredAddr.NeedsPHITranslationFromBlock(B)) {
466           if (!PredAddr.IsPotentiallyPHITranslatable())
467             return false;
468           if (PredAddr.PHITranslateValue(B, Pred, DT, false))
469             return false;
470         }
471         Value *TranslatedPtr = PredAddr.getAddr();
472         auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
473         if (!Inserted.second) {
474           // We already visited this block before. If it was with a different
475           // address - bail out!
476           if (TranslatedPtr != Inserted.first->second)
477             return false;
478           // ... otherwise just skip it.
479           continue;
480         }
481         WorkList.push_back(std::make_pair(Pred, PredAddr));
482       }
483     }
484   }
485   return true;
486 }
487 
488 static void shortenAssignment(Instruction *Inst, uint64_t OldOffsetInBits,
489                               uint64_t OldSizeInBits, uint64_t NewSizeInBits,
490                               bool IsOverwriteEnd) {
491   DIExpression::FragmentInfo DeadFragment;
492   DeadFragment.SizeInBits = OldSizeInBits - NewSizeInBits;
493   DeadFragment.OffsetInBits =
494       OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
495 
496   auto CreateDeadFragExpr = [Inst, DeadFragment]() {
497     // FIXME: This should be using the DIExpression in the Alloca's dbg.assign
498     // for the variable, since that could also contain a fragment?
499     return *DIExpression::createFragmentExpression(
500         DIExpression::get(Inst->getContext(), std::nullopt),
501         DeadFragment.OffsetInBits, DeadFragment.SizeInBits);
502   };
503 
504   // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
505   // link to any instructions. Created in the loop below (once).
506   DIAssignID *LinkToNothing = nullptr;
507 
508   // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
509   // overlapping dbg.assign intrinsic.
510   for (auto *DAI : at::getAssignmentMarkers(Inst)) {
511     if (auto FragInfo = DAI->getExpression()->getFragmentInfo()) {
512       if (!DIExpression::fragmentsOverlap(*FragInfo, DeadFragment))
513         continue;
514     }
515 
516     // Fragments overlap: insert a new dbg.assign for this dead part.
517     auto *NewAssign = cast<DbgAssignIntrinsic>(DAI->clone());
518     NewAssign->insertAfter(DAI);
519     if (!LinkToNothing)
520       LinkToNothing = DIAssignID::getDistinct(Inst->getContext());
521     NewAssign->setAssignId(LinkToNothing);
522     NewAssign->setExpression(CreateDeadFragExpr());
523     NewAssign->setKillAddress();
524   }
525 }
526 
527 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
528                          uint64_t &DeadSize, int64_t KillingStart,
529                          uint64_t KillingSize, bool IsOverwriteEnd) {
530   auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
531   Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
532 
533   // We assume that memet/memcpy operates in chunks of the "largest" native
534   // type size and aligned on the same value. That means optimal start and size
535   // of memset/memcpy should be modulo of preferred alignment of that type. That
536   // is it there is no any sense in trying to reduce store size any further
537   // since any "extra" stores comes for free anyway.
538   // On the other hand, maximum alignment we can achieve is limited by alignment
539   // of initial store.
540 
541   // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
542   // "largest" native type.
543   // Note: What is the proper way to get that value?
544   // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
545   // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
546 
547   int64_t ToRemoveStart = 0;
548   uint64_t ToRemoveSize = 0;
549   // Compute start and size of the region to remove. Make sure 'PrefAlign' is
550   // maintained on the remaining store.
551   if (IsOverwriteEnd) {
552     // Calculate required adjustment for 'KillingStart' in order to keep
553     // remaining store size aligned on 'PerfAlign'.
554     uint64_t Off =
555         offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
556     ToRemoveStart = KillingStart + Off;
557     if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
558       return false;
559     ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
560   } else {
561     ToRemoveStart = DeadStart;
562     assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
563            "Not overlapping accesses?");
564     ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
565     // Calculate required adjustment for 'ToRemoveSize'in order to keep
566     // start of the remaining store aligned on 'PerfAlign'.
567     uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
568     if (Off != 0) {
569       if (ToRemoveSize <= (PrefAlign.value() - Off))
570         return false;
571       ToRemoveSize -= PrefAlign.value() - Off;
572     }
573     assert(isAligned(PrefAlign, ToRemoveSize) &&
574            "Should preserve selected alignment");
575   }
576 
577   assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
578   assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
579 
580   uint64_t NewSize = DeadSize - ToRemoveSize;
581   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
582     // When shortening an atomic memory intrinsic, the newly shortened
583     // length must remain an integer multiple of the element size.
584     const uint32_t ElementSize = AMI->getElementSizeInBytes();
585     if (0 != NewSize % ElementSize)
586       return false;
587   }
588 
589   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
590                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
591                     << "\n  KILLER [" << ToRemoveStart << ", "
592                     << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
593 
594   Value *DeadWriteLength = DeadIntrinsic->getLength();
595   Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
596   DeadIntrinsic->setLength(TrimmedLength);
597   DeadIntrinsic->setDestAlignment(PrefAlign);
598 
599   if (!IsOverwriteEnd) {
600     Value *OrigDest = DeadIntrinsic->getRawDest();
601     Type *Int8PtrTy =
602         Type::getInt8PtrTy(DeadIntrinsic->getContext(),
603                            OrigDest->getType()->getPointerAddressSpace());
604     Value *Dest = OrigDest;
605     if (OrigDest->getType() != Int8PtrTy)
606       Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
607     Value *Indices[1] = {
608         ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
609     Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
610         Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
611     NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
612     if (NewDestGEP->getType() != OrigDest->getType())
613       NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
614                                                "", DeadI);
615     DeadIntrinsic->setDest(NewDestGEP);
616   }
617 
618   // Update attached dbg.assign intrinsics. Assume 8-bit byte.
619   shortenAssignment(DeadI, DeadStart * 8, DeadSize * 8, NewSize * 8,
620                     IsOverwriteEnd);
621 
622   // Finally update start and size of dead access.
623   if (!IsOverwriteEnd)
624     DeadStart += ToRemoveSize;
625   DeadSize = NewSize;
626 
627   return true;
628 }
629 
630 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
631                             int64_t &DeadStart, uint64_t &DeadSize) {
632   if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
633     return false;
634 
635   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
636   int64_t KillingStart = OII->second;
637   uint64_t KillingSize = OII->first - KillingStart;
638 
639   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
640 
641   if (KillingStart > DeadStart &&
642       // Note: "KillingStart - KillingStart" is known to be positive due to
643       // preceding check.
644       (uint64_t)(KillingStart - DeadStart) < DeadSize &&
645       // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
646       // be non negative due to preceding checks.
647       KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
648     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
649                      true)) {
650       IntervalMap.erase(OII);
651       return true;
652     }
653   }
654   return false;
655 }
656 
657 static bool tryToShortenBegin(Instruction *DeadI,
658                               OverlapIntervalsTy &IntervalMap,
659                               int64_t &DeadStart, uint64_t &DeadSize) {
660   if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
661     return false;
662 
663   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
664   int64_t KillingStart = OII->second;
665   uint64_t KillingSize = OII->first - KillingStart;
666 
667   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
668 
669   if (KillingStart <= DeadStart &&
670       // Note: "DeadStart - KillingStart" is known to be non negative due to
671       // preceding check.
672       KillingSize > (uint64_t)(DeadStart - KillingStart)) {
673     // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
674     // be positive due to preceding checks.
675     assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
676            "Should have been handled as OW_Complete");
677     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
678                      false)) {
679       IntervalMap.erase(OII);
680       return true;
681     }
682   }
683   return false;
684 }
685 
686 static Constant *
687 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
688                                    int64_t KillingOffset, int64_t DeadOffset,
689                                    const DataLayout &DL, BatchAAResults &AA,
690                                    DominatorTree *DT) {
691 
692   if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
693       DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
694       KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
695       DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
696       memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
697     // If the store we find is:
698     //   a) partially overwritten by the store to 'Loc'
699     //   b) the killing store is fully contained in the dead one and
700     //   c) they both have a constant value
701     //   d) none of the two stores need padding
702     // Merge the two stores, replacing the dead store's value with a
703     // merge of both values.
704     // TODO: Deal with other constant types (vectors, etc), and probably
705     // some mem intrinsics (if needed)
706 
707     APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
708     APInt KillingValue =
709         cast<ConstantInt>(KillingI->getValueOperand())->getValue();
710     unsigned KillingBits = KillingValue.getBitWidth();
711     assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
712     KillingValue = KillingValue.zext(DeadValue.getBitWidth());
713 
714     // Offset of the smaller store inside the larger store
715     unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
716     unsigned LShiftAmount =
717         DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
718                          : BitOffsetDiff;
719     APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
720                                    LShiftAmount + KillingBits);
721     // Clear the bits we'll be replacing, then OR with the smaller
722     // store, shifted appropriately.
723     APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
724     LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
725                       << "\n  Killing: " << *KillingI
726                       << "\n  Merged Value: " << Merged << '\n');
727     return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
728   }
729   return nullptr;
730 }
731 
732 namespace {
733 // Returns true if \p I is an intrisnic that does not read or write memory.
734 bool isNoopIntrinsic(Instruction *I) {
735   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736     switch (II->getIntrinsicID()) {
737     case Intrinsic::lifetime_start:
738     case Intrinsic::lifetime_end:
739     case Intrinsic::invariant_end:
740     case Intrinsic::launder_invariant_group:
741     case Intrinsic::assume:
742       return true;
743     case Intrinsic::dbg_addr:
744     case Intrinsic::dbg_declare:
745     case Intrinsic::dbg_label:
746     case Intrinsic::dbg_value:
747       llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
748     default:
749       return false;
750     }
751   }
752   return false;
753 }
754 
755 // Check if we can ignore \p D for DSE.
756 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
757   Instruction *DI = D->getMemoryInst();
758   // Calls that only access inaccessible memory cannot read or write any memory
759   // locations we consider for elimination.
760   if (auto *CB = dyn_cast<CallBase>(DI))
761     if (CB->onlyAccessesInaccessibleMemory())
762       return true;
763 
764   // We can eliminate stores to locations not visible to the caller across
765   // throwing instructions.
766   if (DI->mayThrow() && !DefVisibleToCaller)
767     return true;
768 
769   // We can remove the dead stores, irrespective of the fence and its ordering
770   // (release/acquire/seq_cst). Fences only constraints the ordering of
771   // already visible stores, it does not make a store visible to other
772   // threads. So, skipping over a fence does not change a store from being
773   // dead.
774   if (isa<FenceInst>(DI))
775     return true;
776 
777   // Skip intrinsics that do not really read or modify memory.
778   if (isNoopIntrinsic(DI))
779     return true;
780 
781   return false;
782 }
783 
784 struct DSEState {
785   Function &F;
786   AliasAnalysis &AA;
787   EarliestEscapeInfo EI;
788 
789   /// The single BatchAA instance that is used to cache AA queries. It will
790   /// not be invalidated over the whole run. This is safe, because:
791   /// 1. Only memory writes are removed, so the alias cache for memory
792   ///    locations remains valid.
793   /// 2. No new instructions are added (only instructions removed), so cached
794   ///    information for a deleted value cannot be accessed by a re-used new
795   ///    value pointer.
796   BatchAAResults BatchAA;
797 
798   MemorySSA &MSSA;
799   DominatorTree &DT;
800   PostDominatorTree &PDT;
801   const TargetLibraryInfo &TLI;
802   const DataLayout &DL;
803   const LoopInfo &LI;
804 
805   // Whether the function contains any irreducible control flow, useful for
806   // being accurately able to detect loops.
807   bool ContainsIrreducibleLoops;
808 
809   // All MemoryDefs that potentially could kill other MemDefs.
810   SmallVector<MemoryDef *, 64> MemDefs;
811   // Any that should be skipped as they are already deleted
812   SmallPtrSet<MemoryAccess *, 4> SkipStores;
813   // Keep track whether a given object is captured before return or not.
814   DenseMap<const Value *, bool> CapturedBeforeReturn;
815   // Keep track of all of the objects that are invisible to the caller after
816   // the function returns.
817   DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
818   // Keep track of blocks with throwing instructions not modeled in MemorySSA.
819   SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
820   // Post-order numbers for each basic block. Used to figure out if memory
821   // accesses are executed before another access.
822   DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
823   // Values that are only used with assumes. Used to refine pointer escape
824   // analysis.
825   SmallPtrSet<const Value *, 32> EphValues;
826 
827   /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
828   /// basic block.
829   MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
830   // Check if there are root nodes that are terminated by UnreachableInst.
831   // Those roots pessimize post-dominance queries. If there are such roots,
832   // fall back to CFG scan starting from all non-unreachable roots.
833   bool AnyUnreachableExit;
834 
835   // Whether or not we should iterate on removing dead stores at the end of the
836   // function due to removing a store causing a previously captured pointer to
837   // no longer be captured.
838   bool ShouldIterateEndOfFunctionDSE;
839 
840   // Class contains self-reference, make sure it's not copied/moved.
841   DSEState(const DSEState &) = delete;
842   DSEState &operator=(const DSEState &) = delete;
843 
844   DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
845            PostDominatorTree &PDT, AssumptionCache &AC,
846            const TargetLibraryInfo &TLI, const LoopInfo &LI)
847       : F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA),
848         DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
849     // Collect blocks with throwing instructions not modeled in MemorySSA and
850     // alloc-like objects.
851     unsigned PO = 0;
852     for (BasicBlock *BB : post_order(&F)) {
853       PostOrderNumbers[BB] = PO++;
854       for (Instruction &I : *BB) {
855         MemoryAccess *MA = MSSA.getMemoryAccess(&I);
856         if (I.mayThrow() && !MA)
857           ThrowingBlocks.insert(I.getParent());
858 
859         auto *MD = dyn_cast_or_null<MemoryDef>(MA);
860         if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
861             (getLocForWrite(&I) || isMemTerminatorInst(&I)))
862           MemDefs.push_back(MD);
863       }
864     }
865 
866     // Treat byval or inalloca arguments the same as Allocas, stores to them are
867     // dead at the end of the function.
868     for (Argument &AI : F.args())
869       if (AI.hasPassPointeeByValueCopyAttr())
870         InvisibleToCallerAfterRet.insert({&AI, true});
871 
872     // Collect whether there is any irreducible control flow in the function.
873     ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
874 
875     AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
876       return isa<UnreachableInst>(E->getTerminator());
877     });
878 
879     CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
880   }
881 
882   LocationSize strengthenLocationSize(const Instruction *I,
883                                       LocationSize Size) const {
884     if (auto *CB = dyn_cast<CallBase>(I)) {
885       LibFunc F;
886       if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
887           (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
888         // Use the precise location size specified by the 3rd argument
889         // for determining KillingI overwrites DeadLoc if it is a memset_chk
890         // instruction. memset_chk will write either the amount specified as 3rd
891         // argument or the function will immediately abort and exit the program.
892         // NOTE: AA may determine NoAlias if it can prove that the access size
893         // is larger than the allocation size due to that being UB. To avoid
894         // returning potentially invalid NoAlias results by AA, limit the use of
895         // the precise location size to isOverwrite.
896         if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2)))
897           return LocationSize::precise(Len->getZExtValue());
898       }
899     }
900     return Size;
901   }
902 
903   /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
904   /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
905   /// location (by \p DeadI instruction).
906   /// Return OW_MaybePartial if \p KillingI does not completely overwrite
907   /// \p DeadI, but they both write to the same underlying object. In that
908   /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
909   /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
910   /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
911   OverwriteResult isOverwrite(const Instruction *KillingI,
912                               const Instruction *DeadI,
913                               const MemoryLocation &KillingLoc,
914                               const MemoryLocation &DeadLoc,
915                               int64_t &KillingOff, int64_t &DeadOff) {
916     // AliasAnalysis does not always account for loops. Limit overwrite checks
917     // to dependencies for which we can guarantee they are independent of any
918     // loops they are in.
919     if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
920       return OW_Unknown;
921 
922     LocationSize KillingLocSize =
923         strengthenLocationSize(KillingI, KillingLoc.Size);
924     const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
925     const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
926     const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
927     const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
928 
929     // Check whether the killing store overwrites the whole object, in which
930     // case the size/offset of the dead store does not matter.
931     if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise()) {
932       uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
933       if (KillingUndObjSize != MemoryLocation::UnknownSize &&
934           KillingUndObjSize == KillingLocSize.getValue())
935         return OW_Complete;
936     }
937 
938     // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
939     // get imprecise values here, though (except for unknown sizes).
940     if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
941       // In case no constant size is known, try to an IR values for the number
942       // of bytes written and check if they match.
943       const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
944       const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
945       if (KillingMemI && DeadMemI) {
946         const Value *KillingV = KillingMemI->getLength();
947         const Value *DeadV = DeadMemI->getLength();
948         if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
949           return OW_Complete;
950       }
951 
952       // Masked stores have imprecise locations, but we can reason about them
953       // to some extent.
954       return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
955     }
956 
957     const uint64_t KillingSize = KillingLocSize.getValue();
958     const uint64_t DeadSize = DeadLoc.Size.getValue();
959 
960     // Query the alias information
961     AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
962 
963     // If the start pointers are the same, we just have to compare sizes to see if
964     // the killing store was larger than the dead store.
965     if (AAR == AliasResult::MustAlias) {
966       // Make sure that the KillingSize size is >= the DeadSize size.
967       if (KillingSize >= DeadSize)
968         return OW_Complete;
969     }
970 
971     // If we hit a partial alias we may have a full overwrite
972     if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
973       int32_t Off = AAR.getOffset();
974       if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
975         return OW_Complete;
976     }
977 
978     // If we can't resolve the same pointers to the same object, then we can't
979     // analyze them at all.
980     if (DeadUndObj != KillingUndObj) {
981       // Non aliasing stores to different objects don't overlap. Note that
982       // if the killing store is known to overwrite whole object (out of
983       // bounds access overwrites whole object as well) then it is assumed to
984       // completely overwrite any store to the same object even if they don't
985       // actually alias (see next check).
986       if (AAR == AliasResult::NoAlias)
987         return OW_None;
988       return OW_Unknown;
989     }
990 
991     // Okay, we have stores to two completely different pointers.  Try to
992     // decompose the pointer into a "base + constant_offset" form.  If the base
993     // pointers are equal, then we can reason about the two stores.
994     DeadOff = 0;
995     KillingOff = 0;
996     const Value *DeadBasePtr =
997         GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
998     const Value *KillingBasePtr =
999         GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
1000 
1001     // If the base pointers still differ, we have two completely different
1002     // stores.
1003     if (DeadBasePtr != KillingBasePtr)
1004       return OW_Unknown;
1005 
1006     // The killing access completely overlaps the dead store if and only if
1007     // both start and end of the dead one is "inside" the killing one:
1008     //    |<->|--dead--|<->|
1009     //    |-----killing------|
1010     // Accesses may overlap if and only if start of one of them is "inside"
1011     // another one:
1012     //    |<->|--dead--|<-------->|
1013     //    |-------killing--------|
1014     //           OR
1015     //    |-------dead-------|
1016     //    |<->|---killing---|<----->|
1017     //
1018     // We have to be careful here as *Off is signed while *.Size is unsigned.
1019 
1020     // Check if the dead access starts "not before" the killing one.
1021     if (DeadOff >= KillingOff) {
1022       // If the dead access ends "not after" the killing access then the
1023       // dead one is completely overwritten by the killing one.
1024       if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1025         return OW_Complete;
1026       // If start of the dead access is "before" end of the killing access
1027       // then accesses overlap.
1028       else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1029         return OW_MaybePartial;
1030     }
1031     // If start of the killing access is "before" end of the dead access then
1032     // accesses overlap.
1033     else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1034       return OW_MaybePartial;
1035     }
1036 
1037     // Can reach here only if accesses are known not to overlap.
1038     return OW_None;
1039   }
1040 
1041   bool isInvisibleToCallerAfterRet(const Value *V) {
1042     if (isa<AllocaInst>(V))
1043       return true;
1044     auto I = InvisibleToCallerAfterRet.insert({V, false});
1045     if (I.second) {
1046       if (!isInvisibleToCallerOnUnwind(V)) {
1047         I.first->second = false;
1048       } else if (isNoAliasCall(V)) {
1049         I.first->second = !PointerMayBeCaptured(V, true, false, EphValues);
1050       }
1051     }
1052     return I.first->second;
1053   }
1054 
1055   bool isInvisibleToCallerOnUnwind(const Value *V) {
1056     bool RequiresNoCaptureBeforeUnwind;
1057     if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
1058       return false;
1059     if (!RequiresNoCaptureBeforeUnwind)
1060       return true;
1061 
1062     auto I = CapturedBeforeReturn.insert({V, true});
1063     if (I.second)
1064       // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1065       // with the killing MemoryDef. But we refrain from doing so for now to
1066       // limit compile-time and this does not cause any changes to the number
1067       // of stores removed on a large test set in practice.
1068       I.first->second = PointerMayBeCaptured(V, false, true, EphValues);
1069     return !I.first->second;
1070   }
1071 
1072   std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1073     if (!I->mayWriteToMemory())
1074       return std::nullopt;
1075 
1076     if (auto *CB = dyn_cast<CallBase>(I))
1077       return MemoryLocation::getForDest(CB, TLI);
1078 
1079     return MemoryLocation::getOrNone(I);
1080   }
1081 
1082   /// Assuming this instruction has a dead analyzable write, can we delete
1083   /// this instruction?
1084   bool isRemovable(Instruction *I) {
1085     assert(getLocForWrite(I) && "Must have analyzable write");
1086 
1087     // Don't remove volatile/atomic stores.
1088     if (StoreInst *SI = dyn_cast<StoreInst>(I))
1089       return SI->isUnordered();
1090 
1091     if (auto *CB = dyn_cast<CallBase>(I)) {
1092       // Don't remove volatile memory intrinsics.
1093       if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1094         return !MI->isVolatile();
1095 
1096       // Never remove dead lifetime intrinsics, e.g. because they are followed
1097       // by a free.
1098       if (CB->isLifetimeStartOrEnd())
1099         return false;
1100 
1101       return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1102              !CB->isTerminator();
1103     }
1104 
1105     return false;
1106   }
1107 
1108   /// Returns true if \p UseInst completely overwrites \p DefLoc
1109   /// (stored by \p DefInst).
1110   bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1111                            Instruction *UseInst) {
1112     // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1113     // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1114     // MemoryDef.
1115     if (!UseInst->mayWriteToMemory())
1116       return false;
1117 
1118     if (auto *CB = dyn_cast<CallBase>(UseInst))
1119       if (CB->onlyAccessesInaccessibleMemory())
1120         return false;
1121 
1122     int64_t InstWriteOffset, DepWriteOffset;
1123     if (auto CC = getLocForWrite(UseInst))
1124       return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1125                          DepWriteOffset) == OW_Complete;
1126     return false;
1127   }
1128 
1129   /// Returns true if \p Def is not read before returning from the function.
1130   bool isWriteAtEndOfFunction(MemoryDef *Def) {
1131     LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1132                       << *Def->getMemoryInst()
1133                       << ") is at the end the function \n");
1134 
1135     auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1136     if (!MaybeLoc) {
1137       LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1138       return false;
1139     }
1140 
1141     SmallVector<MemoryAccess *, 4> WorkList;
1142     SmallPtrSet<MemoryAccess *, 8> Visited;
1143     auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1144       if (!Visited.insert(Acc).second)
1145         return;
1146       for (Use &U : Acc->uses())
1147         WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1148     };
1149     PushMemUses(Def);
1150     for (unsigned I = 0; I < WorkList.size(); I++) {
1151       if (WorkList.size() >= MemorySSAScanLimit) {
1152         LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1153         return false;
1154       }
1155 
1156       MemoryAccess *UseAccess = WorkList[I];
1157       if (isa<MemoryPhi>(UseAccess)) {
1158         // AliasAnalysis does not account for loops. Limit elimination to
1159         // candidates for which we can guarantee they always store to the same
1160         // memory location.
1161         if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr))
1162           return false;
1163 
1164         PushMemUses(cast<MemoryPhi>(UseAccess));
1165         continue;
1166       }
1167       // TODO: Checking for aliasing is expensive. Consider reducing the amount
1168       // of times this is called and/or caching it.
1169       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1170       if (isReadClobber(*MaybeLoc, UseInst)) {
1171         LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1172         return false;
1173       }
1174 
1175       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1176         PushMemUses(UseDef);
1177     }
1178     return true;
1179   }
1180 
1181   /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1182   /// pair with the MemoryLocation terminated by \p I and a boolean flag
1183   /// indicating whether \p I is a free-like call.
1184   std::optional<std::pair<MemoryLocation, bool>>
1185   getLocForTerminator(Instruction *I) const {
1186     uint64_t Len;
1187     Value *Ptr;
1188     if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1189                                                       m_Value(Ptr))))
1190       return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1191 
1192     if (auto *CB = dyn_cast<CallBase>(I)) {
1193       if (Value *FreedOp = getFreedOperand(CB, &TLI))
1194         return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1195     }
1196 
1197     return std::nullopt;
1198   }
1199 
1200   /// Returns true if \p I is a memory terminator instruction like
1201   /// llvm.lifetime.end or free.
1202   bool isMemTerminatorInst(Instruction *I) const {
1203     auto *CB = dyn_cast<CallBase>(I);
1204     return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1205                   getFreedOperand(CB, &TLI) != nullptr);
1206   }
1207 
1208   /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1209   /// instruction \p AccessI.
1210   bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1211                        Instruction *MaybeTerm) {
1212     std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1213         getLocForTerminator(MaybeTerm);
1214 
1215     if (!MaybeTermLoc)
1216       return false;
1217 
1218     // If the terminator is a free-like call, all accesses to the underlying
1219     // object can be considered terminated.
1220     if (getUnderlyingObject(Loc.Ptr) !=
1221         getUnderlyingObject(MaybeTermLoc->first.Ptr))
1222       return false;
1223 
1224     auto TermLoc = MaybeTermLoc->first;
1225     if (MaybeTermLoc->second) {
1226       const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1227       return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1228     }
1229     int64_t InstWriteOffset = 0;
1230     int64_t DepWriteOffset = 0;
1231     return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1232                        DepWriteOffset) == OW_Complete;
1233   }
1234 
1235   // Returns true if \p Use may read from \p DefLoc.
1236   bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1237     if (isNoopIntrinsic(UseInst))
1238       return false;
1239 
1240     // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1241     // treated as read clobber.
1242     if (auto SI = dyn_cast<StoreInst>(UseInst))
1243       return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1244 
1245     if (!UseInst->mayReadFromMemory())
1246       return false;
1247 
1248     if (auto *CB = dyn_cast<CallBase>(UseInst))
1249       if (CB->onlyAccessesInaccessibleMemory())
1250         return false;
1251 
1252     return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1253   }
1254 
1255   /// Returns true if a dependency between \p Current and \p KillingDef is
1256   /// guaranteed to be loop invariant for the loops that they are in. Either
1257   /// because they are known to be in the same block, in the same loop level or
1258   /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1259   /// during execution of the containing function.
1260   bool isGuaranteedLoopIndependent(const Instruction *Current,
1261                                    const Instruction *KillingDef,
1262                                    const MemoryLocation &CurrentLoc) {
1263     // If the dependency is within the same block or loop level (being careful
1264     // of irreducible loops), we know that AA will return a valid result for the
1265     // memory dependency. (Both at the function level, outside of any loop,
1266     // would also be valid but we currently disable that to limit compile time).
1267     if (Current->getParent() == KillingDef->getParent())
1268       return true;
1269     const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1270     if (!ContainsIrreducibleLoops && CurrentLI &&
1271         CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1272       return true;
1273     // Otherwise check the memory location is invariant to any loops.
1274     return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1275   }
1276 
1277   /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1278   /// loop. In particular, this guarantees that it only references a single
1279   /// MemoryLocation during execution of the containing function.
1280   bool isGuaranteedLoopInvariant(const Value *Ptr) {
1281     Ptr = Ptr->stripPointerCasts();
1282     if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1283       if (GEP->hasAllConstantIndices())
1284         Ptr = GEP->getPointerOperand()->stripPointerCasts();
1285 
1286     if (auto *I = dyn_cast<Instruction>(Ptr)) {
1287       return I->getParent()->isEntryBlock() ||
1288              (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1289     }
1290     return true;
1291   }
1292 
1293   // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1294   // with no read access between them or on any other path to a function exit
1295   // block if \p KillingLoc is not accessible after the function returns. If
1296   // there is no such MemoryDef, return std::nullopt. The returned value may not
1297   // (completely) overwrite \p KillingLoc. Currently we bail out when we
1298   // encounter an aliasing MemoryUse (read).
1299   std::optional<MemoryAccess *>
1300   getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1301                   const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1302                   unsigned &ScanLimit, unsigned &WalkerStepLimit,
1303                   bool IsMemTerm, unsigned &PartialLimit) {
1304     if (ScanLimit == 0 || WalkerStepLimit == 0) {
1305       LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1306       return std::nullopt;
1307     }
1308 
1309     MemoryAccess *Current = StartAccess;
1310     Instruction *KillingI = KillingDef->getMemoryInst();
1311     LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1312 
1313     // Only optimize defining access of KillingDef when directly starting at its
1314     // defining access. The defining access also must only access KillingLoc. At
1315     // the moment we only support instructions with a single write location, so
1316     // it should be sufficient to disable optimizations for instructions that
1317     // also read from memory.
1318     bool CanOptimize = OptimizeMemorySSA &&
1319                        KillingDef->getDefiningAccess() == StartAccess &&
1320                        !KillingI->mayReadFromMemory();
1321 
1322     // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1323     std::optional<MemoryLocation> CurrentLoc;
1324     for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1325       LLVM_DEBUG({
1326         dbgs() << "   visiting " << *Current;
1327         if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1328           dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1329                  << ")";
1330         dbgs() << "\n";
1331       });
1332 
1333       // Reached TOP.
1334       if (MSSA.isLiveOnEntryDef(Current)) {
1335         LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1336         if (CanOptimize && Current != KillingDef->getDefiningAccess())
1337           // The first clobbering def is... none.
1338           KillingDef->setOptimized(Current);
1339         return std::nullopt;
1340       }
1341 
1342       // Cost of a step. Accesses in the same block are more likely to be valid
1343       // candidates for elimination, hence consider them cheaper.
1344       unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1345                               ? MemorySSASameBBStepCost
1346                               : MemorySSAOtherBBStepCost;
1347       if (WalkerStepLimit <= StepCost) {
1348         LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1349         return std::nullopt;
1350       }
1351       WalkerStepLimit -= StepCost;
1352 
1353       // Return for MemoryPhis. They cannot be eliminated directly and the
1354       // caller is responsible for traversing them.
1355       if (isa<MemoryPhi>(Current)) {
1356         LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1357         return Current;
1358       }
1359 
1360       // Below, check if CurrentDef is a valid candidate to be eliminated by
1361       // KillingDef. If it is not, check the next candidate.
1362       MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1363       Instruction *CurrentI = CurrentDef->getMemoryInst();
1364 
1365       if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1366         CanOptimize = false;
1367         continue;
1368       }
1369 
1370       // Before we try to remove anything, check for any extra throwing
1371       // instructions that block us from DSEing
1372       if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1373         LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1374         return std::nullopt;
1375       }
1376 
1377       // Check for anything that looks like it will be a barrier to further
1378       // removal
1379       if (isDSEBarrier(KillingUndObj, CurrentI)) {
1380         LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1381         return std::nullopt;
1382       }
1383 
1384       // If Current is known to be on path that reads DefLoc or is a read
1385       // clobber, bail out, as the path is not profitable. We skip this check
1386       // for intrinsic calls, because the code knows how to handle memcpy
1387       // intrinsics.
1388       if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1389         return std::nullopt;
1390 
1391       // Quick check if there are direct uses that are read-clobbers.
1392       if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1393             if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1394               return !MSSA.dominates(StartAccess, UseOrDef) &&
1395                      isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1396             return false;
1397           })) {
1398         LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1399         return std::nullopt;
1400       }
1401 
1402       // If Current does not have an analyzable write location or is not
1403       // removable, skip it.
1404       CurrentLoc = getLocForWrite(CurrentI);
1405       if (!CurrentLoc || !isRemovable(CurrentI)) {
1406         CanOptimize = false;
1407         continue;
1408       }
1409 
1410       // AliasAnalysis does not account for loops. Limit elimination to
1411       // candidates for which we can guarantee they always store to the same
1412       // memory location and not located in different loops.
1413       if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1414         LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1415         CanOptimize = false;
1416         continue;
1417       }
1418 
1419       if (IsMemTerm) {
1420         // If the killing def is a memory terminator (e.g. lifetime.end), check
1421         // the next candidate if the current Current does not write the same
1422         // underlying object as the terminator.
1423         if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1424           CanOptimize = false;
1425           continue;
1426         }
1427       } else {
1428         int64_t KillingOffset = 0;
1429         int64_t DeadOffset = 0;
1430         auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1431                               KillingOffset, DeadOffset);
1432         if (CanOptimize) {
1433           // CurrentDef is the earliest write clobber of KillingDef. Use it as
1434           // optimized access. Do not optimize if CurrentDef is already the
1435           // defining access of KillingDef.
1436           if (CurrentDef != KillingDef->getDefiningAccess() &&
1437               (OR == OW_Complete || OR == OW_MaybePartial))
1438             KillingDef->setOptimized(CurrentDef);
1439 
1440           // Once a may-aliasing def is encountered do not set an optimized
1441           // access.
1442           if (OR != OW_None)
1443             CanOptimize = false;
1444         }
1445 
1446         // If Current does not write to the same object as KillingDef, check
1447         // the next candidate.
1448         if (OR == OW_Unknown || OR == OW_None)
1449           continue;
1450         else if (OR == OW_MaybePartial) {
1451           // If KillingDef only partially overwrites Current, check the next
1452           // candidate if the partial step limit is exceeded. This aggressively
1453           // limits the number of candidates for partial store elimination,
1454           // which are less likely to be removable in the end.
1455           if (PartialLimit <= 1) {
1456             WalkerStepLimit -= 1;
1457             LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1458             continue;
1459           }
1460           PartialLimit -= 1;
1461         }
1462       }
1463       break;
1464     };
1465 
1466     // Accesses to objects accessible after the function returns can only be
1467     // eliminated if the access is dead along all paths to the exit. Collect
1468     // the blocks with killing (=completely overwriting MemoryDefs) and check if
1469     // they cover all paths from MaybeDeadAccess to any function exit.
1470     SmallPtrSet<Instruction *, 16> KillingDefs;
1471     KillingDefs.insert(KillingDef->getMemoryInst());
1472     MemoryAccess *MaybeDeadAccess = Current;
1473     MemoryLocation MaybeDeadLoc = *CurrentLoc;
1474     Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1475     LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1476                       << *MaybeDeadI << ")\n");
1477 
1478     SmallSetVector<MemoryAccess *, 32> WorkList;
1479     auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1480       for (Use &U : Acc->uses())
1481         WorkList.insert(cast<MemoryAccess>(U.getUser()));
1482     };
1483     PushMemUses(MaybeDeadAccess);
1484 
1485     // Check if DeadDef may be read.
1486     for (unsigned I = 0; I < WorkList.size(); I++) {
1487       MemoryAccess *UseAccess = WorkList[I];
1488 
1489       LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1490       // Bail out if the number of accesses to check exceeds the scan limit.
1491       if (ScanLimit < (WorkList.size() - I)) {
1492         LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1493         return std::nullopt;
1494       }
1495       --ScanLimit;
1496       NumDomMemDefChecks++;
1497 
1498       if (isa<MemoryPhi>(UseAccess)) {
1499         if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1500               return DT.properlyDominates(KI->getParent(),
1501                                           UseAccess->getBlock());
1502             })) {
1503           LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1504           continue;
1505         }
1506         LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1507         PushMemUses(UseAccess);
1508         continue;
1509       }
1510 
1511       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1512       LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1513 
1514       if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1515             return DT.dominates(KI, UseInst);
1516           })) {
1517         LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1518         continue;
1519       }
1520 
1521       // A memory terminator kills all preceeding MemoryDefs and all succeeding
1522       // MemoryAccesses. We do not have to check it's users.
1523       if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1524         LLVM_DEBUG(
1525             dbgs()
1526             << " ... skipping, memterminator invalidates following accesses\n");
1527         continue;
1528       }
1529 
1530       if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1531         LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1532         PushMemUses(UseAccess);
1533         continue;
1534       }
1535 
1536       if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1537         LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1538         return std::nullopt;
1539       }
1540 
1541       // Uses which may read the original MemoryDef mean we cannot eliminate the
1542       // original MD. Stop walk.
1543       if (isReadClobber(MaybeDeadLoc, UseInst)) {
1544         LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1545         return std::nullopt;
1546       }
1547 
1548       // If this worklist walks back to the original memory access (and the
1549       // pointer is not guarenteed loop invariant) then we cannot assume that a
1550       // store kills itself.
1551       if (MaybeDeadAccess == UseAccess &&
1552           !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1553         LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1554         return std::nullopt;
1555       }
1556       // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1557       // if it reads the memory location.
1558       // TODO: It would probably be better to check for self-reads before
1559       // calling the function.
1560       if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1561         LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1562         continue;
1563       }
1564 
1565       // Check all uses for MemoryDefs, except for defs completely overwriting
1566       // the original location. Otherwise we have to check uses of *all*
1567       // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1568       // miss cases like the following
1569       //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1570       //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1571       //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1572       //                  (The Use points to the *first* Def it may alias)
1573       //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1574       //                  stores [0,1]
1575       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1576         if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1577           BasicBlock *MaybeKillingBlock = UseInst->getParent();
1578           if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1579               PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1580             if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1581               LLVM_DEBUG(dbgs()
1582                          << "    ... found killing def " << *UseInst << "\n");
1583               KillingDefs.insert(UseInst);
1584             }
1585           } else {
1586             LLVM_DEBUG(dbgs()
1587                        << "    ... found preceeding def " << *UseInst << "\n");
1588             return std::nullopt;
1589           }
1590         } else
1591           PushMemUses(UseDef);
1592       }
1593     }
1594 
1595     // For accesses to locations visible after the function returns, make sure
1596     // that the location is dead (=overwritten) along all paths from
1597     // MaybeDeadAccess to the exit.
1598     if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1599       SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1600       for (Instruction *KD : KillingDefs)
1601         KillingBlocks.insert(KD->getParent());
1602       assert(!KillingBlocks.empty() &&
1603              "Expected at least a single killing block");
1604 
1605       // Find the common post-dominator of all killing blocks.
1606       BasicBlock *CommonPred = *KillingBlocks.begin();
1607       for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1608         if (!CommonPred)
1609           break;
1610         CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1611       }
1612 
1613       // If the common post-dominator does not post-dominate MaybeDeadAccess,
1614       // there is a path from MaybeDeadAccess to an exit not going through a
1615       // killing block.
1616       if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1617         if (!AnyUnreachableExit)
1618           return std::nullopt;
1619 
1620         // Fall back to CFG scan starting at all non-unreachable roots if not
1621         // all paths to the exit go through CommonPred.
1622         CommonPred = nullptr;
1623       }
1624 
1625       // If CommonPred itself is in the set of killing blocks, we're done.
1626       if (KillingBlocks.count(CommonPred))
1627         return {MaybeDeadAccess};
1628 
1629       SetVector<BasicBlock *> WorkList;
1630       // If CommonPred is null, there are multiple exits from the function.
1631       // They all have to be added to the worklist.
1632       if (CommonPred)
1633         WorkList.insert(CommonPred);
1634       else
1635         for (BasicBlock *R : PDT.roots()) {
1636           if (!isa<UnreachableInst>(R->getTerminator()))
1637             WorkList.insert(R);
1638         }
1639 
1640       NumCFGTries++;
1641       // Check if all paths starting from an exit node go through one of the
1642       // killing blocks before reaching MaybeDeadAccess.
1643       for (unsigned I = 0; I < WorkList.size(); I++) {
1644         NumCFGChecks++;
1645         BasicBlock *Current = WorkList[I];
1646         if (KillingBlocks.count(Current))
1647           continue;
1648         if (Current == MaybeDeadAccess->getBlock())
1649           return std::nullopt;
1650 
1651         // MaybeDeadAccess is reachable from the entry, so we don't have to
1652         // explore unreachable blocks further.
1653         if (!DT.isReachableFromEntry(Current))
1654           continue;
1655 
1656         for (BasicBlock *Pred : predecessors(Current))
1657           WorkList.insert(Pred);
1658 
1659         if (WorkList.size() >= MemorySSAPathCheckLimit)
1660           return std::nullopt;
1661       }
1662       NumCFGSuccess++;
1663     }
1664 
1665     // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1666     // potentially dead.
1667     return {MaybeDeadAccess};
1668   }
1669 
1670   // Delete dead memory defs
1671   void deleteDeadInstruction(Instruction *SI) {
1672     MemorySSAUpdater Updater(&MSSA);
1673     SmallVector<Instruction *, 32> NowDeadInsts;
1674     NowDeadInsts.push_back(SI);
1675     --NumFastOther;
1676 
1677     while (!NowDeadInsts.empty()) {
1678       Instruction *DeadInst = NowDeadInsts.pop_back_val();
1679       ++NumFastOther;
1680 
1681       // Try to preserve debug information attached to the dead instruction.
1682       salvageDebugInfo(*DeadInst);
1683       salvageKnowledge(DeadInst);
1684 
1685       // Remove the Instruction from MSSA.
1686       if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1687         if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1688           SkipStores.insert(MD);
1689           if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1690             if (SI->getValueOperand()->getType()->isPointerTy()) {
1691               const Value *UO = getUnderlyingObject(SI->getValueOperand());
1692               if (CapturedBeforeReturn.erase(UO))
1693                 ShouldIterateEndOfFunctionDSE = true;
1694               InvisibleToCallerAfterRet.erase(UO);
1695             }
1696           }
1697         }
1698 
1699         Updater.removeMemoryAccess(MA);
1700       }
1701 
1702       auto I = IOLs.find(DeadInst->getParent());
1703       if (I != IOLs.end())
1704         I->second.erase(DeadInst);
1705       // Remove its operands
1706       for (Use &O : DeadInst->operands())
1707         if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1708           O = nullptr;
1709           if (isInstructionTriviallyDead(OpI, &TLI))
1710             NowDeadInsts.push_back(OpI);
1711         }
1712 
1713       EI.removeInstruction(DeadInst);
1714       DeadInst->eraseFromParent();
1715     }
1716   }
1717 
1718   // Check for any extra throws between \p KillingI and \p DeadI that block
1719   // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1720   // MemoryDef that may throw are handled during the walk from one def to the
1721   // next.
1722   bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1723                        const Value *KillingUndObj) {
1724     // First see if we can ignore it by using the fact that KillingI is an
1725     // alloca/alloca like object that is not visible to the caller during
1726     // execution of the function.
1727     if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1728       return false;
1729 
1730     if (KillingI->getParent() == DeadI->getParent())
1731       return ThrowingBlocks.count(KillingI->getParent());
1732     return !ThrowingBlocks.empty();
1733   }
1734 
1735   // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1736   // instructions act as barriers:
1737   //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1738   //  object.
1739   //  * Atomic stores stronger that monotonic.
1740   bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1741     // If DeadI may throw it acts as a barrier, unless we are to an
1742     // alloca/alloca like object that does not escape.
1743     if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1744       return true;
1745 
1746     // If DeadI is an atomic load/store stronger than monotonic, do not try to
1747     // eliminate/reorder it.
1748     if (DeadI->isAtomic()) {
1749       if (auto *LI = dyn_cast<LoadInst>(DeadI))
1750         return isStrongerThanMonotonic(LI->getOrdering());
1751       if (auto *SI = dyn_cast<StoreInst>(DeadI))
1752         return isStrongerThanMonotonic(SI->getOrdering());
1753       if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1754         return isStrongerThanMonotonic(ARMW->getOrdering());
1755       if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1756         return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1757                isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1758       llvm_unreachable("other instructions should be skipped in MemorySSA");
1759     }
1760     return false;
1761   }
1762 
1763   /// Eliminate writes to objects that are not visible in the caller and are not
1764   /// accessed before returning from the function.
1765   bool eliminateDeadWritesAtEndOfFunction() {
1766     bool MadeChange = false;
1767     LLVM_DEBUG(
1768         dbgs()
1769         << "Trying to eliminate MemoryDefs at the end of the function\n");
1770     do {
1771       ShouldIterateEndOfFunctionDSE = false;
1772       for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1773         if (SkipStores.contains(Def))
1774           continue;
1775 
1776         Instruction *DefI = Def->getMemoryInst();
1777         auto DefLoc = getLocForWrite(DefI);
1778         if (!DefLoc || !isRemovable(DefI))
1779           continue;
1780 
1781         // NOTE: Currently eliminating writes at the end of a function is
1782         // limited to MemoryDefs with a single underlying object, to save
1783         // compile-time. In practice it appears the case with multiple
1784         // underlying objects is very uncommon. If it turns out to be important,
1785         // we can use getUnderlyingObjects here instead.
1786         const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1787         if (!isInvisibleToCallerAfterRet(UO))
1788           continue;
1789 
1790         if (isWriteAtEndOfFunction(Def)) {
1791           // See through pointer-to-pointer bitcasts
1792           LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1793                                "of the function\n");
1794           deleteDeadInstruction(DefI);
1795           ++NumFastStores;
1796           MadeChange = true;
1797         }
1798       }
1799     } while (ShouldIterateEndOfFunctionDSE);
1800     return MadeChange;
1801   }
1802 
1803   /// If we have a zero initializing memset following a call to malloc,
1804   /// try folding it into a call to calloc.
1805   bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1806     Instruction *DefI = Def->getMemoryInst();
1807     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1808     if (!MemSet)
1809       // TODO: Could handle zero store to small allocation as well.
1810       return false;
1811     Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1812     if (!StoredConstant || !StoredConstant->isNullValue())
1813       return false;
1814 
1815     if (!isRemovable(DefI))
1816       // The memset might be volatile..
1817       return false;
1818 
1819     if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1820         F.hasFnAttribute(Attribute::SanitizeAddress) ||
1821         F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1822         F.getName() == "calloc")
1823       return false;
1824     auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1825     if (!Malloc)
1826       return false;
1827     auto *InnerCallee = Malloc->getCalledFunction();
1828     if (!InnerCallee)
1829       return false;
1830     LibFunc Func;
1831     if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1832         Func != LibFunc_malloc)
1833       return false;
1834 
1835     auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1836       // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1837       // of malloc block
1838       auto *MallocBB = Malloc->getParent(),
1839         *MemsetBB = Memset->getParent();
1840       if (MallocBB == MemsetBB)
1841         return true;
1842       auto *Ptr = Memset->getArgOperand(0);
1843       auto *TI = MallocBB->getTerminator();
1844       ICmpInst::Predicate Pred;
1845       BasicBlock *TrueBB, *FalseBB;
1846       if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1847                           FalseBB)))
1848         return false;
1849       if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1850         return false;
1851       return true;
1852     };
1853 
1854     if (Malloc->getOperand(0) != MemSet->getLength())
1855       return false;
1856     if (!shouldCreateCalloc(Malloc, MemSet) ||
1857         !DT.dominates(Malloc, MemSet) ||
1858         !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1859       return false;
1860     IRBuilder<> IRB(Malloc);
1861     Type *SizeTTy = Malloc->getArgOperand(0)->getType();
1862     auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1),
1863                               Malloc->getArgOperand(0), IRB, TLI);
1864     if (!Calloc)
1865       return false;
1866     MemorySSAUpdater Updater(&MSSA);
1867     auto *LastDef =
1868       cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
1869     auto *NewAccess =
1870       Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
1871                                       LastDef);
1872     auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1873     Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1874     Updater.removeMemoryAccess(Malloc);
1875     Malloc->replaceAllUsesWith(Calloc);
1876     Malloc->eraseFromParent();
1877     return true;
1878   }
1879 
1880   /// \returns true if \p Def is a no-op store, either because it
1881   /// directly stores back a loaded value or stores zero to a calloced object.
1882   bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1883     Instruction *DefI = Def->getMemoryInst();
1884     StoreInst *Store = dyn_cast<StoreInst>(DefI);
1885     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1886     Constant *StoredConstant = nullptr;
1887     if (Store)
1888       StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1889     else if (MemSet)
1890       StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1891     else
1892       return false;
1893 
1894     if (!isRemovable(DefI))
1895       return false;
1896 
1897     if (StoredConstant) {
1898       Constant *InitC =
1899           getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1900       // If the clobbering access is LiveOnEntry, no instructions between them
1901       // can modify the memory location.
1902       if (InitC && InitC == StoredConstant)
1903         return MSSA.isLiveOnEntryDef(
1904             MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
1905     }
1906 
1907     if (!Store)
1908       return false;
1909 
1910     if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1911       if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1912         // Get the defining access for the load.
1913         auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1914         // Fast path: the defining accesses are the same.
1915         if (LoadAccess == Def->getDefiningAccess())
1916           return true;
1917 
1918         // Look through phi accesses. Recursively scan all phi accesses by
1919         // adding them to a worklist. Bail when we run into a memory def that
1920         // does not match LoadAccess.
1921         SetVector<MemoryAccess *> ToCheck;
1922         MemoryAccess *Current =
1923             MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
1924         // We don't want to bail when we run into the store memory def. But,
1925         // the phi access may point to it. So, pretend like we've already
1926         // checked it.
1927         ToCheck.insert(Def);
1928         ToCheck.insert(Current);
1929         // Start at current (1) to simulate already having checked Def.
1930         for (unsigned I = 1; I < ToCheck.size(); ++I) {
1931           Current = ToCheck[I];
1932           if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1933             // Check all the operands.
1934             for (auto &Use : PhiAccess->incoming_values())
1935               ToCheck.insert(cast<MemoryAccess>(&Use));
1936             continue;
1937           }
1938 
1939           // If we found a memory def, bail. This happens when we have an
1940           // unrelated write in between an otherwise noop store.
1941           assert(isa<MemoryDef>(Current) &&
1942                  "Only MemoryDefs should reach here.");
1943           // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1944           // We are searching for the definition of the store's destination.
1945           // So, if that is the same definition as the load, then this is a
1946           // noop. Otherwise, fail.
1947           if (LoadAccess != Current)
1948             return false;
1949         }
1950         return true;
1951       }
1952     }
1953 
1954     return false;
1955   }
1956 
1957   bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
1958     bool Changed = false;
1959     for (auto OI : IOL) {
1960       Instruction *DeadI = OI.first;
1961       MemoryLocation Loc = *getLocForWrite(DeadI);
1962       assert(isRemovable(DeadI) && "Expect only removable instruction");
1963 
1964       const Value *Ptr = Loc.Ptr->stripPointerCasts();
1965       int64_t DeadStart = 0;
1966       uint64_t DeadSize = Loc.Size.getValue();
1967       GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
1968       OverlapIntervalsTy &IntervalMap = OI.second;
1969       Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
1970       if (IntervalMap.empty())
1971         continue;
1972       Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
1973     }
1974     return Changed;
1975   }
1976 
1977   /// Eliminates writes to locations where the value that is being written
1978   /// is already stored at the same location.
1979   bool eliminateRedundantStoresOfExistingValues() {
1980     bool MadeChange = false;
1981     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
1982                          "already existing value\n");
1983     for (auto *Def : MemDefs) {
1984       if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
1985         continue;
1986 
1987       Instruction *DefInst = Def->getMemoryInst();
1988       auto MaybeDefLoc = getLocForWrite(DefInst);
1989       if (!MaybeDefLoc || !isRemovable(DefInst))
1990         continue;
1991 
1992       MemoryDef *UpperDef;
1993       // To conserve compile-time, we avoid walking to the next clobbering def.
1994       // Instead, we just try to get the optimized access, if it exists. DSE
1995       // will try to optimize defs during the earlier traversal.
1996       if (Def->isOptimized())
1997         UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
1998       else
1999         UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
2000       if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2001         continue;
2002 
2003       Instruction *UpperInst = UpperDef->getMemoryInst();
2004       auto IsRedundantStore = [&]() {
2005         if (DefInst->isIdenticalTo(UpperInst))
2006           return true;
2007         if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
2008           if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
2009             // MemSetInst must have a write location.
2010             MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
2011             int64_t InstWriteOffset = 0;
2012             int64_t DepWriteOffset = 0;
2013             auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
2014                                   InstWriteOffset, DepWriteOffset);
2015             Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
2016             return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2017                    OR == OW_Complete;
2018           }
2019         }
2020         return false;
2021       };
2022 
2023       if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2024         continue;
2025       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
2026                         << '\n');
2027       deleteDeadInstruction(DefInst);
2028       NumRedundantStores++;
2029       MadeChange = true;
2030     }
2031     return MadeChange;
2032   }
2033 };
2034 
2035 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2036                                 DominatorTree &DT, PostDominatorTree &PDT,
2037                                 AssumptionCache &AC,
2038                                 const TargetLibraryInfo &TLI,
2039                                 const LoopInfo &LI) {
2040   bool MadeChange = false;
2041 
2042   MSSA.ensureOptimizedUses();
2043   DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2044   // For each store:
2045   for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2046     MemoryDef *KillingDef = State.MemDefs[I];
2047     if (State.SkipStores.count(KillingDef))
2048       continue;
2049     Instruction *KillingI = KillingDef->getMemoryInst();
2050 
2051     std::optional<MemoryLocation> MaybeKillingLoc;
2052     if (State.isMemTerminatorInst(KillingI)) {
2053       if (auto KillingLoc = State.getLocForTerminator(KillingI))
2054         MaybeKillingLoc = KillingLoc->first;
2055     } else {
2056       MaybeKillingLoc = State.getLocForWrite(KillingI);
2057     }
2058 
2059     if (!MaybeKillingLoc) {
2060       LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2061                         << *KillingI << "\n");
2062       continue;
2063     }
2064     MemoryLocation KillingLoc = *MaybeKillingLoc;
2065     assert(KillingLoc.Ptr && "KillingLoc should not be null");
2066     const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
2067     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2068                       << *KillingDef << " (" << *KillingI << ")\n");
2069 
2070     unsigned ScanLimit = MemorySSAScanLimit;
2071     unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2072     unsigned PartialLimit = MemorySSAPartialStoreLimit;
2073     // Worklist of MemoryAccesses that may be killed by KillingDef.
2074     SetVector<MemoryAccess *> ToCheck;
2075     ToCheck.insert(KillingDef->getDefiningAccess());
2076 
2077     bool Shortend = false;
2078     bool IsMemTerm = State.isMemTerminatorInst(KillingI);
2079     // Check if MemoryAccesses in the worklist are killed by KillingDef.
2080     for (unsigned I = 0; I < ToCheck.size(); I++) {
2081       MemoryAccess *Current = ToCheck[I];
2082       if (State.SkipStores.count(Current))
2083         continue;
2084 
2085       std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2086           KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2087           WalkerStepLimit, IsMemTerm, PartialLimit);
2088 
2089       if (!MaybeDeadAccess) {
2090         LLVM_DEBUG(dbgs() << "  finished walk\n");
2091         continue;
2092       }
2093 
2094       MemoryAccess *DeadAccess = *MaybeDeadAccess;
2095       LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2096       if (isa<MemoryPhi>(DeadAccess)) {
2097         LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
2098         for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2099           MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2100           BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2101           BasicBlock *PhiBlock = DeadAccess->getBlock();
2102 
2103           // We only consider incoming MemoryAccesses that come before the
2104           // MemoryPhi. Otherwise we could discover candidates that do not
2105           // strictly dominate our starting def.
2106           if (State.PostOrderNumbers[IncomingBlock] >
2107               State.PostOrderNumbers[PhiBlock])
2108             ToCheck.insert(IncomingAccess);
2109         }
2110         continue;
2111       }
2112       auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2113       Instruction *DeadI = DeadDefAccess->getMemoryInst();
2114       LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2115       ToCheck.insert(DeadDefAccess->getDefiningAccess());
2116       NumGetDomMemoryDefPassed++;
2117 
2118       if (!DebugCounter::shouldExecute(MemorySSACounter))
2119         continue;
2120 
2121       MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2122 
2123       if (IsMemTerm) {
2124         const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2125         if (KillingUndObj != DeadUndObj)
2126           continue;
2127         LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2128                           << "\n  KILLER: " << *KillingI << '\n');
2129         State.deleteDeadInstruction(DeadI);
2130         ++NumFastStores;
2131         MadeChange = true;
2132       } else {
2133         // Check if DeadI overwrites KillingI.
2134         int64_t KillingOffset = 0;
2135         int64_t DeadOffset = 0;
2136         OverwriteResult OR = State.isOverwrite(
2137             KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2138         if (OR == OW_MaybePartial) {
2139           auto Iter = State.IOLs.insert(
2140               std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2141                   DeadI->getParent(), InstOverlapIntervalsTy()));
2142           auto &IOL = Iter.first->second;
2143           OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2144                                   DeadOffset, DeadI, IOL);
2145         }
2146 
2147         if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2148           auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2149           auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2150           // We are re-using tryToMergePartialOverlappingStores, which requires
2151           // DeadSI to dominate DeadSI.
2152           // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2153           if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2154             if (Constant *Merged = tryToMergePartialOverlappingStores(
2155                     KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2156                     State.BatchAA, &DT)) {
2157 
2158               // Update stored value of earlier store to merged constant.
2159               DeadSI->setOperand(0, Merged);
2160               ++NumModifiedStores;
2161               MadeChange = true;
2162 
2163               Shortend = true;
2164               // Remove killing store and remove any outstanding overlap
2165               // intervals for the updated store.
2166               State.deleteDeadInstruction(KillingSI);
2167               auto I = State.IOLs.find(DeadSI->getParent());
2168               if (I != State.IOLs.end())
2169                 I->second.erase(DeadSI);
2170               break;
2171             }
2172           }
2173         }
2174 
2175         if (OR == OW_Complete) {
2176           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2177                             << "\n  KILLER: " << *KillingI << '\n');
2178           State.deleteDeadInstruction(DeadI);
2179           ++NumFastStores;
2180           MadeChange = true;
2181         }
2182       }
2183     }
2184 
2185     // Check if the store is a no-op.
2186     if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2187       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2188                         << '\n');
2189       State.deleteDeadInstruction(KillingI);
2190       NumRedundantStores++;
2191       MadeChange = true;
2192       continue;
2193     }
2194 
2195     // Can we form a calloc from a memset/malloc pair?
2196     if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2197       LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2198                         << "  DEAD: " << *KillingI << '\n');
2199       State.deleteDeadInstruction(KillingI);
2200       MadeChange = true;
2201       continue;
2202     }
2203   }
2204 
2205   if (EnablePartialOverwriteTracking)
2206     for (auto &KV : State.IOLs)
2207       MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2208 
2209   MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2210   MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2211   return MadeChange;
2212 }
2213 } // end anonymous namespace
2214 
2215 //===----------------------------------------------------------------------===//
2216 // DSE Pass
2217 //===----------------------------------------------------------------------===//
2218 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2219   AliasAnalysis &AA = AM.getResult<AAManager>(F);
2220   const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2221   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2222   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2223   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2224   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
2225   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2226 
2227   bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2228 
2229 #ifdef LLVM_ENABLE_STATS
2230   if (AreStatisticsEnabled())
2231     for (auto &I : instructions(F))
2232       NumRemainingStores += isa<StoreInst>(&I);
2233 #endif
2234 
2235   if (!Changed)
2236     return PreservedAnalyses::all();
2237 
2238   PreservedAnalyses PA;
2239   PA.preserveSet<CFGAnalyses>();
2240   PA.preserve<MemorySSAAnalysis>();
2241   PA.preserve<LoopAnalysis>();
2242   return PA;
2243 }
2244 
2245 namespace {
2246 
2247 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
2248 class DSELegacyPass : public FunctionPass {
2249 public:
2250   static char ID; // Pass identification, replacement for typeid
2251 
2252   DSELegacyPass() : FunctionPass(ID) {
2253     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
2254   }
2255 
2256   bool runOnFunction(Function &F) override {
2257     if (skipFunction(F))
2258       return false;
2259 
2260     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2261     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2262     const TargetLibraryInfo &TLI =
2263         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2264     MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2265     PostDominatorTree &PDT =
2266         getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
2267     AssumptionCache &AC =
2268         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2269     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2270 
2271     bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2272 
2273 #ifdef LLVM_ENABLE_STATS
2274     if (AreStatisticsEnabled())
2275       for (auto &I : instructions(F))
2276         NumRemainingStores += isa<StoreInst>(&I);
2277 #endif
2278 
2279     return Changed;
2280   }
2281 
2282   void getAnalysisUsage(AnalysisUsage &AU) const override {
2283     AU.setPreservesCFG();
2284     AU.addRequired<AAResultsWrapperPass>();
2285     AU.addRequired<TargetLibraryInfoWrapperPass>();
2286     AU.addPreserved<GlobalsAAWrapperPass>();
2287     AU.addRequired<DominatorTreeWrapperPass>();
2288     AU.addPreserved<DominatorTreeWrapperPass>();
2289     AU.addRequired<PostDominatorTreeWrapperPass>();
2290     AU.addRequired<MemorySSAWrapperPass>();
2291     AU.addPreserved<PostDominatorTreeWrapperPass>();
2292     AU.addPreserved<MemorySSAWrapperPass>();
2293     AU.addRequired<LoopInfoWrapperPass>();
2294     AU.addPreserved<LoopInfoWrapperPass>();
2295     AU.addRequired<AssumptionCacheTracker>();
2296   }
2297 };
2298 
2299 } // end anonymous namespace
2300 
2301 char DSELegacyPass::ID = 0;
2302 
2303 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
2304                       false)
2305 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2306 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2307 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2308 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2309 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2310 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2312 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2313 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2314 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
2315                     false)
2316 
2317 FunctionPass *llvm::createDeadStoreEliminationPass() {
2318   return new DSELegacyPass();
2319 }
2320