1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a trivial dead store elimination that only considers 10 // basic-block local redundant stores. 11 // 12 // FIXME: This should eventually be extended to be a post-dominator tree 13 // traversal. Doing so would be pretty trivial. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/DebugCounter.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <map> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace PatternMatch; 78 79 #define DEBUG_TYPE "dse" 80 81 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 82 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 83 STATISTIC(NumFastStores, "Number of stores deleted"); 84 STATISTIC(NumFastOther, "Number of other instrs removed"); 85 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 86 STATISTIC(NumModifiedStores, "Number of stores modified"); 87 STATISTIC(NumCFGChecks, "Number of stores modified"); 88 STATISTIC(NumCFGTries, "Number of stores modified"); 89 STATISTIC(NumCFGSuccess, "Number of stores modified"); 90 STATISTIC(NumGetDomMemoryDefPassed, 91 "Number of times a valid candidate is returned from getDomMemoryDef"); 92 STATISTIC(NumDomMemDefChecks, 93 "Number iterations check for reads in getDomMemoryDef"); 94 95 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 96 "Controls which MemoryDefs are eliminated."); 97 98 static cl::opt<bool> 99 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 100 cl::init(true), cl::Hidden, 101 cl::desc("Enable partial-overwrite tracking in DSE")); 102 103 static cl::opt<bool> 104 EnablePartialStoreMerging("enable-dse-partial-store-merging", 105 cl::init(true), cl::Hidden, 106 cl::desc("Enable partial store merging in DSE")); 107 108 static cl::opt<bool> 109 EnableMemorySSA("enable-dse-memoryssa", cl::init(true), cl::Hidden, 110 cl::desc("Use the new MemorySSA-backed DSE.")); 111 112 static cl::opt<unsigned> 113 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 114 cl::desc("The number of memory instructions to scan for " 115 "dead store elimination (default = 100)")); 116 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 117 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 118 cl::desc("The maximum number of steps while walking upwards to find " 119 "MemoryDefs that may be killed (default = 90)")); 120 121 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 122 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 123 cl::desc("The maximum number candidates that only partially overwrite the " 124 "killing MemoryDef to consider" 125 " (default = 5)")); 126 127 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 128 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 129 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 130 "other stores per basic block (default = 5000)")); 131 132 static cl::opt<unsigned> MemorySSASameBBStepCost( 133 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 134 cl::desc( 135 "The cost of a step in the same basic block as the killing MemoryDef" 136 "(default = 1)")); 137 138 static cl::opt<unsigned> 139 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 140 cl::Hidden, 141 cl::desc("The cost of a step in a different basic " 142 "block than the killing MemoryDef" 143 "(default = 5)")); 144 145 static cl::opt<unsigned> MemorySSAPathCheckLimit( 146 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 147 cl::desc("The maximum number of blocks to check when trying to prove that " 148 "all paths to an exit go through a killing block (default = 50)")); 149 150 //===----------------------------------------------------------------------===// 151 // Helper functions 152 //===----------------------------------------------------------------------===// 153 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 154 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 155 156 /// Delete this instruction. Before we do, go through and zero out all the 157 /// operands of this instruction. If any of them become dead, delete them and 158 /// the computation tree that feeds them. 159 /// If ValueSet is non-null, remove any deleted instructions from it as well. 160 static void 161 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI, 162 MemoryDependenceResults &MD, const TargetLibraryInfo &TLI, 163 InstOverlapIntervalsTy &IOL, 164 MapVector<Instruction *, bool> &ThrowableInst, 165 SmallSetVector<const Value *, 16> *ValueSet = nullptr) { 166 SmallVector<Instruction*, 32> NowDeadInsts; 167 168 NowDeadInsts.push_back(I); 169 --NumFastOther; 170 171 // Keeping the iterator straight is a pain, so we let this routine tell the 172 // caller what the next instruction is after we're done mucking about. 173 BasicBlock::iterator NewIter = *BBI; 174 175 // Before we touch this instruction, remove it from memdep! 176 do { 177 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 178 // Mark the DeadInst as dead in the list of throwable instructions. 179 auto It = ThrowableInst.find(DeadInst); 180 if (It != ThrowableInst.end()) 181 ThrowableInst[It->first] = false; 182 ++NumFastOther; 183 184 // Try to preserve debug information attached to the dead instruction. 185 salvageDebugInfo(*DeadInst); 186 salvageKnowledge(DeadInst); 187 188 // This instruction is dead, zap it, in stages. Start by removing it from 189 // MemDep, which needs to know the operands and needs it to be in the 190 // function. 191 MD.removeInstruction(DeadInst); 192 193 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { 194 Value *Op = DeadInst->getOperand(op); 195 DeadInst->setOperand(op, nullptr); 196 197 // If this operand just became dead, add it to the NowDeadInsts list. 198 if (!Op->use_empty()) continue; 199 200 if (Instruction *OpI = dyn_cast<Instruction>(Op)) 201 if (isInstructionTriviallyDead(OpI, &TLI)) 202 NowDeadInsts.push_back(OpI); 203 } 204 205 if (ValueSet) ValueSet->remove(DeadInst); 206 IOL.erase(DeadInst); 207 208 if (NewIter == DeadInst->getIterator()) 209 NewIter = DeadInst->eraseFromParent(); 210 else 211 DeadInst->eraseFromParent(); 212 } while (!NowDeadInsts.empty()); 213 *BBI = NewIter; 214 // Pop dead entries from back of ThrowableInst till we find an alive entry. 215 while (!ThrowableInst.empty() && !ThrowableInst.back().second) 216 ThrowableInst.pop_back(); 217 } 218 219 /// Does this instruction write some memory? This only returns true for things 220 /// that we can analyze with other helpers below. 221 static bool hasAnalyzableMemoryWrite(Instruction *I, 222 const TargetLibraryInfo &TLI) { 223 if (isa<StoreInst>(I)) 224 return true; 225 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 226 switch (II->getIntrinsicID()) { 227 default: 228 return false; 229 case Intrinsic::memset: 230 case Intrinsic::memmove: 231 case Intrinsic::memcpy: 232 case Intrinsic::memcpy_inline: 233 case Intrinsic::memcpy_element_unordered_atomic: 234 case Intrinsic::memmove_element_unordered_atomic: 235 case Intrinsic::memset_element_unordered_atomic: 236 case Intrinsic::init_trampoline: 237 case Intrinsic::lifetime_end: 238 case Intrinsic::masked_store: 239 return true; 240 } 241 } 242 if (auto *CB = dyn_cast<CallBase>(I)) { 243 LibFunc LF; 244 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 245 switch (LF) { 246 case LibFunc_strcpy: 247 case LibFunc_strncpy: 248 case LibFunc_strcat: 249 case LibFunc_strncat: 250 return true; 251 default: 252 return false; 253 } 254 } 255 } 256 return false; 257 } 258 259 /// Return a Location stored to by the specified instruction. If isRemovable 260 /// returns true, this function and getLocForRead completely describe the memory 261 /// operations for this instruction. 262 static MemoryLocation getLocForWrite(Instruction *Inst, 263 const TargetLibraryInfo &TLI) { 264 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 265 return MemoryLocation::get(SI); 266 267 // memcpy/memmove/memset. 268 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) 269 return MemoryLocation::getForDest(MI); 270 271 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 272 switch (II->getIntrinsicID()) { 273 default: 274 return MemoryLocation(); // Unhandled intrinsic. 275 case Intrinsic::init_trampoline: 276 return MemoryLocation::getAfter(II->getArgOperand(0)); 277 case Intrinsic::masked_store: 278 return MemoryLocation::getForArgument(II, 1, TLI); 279 case Intrinsic::lifetime_end: { 280 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 281 return MemoryLocation(II->getArgOperand(1), Len); 282 } 283 } 284 } 285 if (auto *CB = dyn_cast<CallBase>(Inst)) 286 // All the supported TLI functions so far happen to have dest as their 287 // first argument. 288 return MemoryLocation::getAfter(CB->getArgOperand(0)); 289 return MemoryLocation(); 290 } 291 292 /// Return the location read by the specified "hasAnalyzableMemoryWrite" 293 /// instruction if any. 294 static MemoryLocation getLocForRead(Instruction *Inst, 295 const TargetLibraryInfo &TLI) { 296 assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case"); 297 298 // The only instructions that both read and write are the mem transfer 299 // instructions (memcpy/memmove). 300 if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst)) 301 return MemoryLocation::getForSource(MTI); 302 return MemoryLocation(); 303 } 304 305 /// If the value of this instruction and the memory it writes to is unused, may 306 /// we delete this instruction? 307 static bool isRemovable(Instruction *I) { 308 // Don't remove volatile/atomic stores. 309 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 310 return SI->isUnordered(); 311 312 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 313 switch (II->getIntrinsicID()) { 314 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); 315 case Intrinsic::lifetime_end: 316 // Never remove dead lifetime_end's, e.g. because it is followed by a 317 // free. 318 return false; 319 case Intrinsic::init_trampoline: 320 // Always safe to remove init_trampoline. 321 return true; 322 case Intrinsic::memset: 323 case Intrinsic::memmove: 324 case Intrinsic::memcpy: 325 case Intrinsic::memcpy_inline: 326 // Don't remove volatile memory intrinsics. 327 return !cast<MemIntrinsic>(II)->isVolatile(); 328 case Intrinsic::memcpy_element_unordered_atomic: 329 case Intrinsic::memmove_element_unordered_atomic: 330 case Intrinsic::memset_element_unordered_atomic: 331 case Intrinsic::masked_store: 332 return true; 333 } 334 } 335 336 // note: only get here for calls with analyzable writes - i.e. libcalls 337 if (auto *CB = dyn_cast<CallBase>(I)) 338 return CB->use_empty(); 339 340 return false; 341 } 342 343 /// Returns true if the end of this instruction can be safely shortened in 344 /// length. 345 static bool isShortenableAtTheEnd(Instruction *I) { 346 // Don't shorten stores for now 347 if (isa<StoreInst>(I)) 348 return false; 349 350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 351 switch (II->getIntrinsicID()) { 352 default: return false; 353 case Intrinsic::memset: 354 case Intrinsic::memcpy: 355 case Intrinsic::memcpy_element_unordered_atomic: 356 case Intrinsic::memset_element_unordered_atomic: 357 // Do shorten memory intrinsics. 358 // FIXME: Add memmove if it's also safe to transform. 359 return true; 360 } 361 } 362 363 // Don't shorten libcalls calls for now. 364 365 return false; 366 } 367 368 /// Returns true if the beginning of this instruction can be safely shortened 369 /// in length. 370 static bool isShortenableAtTheBeginning(Instruction *I) { 371 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 372 // easily done by offsetting the source address. 373 return isa<AnyMemSetInst>(I); 374 } 375 376 /// Return the pointer that is being written to. 377 static Value *getStoredPointerOperand(Instruction *I, 378 const TargetLibraryInfo &TLI) { 379 //TODO: factor this to reuse getLocForWrite 380 MemoryLocation Loc = getLocForWrite(I, TLI); 381 assert(Loc.Ptr && 382 "unable to find pointer written for analyzable instruction?"); 383 // TODO: most APIs don't expect const Value * 384 return const_cast<Value*>(Loc.Ptr); 385 } 386 387 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 388 const TargetLibraryInfo &TLI, 389 const Function *F) { 390 uint64_t Size; 391 ObjectSizeOpts Opts; 392 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 393 394 if (getObjectSize(V, Size, DL, &TLI, Opts)) 395 return Size; 396 return MemoryLocation::UnknownSize; 397 } 398 399 namespace { 400 401 enum OverwriteResult { 402 OW_Begin, 403 OW_Complete, 404 OW_End, 405 OW_PartialEarlierWithFullLater, 406 OW_MaybePartial, 407 OW_Unknown 408 }; 409 410 } // end anonymous namespace 411 412 /// Check if two instruction are masked stores that completely 413 /// overwrite one another. More specifically, \p Later has to 414 /// overwrite \p Earlier. 415 template <typename AATy> 416 static OverwriteResult isMaskedStoreOverwrite(const Instruction *Later, 417 const Instruction *Earlier, 418 AATy &AA) { 419 const auto *IIL = dyn_cast<IntrinsicInst>(Later); 420 const auto *IIE = dyn_cast<IntrinsicInst>(Earlier); 421 if (IIL == nullptr || IIE == nullptr) 422 return OW_Unknown; 423 if (IIL->getIntrinsicID() != Intrinsic::masked_store || 424 IIE->getIntrinsicID() != Intrinsic::masked_store) 425 return OW_Unknown; 426 // Pointers. 427 Value *LP = IIL->getArgOperand(1)->stripPointerCasts(); 428 Value *EP = IIE->getArgOperand(1)->stripPointerCasts(); 429 if (LP != EP && !AA.isMustAlias(LP, EP)) 430 return OW_Unknown; 431 // Masks. 432 // TODO: check that Later's mask is a superset of the Earlier's mask. 433 if (IIL->getArgOperand(3) != IIE->getArgOperand(3)) 434 return OW_Unknown; 435 return OW_Complete; 436 } 437 438 /// Return 'OW_Complete' if a store to the 'Later' location (by \p LaterI 439 /// instruction) completely overwrites a store to the 'Earlier' location. 440 /// (by \p EarlierI instruction). 441 /// Return OW_MaybePartial if \p Later does not completely overwrite 442 /// \p Earlier, but they both write to the same underlying object. In that 443 /// case, use isPartialOverwrite to check if \p Later partially overwrites 444 /// \p Earlier. Returns 'OW_Unknown' if nothing can be determined. 445 template <typename AATy> 446 static OverwriteResult 447 isOverwrite(const Instruction *LaterI, const Instruction *EarlierI, 448 const MemoryLocation &Later, const MemoryLocation &Earlier, 449 const DataLayout &DL, const TargetLibraryInfo &TLI, 450 int64_t &EarlierOff, int64_t &LaterOff, AATy &AA, 451 const Function *F) { 452 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 453 // get imprecise values here, though (except for unknown sizes). 454 if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) { 455 // Masked stores have imprecise locations, but we can reason about them 456 // to some extent. 457 return isMaskedStoreOverwrite(LaterI, EarlierI, AA); 458 } 459 460 const uint64_t LaterSize = Later.Size.getValue(); 461 const uint64_t EarlierSize = Earlier.Size.getValue(); 462 463 const Value *P1 = Earlier.Ptr->stripPointerCasts(); 464 const Value *P2 = Later.Ptr->stripPointerCasts(); 465 466 // If the start pointers are the same, we just have to compare sizes to see if 467 // the later store was larger than the earlier store. 468 if (P1 == P2 || AA.isMustAlias(P1, P2)) { 469 // Make sure that the Later size is >= the Earlier size. 470 if (LaterSize >= EarlierSize) 471 return OW_Complete; 472 } 473 474 // Check to see if the later store is to the entire object (either a global, 475 // an alloca, or a byval/inalloca argument). If so, then it clearly 476 // overwrites any other store to the same object. 477 const Value *UO1 = getUnderlyingObject(P1), *UO2 = getUnderlyingObject(P2); 478 479 // If we can't resolve the same pointers to the same object, then we can't 480 // analyze them at all. 481 if (UO1 != UO2) 482 return OW_Unknown; 483 484 // If the "Later" store is to a recognizable object, get its size. 485 uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F); 486 if (ObjectSize != MemoryLocation::UnknownSize) 487 if (ObjectSize == LaterSize && ObjectSize >= EarlierSize) 488 return OW_Complete; 489 490 // Okay, we have stores to two completely different pointers. Try to 491 // decompose the pointer into a "base + constant_offset" form. If the base 492 // pointers are equal, then we can reason about the two stores. 493 EarlierOff = 0; 494 LaterOff = 0; 495 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL); 496 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL); 497 498 // If the base pointers still differ, we have two completely different stores. 499 if (BP1 != BP2) 500 return OW_Unknown; 501 502 // The later access completely overlaps the earlier store if and only if 503 // both start and end of the earlier one is "inside" the later one: 504 // |<->|--earlier--|<->| 505 // |-------later-------| 506 // Accesses may overlap if and only if start of one of them is "inside" 507 // another one: 508 // |<->|--earlier--|<----->| 509 // |-------later-------| 510 // OR 511 // |----- earlier -----| 512 // |<->|---later---|<----->| 513 // 514 // We have to be careful here as *Off is signed while *.Size is unsigned. 515 516 // Check if the earlier access starts "not before" the later one. 517 if (EarlierOff >= LaterOff) { 518 // If the earlier access ends "not after" the later access then the earlier 519 // one is completely overwritten by the later one. 520 if (uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize) 521 return OW_Complete; 522 // If start of the earlier access is "before" end of the later access then 523 // accesses overlap. 524 else if ((uint64_t)(EarlierOff - LaterOff) < LaterSize) 525 return OW_MaybePartial; 526 } 527 // If start of the later access is "before" end of the earlier access then 528 // accesses overlap. 529 else if ((uint64_t)(LaterOff - EarlierOff) < EarlierSize) { 530 return OW_MaybePartial; 531 } 532 533 // Can reach here only if accesses are known not to overlap. There is no 534 // dedicated code to indicate no overlap so signal "unknown". 535 return OW_Unknown; 536 } 537 538 /// Return 'OW_Complete' if a store to the 'Later' location completely 539 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the 540 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the 541 /// beginning of the 'Earlier' location is overwritten by 'Later'. 542 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was 543 /// overwritten by a latter (smaller) store which doesn't write outside the big 544 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 545 /// NOTE: This function must only be called if both \p Later and \p Earlier 546 /// write to the same underlying object with valid \p EarlierOff and \p 547 /// LaterOff. 548 static OverwriteResult isPartialOverwrite(const MemoryLocation &Later, 549 const MemoryLocation &Earlier, 550 int64_t EarlierOff, int64_t LaterOff, 551 Instruction *DepWrite, 552 InstOverlapIntervalsTy &IOL) { 553 const uint64_t LaterSize = Later.Size.getValue(); 554 const uint64_t EarlierSize = Earlier.Size.getValue(); 555 // We may now overlap, although the overlap is not complete. There might also 556 // be other incomplete overlaps, and together, they might cover the complete 557 // earlier write. 558 // Note: The correctness of this logic depends on the fact that this function 559 // is not even called providing DepWrite when there are any intervening reads. 560 if (EnablePartialOverwriteTracking && 561 LaterOff < int64_t(EarlierOff + EarlierSize) && 562 int64_t(LaterOff + LaterSize) >= EarlierOff) { 563 564 // Insert our part of the overlap into the map. 565 auto &IM = IOL[DepWrite]; 566 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff 567 << ", " << int64_t(EarlierOff + EarlierSize) 568 << ") Later [" << LaterOff << ", " 569 << int64_t(LaterOff + LaterSize) << ")\n"); 570 571 // Make sure that we only insert non-overlapping intervals and combine 572 // adjacent intervals. The intervals are stored in the map with the ending 573 // offset as the key (in the half-open sense) and the starting offset as 574 // the value. 575 int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize; 576 577 // Find any intervals ending at, or after, LaterIntStart which start 578 // before LaterIntEnd. 579 auto ILI = IM.lower_bound(LaterIntStart); 580 if (ILI != IM.end() && ILI->second <= LaterIntEnd) { 581 // This existing interval is overlapped with the current store somewhere 582 // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing 583 // intervals and adjusting our start and end. 584 LaterIntStart = std::min(LaterIntStart, ILI->second); 585 LaterIntEnd = std::max(LaterIntEnd, ILI->first); 586 ILI = IM.erase(ILI); 587 588 // Continue erasing and adjusting our end in case other previous 589 // intervals are also overlapped with the current store. 590 // 591 // |--- ealier 1 ---| |--- ealier 2 ---| 592 // |------- later---------| 593 // 594 while (ILI != IM.end() && ILI->second <= LaterIntEnd) { 595 assert(ILI->second > LaterIntStart && "Unexpected interval"); 596 LaterIntEnd = std::max(LaterIntEnd, ILI->first); 597 ILI = IM.erase(ILI); 598 } 599 } 600 601 IM[LaterIntEnd] = LaterIntStart; 602 603 ILI = IM.begin(); 604 if (ILI->second <= EarlierOff && 605 ILI->first >= int64_t(EarlierOff + EarlierSize)) { 606 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" 607 << EarlierOff << ", " 608 << int64_t(EarlierOff + EarlierSize) 609 << ") Composite Later [" << ILI->second << ", " 610 << ILI->first << ")\n"); 611 ++NumCompletePartials; 612 return OW_Complete; 613 } 614 } 615 616 // Check for an earlier store which writes to all the memory locations that 617 // the later store writes to. 618 if (EnablePartialStoreMerging && LaterOff >= EarlierOff && 619 int64_t(EarlierOff + EarlierSize) > LaterOff && 620 uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) { 621 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" 622 << EarlierOff << ", " 623 << int64_t(EarlierOff + EarlierSize) 624 << ") by a later store [" << LaterOff << ", " 625 << int64_t(LaterOff + LaterSize) << ")\n"); 626 // TODO: Maybe come up with a better name? 627 return OW_PartialEarlierWithFullLater; 628 } 629 630 // Another interesting case is if the later store overwrites the end of the 631 // earlier store. 632 // 633 // |--earlier--| 634 // |-- later --| 635 // 636 // In this case we may want to trim the size of earlier to avoid generating 637 // writes to addresses which will definitely be overwritten later 638 if (!EnablePartialOverwriteTracking && 639 (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) && 640 int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize))) 641 return OW_End; 642 643 // Finally, we also need to check if the later store overwrites the beginning 644 // of the earlier store. 645 // 646 // |--earlier--| 647 // |-- later --| 648 // 649 // In this case we may want to move the destination address and trim the size 650 // of earlier to avoid generating writes to addresses which will definitely 651 // be overwritten later. 652 if (!EnablePartialOverwriteTracking && 653 (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) { 654 assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) && 655 "Expect to be handled as OW_Complete"); 656 return OW_Begin; 657 } 658 // Otherwise, they don't completely overlap. 659 return OW_Unknown; 660 } 661 662 /// If 'Inst' might be a self read (i.e. a noop copy of a 663 /// memory region into an identical pointer) then it doesn't actually make its 664 /// input dead in the traditional sense. Consider this case: 665 /// 666 /// memmove(A <- B) 667 /// memmove(A <- A) 668 /// 669 /// In this case, the second store to A does not make the first store to A dead. 670 /// The usual situation isn't an explicit A<-A store like this (which can be 671 /// trivially removed) but a case where two pointers may alias. 672 /// 673 /// This function detects when it is unsafe to remove a dependent instruction 674 /// because the DSE inducing instruction may be a self-read. 675 static bool isPossibleSelfRead(Instruction *Inst, 676 const MemoryLocation &InstStoreLoc, 677 Instruction *DepWrite, 678 const TargetLibraryInfo &TLI, 679 AliasAnalysis &AA) { 680 // Self reads can only happen for instructions that read memory. Get the 681 // location read. 682 MemoryLocation InstReadLoc = getLocForRead(Inst, TLI); 683 if (!InstReadLoc.Ptr) 684 return false; // Not a reading instruction. 685 686 // If the read and written loc obviously don't alias, it isn't a read. 687 if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) 688 return false; 689 690 if (isa<AnyMemCpyInst>(Inst)) { 691 // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763) 692 // but in practice memcpy(A <- B) either means that A and B are disjoint or 693 // are equal (i.e. there are not partial overlaps). Given that, if we have: 694 // 695 // memcpy/memmove(A <- B) // DepWrite 696 // memcpy(A <- B) // Inst 697 // 698 // with Inst reading/writing a >= size than DepWrite, we can reason as 699 // follows: 700 // 701 // - If A == B then both the copies are no-ops, so the DepWrite can be 702 // removed. 703 // - If A != B then A and B are disjoint locations in Inst. Since 704 // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too. 705 // Therefore DepWrite can be removed. 706 MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI); 707 708 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) 709 return false; 710 } 711 712 // If DepWrite doesn't read memory or if we can't prove it is a must alias, 713 // then it can't be considered dead. 714 return true; 715 } 716 717 /// Returns true if the memory which is accessed by the second instruction is not 718 /// modified between the first and the second instruction. 719 /// Precondition: Second instruction must be dominated by the first 720 /// instruction. 721 template <typename AATy> 722 static bool 723 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, AATy &AA, 724 const DataLayout &DL, DominatorTree *DT) { 725 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 726 // instructions which can modify the memory location accessed by SecondI. 727 // 728 // While doing the walk keep track of the address to check. It might be 729 // different in different basic blocks due to PHI translation. 730 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 731 SmallVector<BlockAddressPair, 16> WorkList; 732 // Keep track of the address we visited each block with. Bail out if we 733 // visit a block with different addresses. 734 DenseMap<BasicBlock *, Value *> Visited; 735 736 BasicBlock::iterator FirstBBI(FirstI); 737 ++FirstBBI; 738 BasicBlock::iterator SecondBBI(SecondI); 739 BasicBlock *FirstBB = FirstI->getParent(); 740 BasicBlock *SecondBB = SecondI->getParent(); 741 MemoryLocation MemLoc = MemoryLocation::get(SecondI); 742 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 743 744 // Start checking the SecondBB. 745 WorkList.push_back( 746 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 747 bool isFirstBlock = true; 748 749 // Check all blocks going backward until we reach the FirstBB. 750 while (!WorkList.empty()) { 751 BlockAddressPair Current = WorkList.pop_back_val(); 752 BasicBlock *B = Current.first; 753 PHITransAddr &Addr = Current.second; 754 Value *Ptr = Addr.getAddr(); 755 756 // Ignore instructions before FirstI if this is the FirstBB. 757 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 758 759 BasicBlock::iterator EI; 760 if (isFirstBlock) { 761 // Ignore instructions after SecondI if this is the first visit of SecondBB. 762 assert(B == SecondBB && "first block is not the store block"); 763 EI = SecondBBI; 764 isFirstBlock = false; 765 } else { 766 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 767 // In this case we also have to look at instructions after SecondI. 768 EI = B->end(); 769 } 770 for (; BI != EI; ++BI) { 771 Instruction *I = &*BI; 772 if (I->mayWriteToMemory() && I != SecondI) 773 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 774 return false; 775 } 776 if (B != FirstBB) { 777 assert(B != &FirstBB->getParent()->getEntryBlock() && 778 "Should not hit the entry block because SI must be dominated by LI"); 779 for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) { 780 PHITransAddr PredAddr = Addr; 781 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 782 if (!PredAddr.IsPotentiallyPHITranslatable()) 783 return false; 784 if (PredAddr.PHITranslateValue(B, *PredI, DT, false)) 785 return false; 786 } 787 Value *TranslatedPtr = PredAddr.getAddr(); 788 auto Inserted = Visited.insert(std::make_pair(*PredI, TranslatedPtr)); 789 if (!Inserted.second) { 790 // We already visited this block before. If it was with a different 791 // address - bail out! 792 if (TranslatedPtr != Inserted.first->second) 793 return false; 794 // ... otherwise just skip it. 795 continue; 796 } 797 WorkList.push_back(std::make_pair(*PredI, PredAddr)); 798 } 799 } 800 } 801 return true; 802 } 803 804 /// Find all blocks that will unconditionally lead to the block BB and append 805 /// them to F. 806 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, 807 BasicBlock *BB, DominatorTree *DT) { 808 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 809 BasicBlock *Pred = *I; 810 if (Pred == BB) continue; 811 Instruction *PredTI = Pred->getTerminator(); 812 if (PredTI->getNumSuccessors() != 1) 813 continue; 814 815 if (DT->isReachableFromEntry(Pred)) 816 Blocks.push_back(Pred); 817 } 818 } 819 820 /// Handle frees of entire structures whose dependency is a store 821 /// to a field of that structure. 822 static bool handleFree(CallInst *F, AliasAnalysis *AA, 823 MemoryDependenceResults *MD, DominatorTree *DT, 824 const TargetLibraryInfo *TLI, 825 InstOverlapIntervalsTy &IOL, 826 MapVector<Instruction *, bool> &ThrowableInst) { 827 bool MadeChange = false; 828 829 MemoryLocation Loc = MemoryLocation::getAfter(F->getOperand(0)); 830 SmallVector<BasicBlock *, 16> Blocks; 831 Blocks.push_back(F->getParent()); 832 833 while (!Blocks.empty()) { 834 BasicBlock *BB = Blocks.pop_back_val(); 835 Instruction *InstPt = BB->getTerminator(); 836 if (BB == F->getParent()) InstPt = F; 837 838 MemDepResult Dep = 839 MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB); 840 while (Dep.isDef() || Dep.isClobber()) { 841 Instruction *Dependency = Dep.getInst(); 842 if (!hasAnalyzableMemoryWrite(Dependency, *TLI) || 843 !isRemovable(Dependency)) 844 break; 845 846 Value *DepPointer = 847 getUnderlyingObject(getStoredPointerOperand(Dependency, *TLI)); 848 849 // Check for aliasing. 850 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) 851 break; 852 853 LLVM_DEBUG( 854 dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: " 855 << *Dependency << '\n'); 856 857 // DCE instructions only used to calculate that store. 858 BasicBlock::iterator BBI(Dependency); 859 deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, 860 ThrowableInst); 861 ++NumFastStores; 862 MadeChange = true; 863 864 // Inst's old Dependency is now deleted. Compute the next dependency, 865 // which may also be dead, as in 866 // s[0] = 0; 867 // s[1] = 0; // This has just been deleted. 868 // free(s); 869 Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB); 870 } 871 872 if (Dep.isNonLocal()) 873 findUnconditionalPreds(Blocks, BB, DT); 874 } 875 876 return MadeChange; 877 } 878 879 /// Check to see if the specified location may alias any of the stack objects in 880 /// the DeadStackObjects set. If so, they become live because the location is 881 /// being loaded. 882 static void removeAccessedObjects(const MemoryLocation &LoadedLoc, 883 SmallSetVector<const Value *, 16> &DeadStackObjects, 884 const DataLayout &DL, AliasAnalysis *AA, 885 const TargetLibraryInfo *TLI, 886 const Function *F) { 887 const Value *UnderlyingPointer = getUnderlyingObject(LoadedLoc.Ptr); 888 889 // A constant can't be in the dead pointer set. 890 if (isa<Constant>(UnderlyingPointer)) 891 return; 892 893 // If the kill pointer can be easily reduced to an alloca, don't bother doing 894 // extraneous AA queries. 895 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { 896 DeadStackObjects.remove(UnderlyingPointer); 897 return; 898 } 899 900 // Remove objects that could alias LoadedLoc. 901 DeadStackObjects.remove_if([&](const Value *I) { 902 // See if the loaded location could alias the stack location. 903 MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F)); 904 return !AA->isNoAlias(StackLoc, LoadedLoc); 905 }); 906 } 907 908 /// Remove dead stores to stack-allocated locations in the function end block. 909 /// Ex: 910 /// %A = alloca i32 911 /// ... 912 /// store i32 1, i32* %A 913 /// ret void 914 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA, 915 MemoryDependenceResults *MD, 916 const TargetLibraryInfo *TLI, 917 InstOverlapIntervalsTy &IOL, 918 MapVector<Instruction *, bool> &ThrowableInst) { 919 bool MadeChange = false; 920 921 // Keep track of all of the stack objects that are dead at the end of the 922 // function. 923 SmallSetVector<const Value*, 16> DeadStackObjects; 924 925 // Find all of the alloca'd pointers in the entry block. 926 BasicBlock &Entry = BB.getParent()->front(); 927 for (Instruction &I : Entry) { 928 if (isa<AllocaInst>(&I)) 929 DeadStackObjects.insert(&I); 930 931 // Okay, so these are dead heap objects, but if the pointer never escapes 932 // then it's leaked by this function anyways. 933 else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true)) 934 DeadStackObjects.insert(&I); 935 } 936 937 // Treat byval or inalloca arguments the same, stores to them are dead at the 938 // end of the function. 939 for (Argument &AI : BB.getParent()->args()) 940 if (AI.hasPassPointeeByValueCopyAttr()) 941 DeadStackObjects.insert(&AI); 942 943 const DataLayout &DL = BB.getModule()->getDataLayout(); 944 945 // Scan the basic block backwards 946 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ 947 --BBI; 948 949 // If we find a store, check to see if it points into a dead stack value. 950 if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) { 951 // See through pointer-to-pointer bitcasts 952 SmallVector<const Value *, 4> Pointers; 953 getUnderlyingObjects(getStoredPointerOperand(&*BBI, *TLI), Pointers); 954 955 // Stores to stack values are valid candidates for removal. 956 bool AllDead = true; 957 for (const Value *Pointer : Pointers) 958 if (!DeadStackObjects.count(Pointer)) { 959 AllDead = false; 960 break; 961 } 962 963 if (AllDead) { 964 Instruction *Dead = &*BBI; 965 966 LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: " 967 << *Dead << "\n Objects: "; 968 for (SmallVectorImpl<const Value *>::iterator I = 969 Pointers.begin(), 970 E = Pointers.end(); 971 I != E; ++I) { 972 dbgs() << **I; 973 if (std::next(I) != E) 974 dbgs() << ", "; 975 } dbgs() 976 << '\n'); 977 978 // DCE instructions only used to calculate that store. 979 deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, ThrowableInst, 980 &DeadStackObjects); 981 ++NumFastStores; 982 MadeChange = true; 983 continue; 984 } 985 } 986 987 // Remove any dead non-memory-mutating instructions. 988 if (isInstructionTriviallyDead(&*BBI, TLI)) { 989 LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: " 990 << *&*BBI << '\n'); 991 deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, ThrowableInst, 992 &DeadStackObjects); 993 ++NumFastOther; 994 MadeChange = true; 995 continue; 996 } 997 998 if (isa<AllocaInst>(BBI)) { 999 // Remove allocas from the list of dead stack objects; there can't be 1000 // any references before the definition. 1001 DeadStackObjects.remove(&*BBI); 1002 continue; 1003 } 1004 1005 if (auto *Call = dyn_cast<CallBase>(&*BBI)) { 1006 // Remove allocation function calls from the list of dead stack objects; 1007 // there can't be any references before the definition. 1008 if (isAllocLikeFn(&*BBI, TLI)) 1009 DeadStackObjects.remove(&*BBI); 1010 1011 // If this call does not access memory, it can't be loading any of our 1012 // pointers. 1013 if (AA->doesNotAccessMemory(Call)) 1014 continue; 1015 1016 // If the call might load from any of our allocas, then any store above 1017 // the call is live. 1018 DeadStackObjects.remove_if([&](const Value *I) { 1019 // See if the call site touches the value. 1020 return isRefSet(AA->getModRefInfo( 1021 Call, I, getPointerSize(I, DL, *TLI, BB.getParent()))); 1022 }); 1023 1024 // If all of the allocas were clobbered by the call then we're not going 1025 // to find anything else to process. 1026 if (DeadStackObjects.empty()) 1027 break; 1028 1029 continue; 1030 } 1031 1032 // We can remove the dead stores, irrespective of the fence and its ordering 1033 // (release/acquire/seq_cst). Fences only constraints the ordering of 1034 // already visible stores, it does not make a store visible to other 1035 // threads. So, skipping over a fence does not change a store from being 1036 // dead. 1037 if (isa<FenceInst>(*BBI)) 1038 continue; 1039 1040 MemoryLocation LoadedLoc; 1041 1042 // If we encounter a use of the pointer, it is no longer considered dead 1043 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { 1044 if (!L->isUnordered()) // Be conservative with atomic/volatile load 1045 break; 1046 LoadedLoc = MemoryLocation::get(L); 1047 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { 1048 LoadedLoc = MemoryLocation::get(V); 1049 } else if (!BBI->mayReadFromMemory()) { 1050 // Instruction doesn't read memory. Note that stores that weren't removed 1051 // above will hit this case. 1052 continue; 1053 } else { 1054 // Unknown inst; assume it clobbers everything. 1055 break; 1056 } 1057 1058 // Remove any allocas from the DeadPointer set that are loaded, as this 1059 // makes any stores above the access live. 1060 removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent()); 1061 1062 // If all of the allocas were clobbered by the access then we're not going 1063 // to find anything else to process. 1064 if (DeadStackObjects.empty()) 1065 break; 1066 } 1067 1068 return MadeChange; 1069 } 1070 1071 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset, 1072 uint64_t &EarlierSize, int64_t LaterOffset, 1073 uint64_t LaterSize, bool IsOverwriteEnd) { 1074 // TODO: base this on the target vector size so that if the earlier 1075 // store was too small to get vector writes anyway then its likely 1076 // a good idea to shorten it 1077 // Power of 2 vector writes are probably always a bad idea to optimize 1078 // as any store/memset/memcpy is likely using vector instructions so 1079 // shortening it to not vector size is likely to be slower 1080 auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite); 1081 unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment(); 1082 if (!IsOverwriteEnd) 1083 LaterOffset = int64_t(LaterOffset + LaterSize); 1084 1085 if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) && 1086 !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0)) 1087 return false; 1088 1089 int64_t NewLength = IsOverwriteEnd 1090 ? LaterOffset - EarlierOffset 1091 : EarlierSize - (LaterOffset - EarlierOffset); 1092 1093 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) { 1094 // When shortening an atomic memory intrinsic, the newly shortened 1095 // length must remain an integer multiple of the element size. 1096 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 1097 if (0 != NewLength % ElementSize) 1098 return false; 1099 } 1100 1101 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 1102 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " 1103 << *EarlierWrite << "\n KILLER (offset " << LaterOffset 1104 << ", " << EarlierSize << ")\n"); 1105 1106 Value *EarlierWriteLength = EarlierIntrinsic->getLength(); 1107 Value *TrimmedLength = 1108 ConstantInt::get(EarlierWriteLength->getType(), NewLength); 1109 EarlierIntrinsic->setLength(TrimmedLength); 1110 1111 EarlierSize = NewLength; 1112 if (!IsOverwriteEnd) { 1113 int64_t OffsetMoved = (LaterOffset - EarlierOffset); 1114 Value *Indices[1] = { 1115 ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)}; 1116 GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds( 1117 EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(), 1118 EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite); 1119 NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc()); 1120 EarlierIntrinsic->setDest(NewDestGEP); 1121 EarlierOffset = EarlierOffset + OffsetMoved; 1122 } 1123 return true; 1124 } 1125 1126 static bool tryToShortenEnd(Instruction *EarlierWrite, 1127 OverlapIntervalsTy &IntervalMap, 1128 int64_t &EarlierStart, uint64_t &EarlierSize) { 1129 if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite)) 1130 return false; 1131 1132 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 1133 int64_t LaterStart = OII->second; 1134 uint64_t LaterSize = OII->first - LaterStart; 1135 1136 assert(OII->first - LaterStart >= 0 && "Size expected to be positive"); 1137 1138 if (LaterStart > EarlierStart && 1139 // Note: "LaterStart - EarlierStart" is known to be positive due to 1140 // preceding check. 1141 (uint64_t)(LaterStart - EarlierStart) < EarlierSize && 1142 // Note: "EarlierSize - (uint64_t)(LaterStart - EarlierStart)" is known to 1143 // be non negative due to preceding checks. 1144 LaterSize >= EarlierSize - (uint64_t)(LaterStart - EarlierStart)) { 1145 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, 1146 LaterSize, true)) { 1147 IntervalMap.erase(OII); 1148 return true; 1149 } 1150 } 1151 return false; 1152 } 1153 1154 static bool tryToShortenBegin(Instruction *EarlierWrite, 1155 OverlapIntervalsTy &IntervalMap, 1156 int64_t &EarlierStart, uint64_t &EarlierSize) { 1157 if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite)) 1158 return false; 1159 1160 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 1161 int64_t LaterStart = OII->second; 1162 uint64_t LaterSize = OII->first - LaterStart; 1163 1164 assert(OII->first - LaterStart >= 0 && "Size expected to be positive"); 1165 1166 if (LaterStart <= EarlierStart && 1167 // Note: "EarlierStart - LaterStart" is known to be non negative due to 1168 // preceding check. 1169 LaterSize > (uint64_t)(EarlierStart - LaterStart)) { 1170 // Note: "LaterSize - (uint64_t)(EarlierStart - LaterStart)" is known to be 1171 // positive due to preceding checks. 1172 assert(LaterSize - (uint64_t)(EarlierStart - LaterStart) < EarlierSize && 1173 "Should have been handled as OW_Complete"); 1174 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, 1175 LaterSize, false)) { 1176 IntervalMap.erase(OII); 1177 return true; 1178 } 1179 } 1180 return false; 1181 } 1182 1183 static bool removePartiallyOverlappedStores(const DataLayout &DL, 1184 InstOverlapIntervalsTy &IOL, 1185 const TargetLibraryInfo &TLI) { 1186 bool Changed = false; 1187 for (auto OI : IOL) { 1188 Instruction *EarlierWrite = OI.first; 1189 MemoryLocation Loc = getLocForWrite(EarlierWrite, TLI); 1190 assert(isRemovable(EarlierWrite) && "Expect only removable instruction"); 1191 1192 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 1193 int64_t EarlierStart = 0; 1194 uint64_t EarlierSize = Loc.Size.getValue(); 1195 GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL); 1196 OverlapIntervalsTy &IntervalMap = OI.second; 1197 Changed |= 1198 tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); 1199 if (IntervalMap.empty()) 1200 continue; 1201 Changed |= 1202 tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); 1203 } 1204 return Changed; 1205 } 1206 1207 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI, 1208 AliasAnalysis *AA, MemoryDependenceResults *MD, 1209 const DataLayout &DL, 1210 const TargetLibraryInfo *TLI, 1211 InstOverlapIntervalsTy &IOL, 1212 MapVector<Instruction *, bool> &ThrowableInst, 1213 DominatorTree *DT) { 1214 // Must be a store instruction. 1215 StoreInst *SI = dyn_cast<StoreInst>(Inst); 1216 if (!SI) 1217 return false; 1218 1219 // If we're storing the same value back to a pointer that we just loaded from, 1220 // then the store can be removed. 1221 if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) { 1222 if (SI->getPointerOperand() == DepLoad->getPointerOperand() && 1223 isRemovable(SI) && 1224 memoryIsNotModifiedBetween(DepLoad, SI, *AA, DL, DT)) { 1225 1226 LLVM_DEBUG( 1227 dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: " 1228 << *DepLoad << "\n STORE: " << *SI << '\n'); 1229 1230 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst); 1231 ++NumRedundantStores; 1232 return true; 1233 } 1234 } 1235 1236 // Remove null stores into the calloc'ed objects 1237 Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand()); 1238 if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) { 1239 Instruction *UnderlyingPointer = 1240 dyn_cast<Instruction>(getUnderlyingObject(SI->getPointerOperand())); 1241 1242 if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) && 1243 memoryIsNotModifiedBetween(UnderlyingPointer, SI, *AA, DL, DT)) { 1244 LLVM_DEBUG( 1245 dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: " 1246 << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n'); 1247 1248 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, ThrowableInst); 1249 ++NumRedundantStores; 1250 return true; 1251 } 1252 } 1253 return false; 1254 } 1255 1256 template <typename AATy> 1257 static Constant *tryToMergePartialOverlappingStores( 1258 StoreInst *Earlier, StoreInst *Later, int64_t InstWriteOffset, 1259 int64_t DepWriteOffset, const DataLayout &DL, AATy &AA, DominatorTree *DT) { 1260 1261 if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) && 1262 DL.typeSizeEqualsStoreSize(Earlier->getValueOperand()->getType()) && 1263 Later && isa<ConstantInt>(Later->getValueOperand()) && 1264 DL.typeSizeEqualsStoreSize(Later->getValueOperand()->getType()) && 1265 memoryIsNotModifiedBetween(Earlier, Later, AA, DL, DT)) { 1266 // If the store we find is: 1267 // a) partially overwritten by the store to 'Loc' 1268 // b) the later store is fully contained in the earlier one and 1269 // c) they both have a constant value 1270 // d) none of the two stores need padding 1271 // Merge the two stores, replacing the earlier store's value with a 1272 // merge of both values. 1273 // TODO: Deal with other constant types (vectors, etc), and probably 1274 // some mem intrinsics (if needed) 1275 1276 APInt EarlierValue = 1277 cast<ConstantInt>(Earlier->getValueOperand())->getValue(); 1278 APInt LaterValue = cast<ConstantInt>(Later->getValueOperand())->getValue(); 1279 unsigned LaterBits = LaterValue.getBitWidth(); 1280 assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth()); 1281 LaterValue = LaterValue.zext(EarlierValue.getBitWidth()); 1282 1283 // Offset of the smaller store inside the larger store 1284 unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8; 1285 unsigned LShiftAmount = DL.isBigEndian() ? EarlierValue.getBitWidth() - 1286 BitOffsetDiff - LaterBits 1287 : BitOffsetDiff; 1288 APInt Mask = APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount, 1289 LShiftAmount + LaterBits); 1290 // Clear the bits we'll be replacing, then OR with the smaller 1291 // store, shifted appropriately. 1292 APInt Merged = (EarlierValue & ~Mask) | (LaterValue << LShiftAmount); 1293 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *Earlier 1294 << "\n Later: " << *Later 1295 << "\n Merged Value: " << Merged << '\n'); 1296 return ConstantInt::get(Earlier->getValueOperand()->getType(), Merged); 1297 } 1298 return nullptr; 1299 } 1300 1301 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA, 1302 MemoryDependenceResults *MD, DominatorTree *DT, 1303 const TargetLibraryInfo *TLI) { 1304 const DataLayout &DL = BB.getModule()->getDataLayout(); 1305 bool MadeChange = false; 1306 1307 MapVector<Instruction *, bool> ThrowableInst; 1308 1309 // A map of interval maps representing partially-overwritten value parts. 1310 InstOverlapIntervalsTy IOL; 1311 1312 // Do a top-down walk on the BB. 1313 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { 1314 // Handle 'free' calls specially. 1315 if (CallInst *F = isFreeCall(&*BBI, TLI)) { 1316 MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, ThrowableInst); 1317 // Increment BBI after handleFree has potentially deleted instructions. 1318 // This ensures we maintain a valid iterator. 1319 ++BBI; 1320 continue; 1321 } 1322 1323 Instruction *Inst = &*BBI++; 1324 1325 if (Inst->mayThrow()) { 1326 ThrowableInst[Inst] = true; 1327 continue; 1328 } 1329 1330 // Check to see if Inst writes to memory. If not, continue. 1331 if (!hasAnalyzableMemoryWrite(Inst, *TLI)) 1332 continue; 1333 1334 // eliminateNoopStore will update in iterator, if necessary. 1335 if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, 1336 ThrowableInst, DT)) { 1337 MadeChange = true; 1338 continue; 1339 } 1340 1341 // If we find something that writes memory, get its memory dependence. 1342 MemDepResult InstDep = MD->getDependency(Inst); 1343 1344 // Ignore any store where we can't find a local dependence. 1345 // FIXME: cross-block DSE would be fun. :) 1346 if (!InstDep.isDef() && !InstDep.isClobber()) 1347 continue; 1348 1349 // Figure out what location is being stored to. 1350 MemoryLocation Loc = getLocForWrite(Inst, *TLI); 1351 1352 // If we didn't get a useful location, fail. 1353 if (!Loc.Ptr) 1354 continue; 1355 1356 // Loop until we find a store we can eliminate or a load that 1357 // invalidates the analysis. Without an upper bound on the number of 1358 // instructions examined, this analysis can become very time-consuming. 1359 // However, the potential gain diminishes as we process more instructions 1360 // without eliminating any of them. Therefore, we limit the number of 1361 // instructions we look at. 1362 auto Limit = MD->getDefaultBlockScanLimit(); 1363 while (InstDep.isDef() || InstDep.isClobber()) { 1364 // Get the memory clobbered by the instruction we depend on. MemDep will 1365 // skip any instructions that 'Loc' clearly doesn't interact with. If we 1366 // end up depending on a may- or must-aliased load, then we can't optimize 1367 // away the store and we bail out. However, if we depend on something 1368 // that overwrites the memory location we *can* potentially optimize it. 1369 // 1370 // Find out what memory location the dependent instruction stores. 1371 Instruction *DepWrite = InstDep.getInst(); 1372 if (!hasAnalyzableMemoryWrite(DepWrite, *TLI)) 1373 break; 1374 MemoryLocation DepLoc = getLocForWrite(DepWrite, *TLI); 1375 // If we didn't get a useful location, or if it isn't a size, bail out. 1376 if (!DepLoc.Ptr) 1377 break; 1378 1379 // Find the last throwable instruction not removed by call to 1380 // deleteDeadInstruction. 1381 Instruction *LastThrowing = nullptr; 1382 if (!ThrowableInst.empty()) 1383 LastThrowing = ThrowableInst.back().first; 1384 1385 // Make sure we don't look past a call which might throw. This is an 1386 // issue because MemoryDependenceAnalysis works in the wrong direction: 1387 // it finds instructions which dominate the current instruction, rather than 1388 // instructions which are post-dominated by the current instruction. 1389 // 1390 // If the underlying object is a non-escaping memory allocation, any store 1391 // to it is dead along the unwind edge. Otherwise, we need to preserve 1392 // the store. 1393 if (LastThrowing && DepWrite->comesBefore(LastThrowing)) { 1394 const Value *Underlying = getUnderlyingObject(DepLoc.Ptr); 1395 bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying); 1396 if (!IsStoreDeadOnUnwind) { 1397 // We're looking for a call to an allocation function 1398 // where the allocation doesn't escape before the last 1399 // throwing instruction; PointerMayBeCaptured 1400 // reasonably fast approximation. 1401 IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) && 1402 !PointerMayBeCaptured(Underlying, false, true); 1403 } 1404 if (!IsStoreDeadOnUnwind) 1405 break; 1406 } 1407 1408 // If we find a write that is a) removable (i.e., non-volatile), b) is 1409 // completely obliterated by the store to 'Loc', and c) which we know that 1410 // 'Inst' doesn't load from, then we can remove it. 1411 // Also try to merge two stores if a later one only touches memory written 1412 // to by the earlier one. 1413 if (isRemovable(DepWrite) && 1414 !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) { 1415 int64_t InstWriteOffset, DepWriteOffset; 1416 OverwriteResult OR = isOverwrite(Inst, DepWrite, Loc, DepLoc, DL, *TLI, 1417 DepWriteOffset, InstWriteOffset, *AA, 1418 BB.getParent()); 1419 if (OR == OW_MaybePartial) 1420 OR = isPartialOverwrite(Loc, DepLoc, DepWriteOffset, InstWriteOffset, 1421 DepWrite, IOL); 1422 1423 if (OR == OW_Complete) { 1424 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite 1425 << "\n KILLER: " << *Inst << '\n'); 1426 1427 // Delete the store and now-dead instructions that feed it. 1428 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, 1429 ThrowableInst); 1430 ++NumFastStores; 1431 MadeChange = true; 1432 1433 // We erased DepWrite; start over. 1434 InstDep = MD->getDependency(Inst); 1435 continue; 1436 } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) || 1437 ((OR == OW_Begin && 1438 isShortenableAtTheBeginning(DepWrite)))) { 1439 assert(!EnablePartialOverwriteTracking && "Do not expect to perform " 1440 "when partial-overwrite " 1441 "tracking is enabled"); 1442 // The overwrite result is known, so these must be known, too. 1443 uint64_t EarlierSize = DepLoc.Size.getValue(); 1444 uint64_t LaterSize = Loc.Size.getValue(); 1445 bool IsOverwriteEnd = (OR == OW_End); 1446 MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize, 1447 InstWriteOffset, LaterSize, IsOverwriteEnd); 1448 } else if (EnablePartialStoreMerging && 1449 OR == OW_PartialEarlierWithFullLater) { 1450 auto *Earlier = dyn_cast<StoreInst>(DepWrite); 1451 auto *Later = dyn_cast<StoreInst>(Inst); 1452 if (Constant *C = tryToMergePartialOverlappingStores( 1453 Earlier, Later, InstWriteOffset, DepWriteOffset, DL, *AA, 1454 DT)) { 1455 auto *SI = new StoreInst( 1456 C, Earlier->getPointerOperand(), false, Earlier->getAlign(), 1457 Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite); 1458 1459 unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa, 1460 LLVMContext::MD_alias_scope, 1461 LLVMContext::MD_noalias, 1462 LLVMContext::MD_nontemporal}; 1463 SI->copyMetadata(*DepWrite, MDToKeep); 1464 ++NumModifiedStores; 1465 1466 // Delete the old stores and now-dead instructions that feed them. 1467 deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, 1468 ThrowableInst); 1469 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, 1470 ThrowableInst); 1471 MadeChange = true; 1472 1473 // We erased DepWrite and Inst (Loc); start over. 1474 break; 1475 } 1476 } 1477 } 1478 1479 // If this is a may-aliased store that is clobbering the store value, we 1480 // can keep searching past it for another must-aliased pointer that stores 1481 // to the same location. For example, in: 1482 // store -> P 1483 // store -> Q 1484 // store -> P 1485 // we can remove the first store to P even though we don't know if P and Q 1486 // alias. 1487 if (DepWrite == &BB.front()) break; 1488 1489 // Can't look past this instruction if it might read 'Loc'. 1490 if (isRefSet(AA->getModRefInfo(DepWrite, Loc))) 1491 break; 1492 1493 InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false, 1494 DepWrite->getIterator(), &BB, 1495 /*QueryInst=*/ nullptr, &Limit); 1496 } 1497 } 1498 1499 if (EnablePartialOverwriteTracking) 1500 MadeChange |= removePartiallyOverlappedStores(DL, IOL, *TLI); 1501 1502 // If this block ends in a return, unwind, or unreachable, all allocas are 1503 // dead at its end, which means stores to them are also dead. 1504 if (BB.getTerminator()->getNumSuccessors() == 0) 1505 MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, ThrowableInst); 1506 1507 return MadeChange; 1508 } 1509 1510 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA, 1511 MemoryDependenceResults *MD, DominatorTree *DT, 1512 const TargetLibraryInfo *TLI) { 1513 bool MadeChange = false; 1514 for (BasicBlock &BB : F) 1515 // Only check non-dead blocks. Dead blocks may have strange pointer 1516 // cycles that will confuse alias analysis. 1517 if (DT->isReachableFromEntry(&BB)) 1518 MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI); 1519 1520 return MadeChange; 1521 } 1522 1523 namespace { 1524 //============================================================================= 1525 // MemorySSA backed dead store elimination. 1526 // 1527 // The code below implements dead store elimination using MemorySSA. It uses 1528 // the following general approach: given a MemoryDef, walk upwards to find 1529 // clobbering MemoryDefs that may be killed by the starting def. Then check 1530 // that there are no uses that may read the location of the original MemoryDef 1531 // in between both MemoryDefs. A bit more concretely: 1532 // 1533 // For all MemoryDefs StartDef: 1534 // 1. Get the next dominating clobbering MemoryDef (EarlierAccess) by walking 1535 // upwards. 1536 // 2. Check that there are no reads between EarlierAccess and the StartDef by 1537 // checking all uses starting at EarlierAccess and walking until we see 1538 // StartDef. 1539 // 3. For each found CurrentDef, check that: 1540 // 1. There are no barrier instructions between CurrentDef and StartDef (like 1541 // throws or stores with ordering constraints). 1542 // 2. StartDef is executed whenever CurrentDef is executed. 1543 // 3. StartDef completely overwrites CurrentDef. 1544 // 4. Erase CurrentDef from the function and MemorySSA. 1545 1546 // Returns true if \p I is an intrisnic that does not read or write memory. 1547 bool isNoopIntrinsic(Instruction *I) { 1548 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1549 switch (II->getIntrinsicID()) { 1550 case Intrinsic::lifetime_start: 1551 case Intrinsic::lifetime_end: 1552 case Intrinsic::invariant_end: 1553 case Intrinsic::launder_invariant_group: 1554 case Intrinsic::assume: 1555 return true; 1556 case Intrinsic::dbg_addr: 1557 case Intrinsic::dbg_declare: 1558 case Intrinsic::dbg_label: 1559 case Intrinsic::dbg_value: 1560 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 1561 default: 1562 return false; 1563 } 1564 } 1565 return false; 1566 } 1567 1568 // Check if we can ignore \p D for DSE. 1569 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) { 1570 Instruction *DI = D->getMemoryInst(); 1571 // Calls that only access inaccessible memory cannot read or write any memory 1572 // locations we consider for elimination. 1573 if (auto *CB = dyn_cast<CallBase>(DI)) 1574 if (CB->onlyAccessesInaccessibleMemory()) 1575 return true; 1576 1577 // We can eliminate stores to locations not visible to the caller across 1578 // throwing instructions. 1579 if (DI->mayThrow() && !DefVisibleToCaller) 1580 return true; 1581 1582 // We can remove the dead stores, irrespective of the fence and its ordering 1583 // (release/acquire/seq_cst). Fences only constraints the ordering of 1584 // already visible stores, it does not make a store visible to other 1585 // threads. So, skipping over a fence does not change a store from being 1586 // dead. 1587 if (isa<FenceInst>(DI)) 1588 return true; 1589 1590 // Skip intrinsics that do not really read or modify memory. 1591 if (isNoopIntrinsic(D->getMemoryInst())) 1592 return true; 1593 1594 return false; 1595 } 1596 1597 struct DSEState { 1598 Function &F; 1599 AliasAnalysis &AA; 1600 1601 /// The single BatchAA instance that is used to cache AA queries. It will 1602 /// not be invalidated over the whole run. This is safe, because: 1603 /// 1. Only memory writes are removed, so the alias cache for memory 1604 /// locations remains valid. 1605 /// 2. No new instructions are added (only instructions removed), so cached 1606 /// information for a deleted value cannot be accessed by a re-used new 1607 /// value pointer. 1608 BatchAAResults BatchAA; 1609 1610 MemorySSA &MSSA; 1611 DominatorTree &DT; 1612 PostDominatorTree &PDT; 1613 const TargetLibraryInfo &TLI; 1614 const DataLayout &DL; 1615 1616 // All MemoryDefs that potentially could kill other MemDefs. 1617 SmallVector<MemoryDef *, 64> MemDefs; 1618 // Any that should be skipped as they are already deleted 1619 SmallPtrSet<MemoryAccess *, 4> SkipStores; 1620 // Keep track of all of the objects that are invisible to the caller before 1621 // the function returns. 1622 // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet; 1623 DenseMap<const Value *, bool> InvisibleToCallerBeforeRet; 1624 // Keep track of all of the objects that are invisible to the caller after 1625 // the function returns. 1626 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 1627 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 1628 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 1629 // Post-order numbers for each basic block. Used to figure out if memory 1630 // accesses are executed before another access. 1631 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 1632 1633 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 1634 /// basic block. 1635 DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs; 1636 1637 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 1638 PostDominatorTree &PDT, const TargetLibraryInfo &TLI) 1639 : F(F), AA(AA), BatchAA(AA), MSSA(MSSA), DT(DT), PDT(PDT), TLI(TLI), 1640 DL(F.getParent()->getDataLayout()) {} 1641 1642 static DSEState get(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1643 DominatorTree &DT, PostDominatorTree &PDT, 1644 const TargetLibraryInfo &TLI) { 1645 DSEState State(F, AA, MSSA, DT, PDT, TLI); 1646 // Collect blocks with throwing instructions not modeled in MemorySSA and 1647 // alloc-like objects. 1648 unsigned PO = 0; 1649 for (BasicBlock *BB : post_order(&F)) { 1650 State.PostOrderNumbers[BB] = PO++; 1651 for (Instruction &I : *BB) { 1652 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 1653 if (I.mayThrow() && !MA) 1654 State.ThrowingBlocks.insert(I.getParent()); 1655 1656 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 1657 if (MD && State.MemDefs.size() < MemorySSADefsPerBlockLimit && 1658 (State.getLocForWriteEx(&I) || State.isMemTerminatorInst(&I))) 1659 State.MemDefs.push_back(MD); 1660 } 1661 } 1662 1663 // Treat byval or inalloca arguments the same as Allocas, stores to them are 1664 // dead at the end of the function. 1665 for (Argument &AI : F.args()) 1666 if (AI.hasPassPointeeByValueCopyAttr()) { 1667 // For byval, the caller doesn't know the address of the allocation. 1668 if (AI.hasByValAttr()) 1669 State.InvisibleToCallerBeforeRet.insert({&AI, true}); 1670 State.InvisibleToCallerAfterRet.insert({&AI, true}); 1671 } 1672 1673 return State; 1674 } 1675 1676 bool isInvisibleToCallerAfterRet(const Value *V) { 1677 if (isa<AllocaInst>(V)) 1678 return true; 1679 auto I = InvisibleToCallerAfterRet.insert({V, false}); 1680 if (I.second) { 1681 if (!isInvisibleToCallerBeforeRet(V)) { 1682 I.first->second = false; 1683 } else { 1684 auto *Inst = dyn_cast<Instruction>(V); 1685 if (Inst && isAllocLikeFn(Inst, &TLI)) 1686 I.first->second = !PointerMayBeCaptured(V, true, false); 1687 } 1688 } 1689 return I.first->second; 1690 } 1691 1692 bool isInvisibleToCallerBeforeRet(const Value *V) { 1693 if (isa<AllocaInst>(V)) 1694 return true; 1695 auto I = InvisibleToCallerBeforeRet.insert({V, false}); 1696 if (I.second) { 1697 auto *Inst = dyn_cast<Instruction>(V); 1698 if (Inst && isAllocLikeFn(Inst, &TLI)) 1699 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1700 // with the killing MemoryDef. But we refrain from doing so for now to 1701 // limit compile-time and this does not cause any changes to the number 1702 // of stores removed on a large test set in practice. 1703 I.first->second = !PointerMayBeCaptured(V, false, true); 1704 } 1705 return I.first->second; 1706 } 1707 1708 Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const { 1709 if (!I->mayWriteToMemory()) 1710 return None; 1711 1712 if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I)) 1713 return {MemoryLocation::getForDest(MTI)}; 1714 1715 if (auto *CB = dyn_cast<CallBase>(I)) { 1716 // If the functions may write to memory we do not know about, bail out. 1717 if (!CB->onlyAccessesArgMemory() && 1718 !CB->onlyAccessesInaccessibleMemOrArgMem()) 1719 return None; 1720 1721 LibFunc LF; 1722 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 1723 switch (LF) { 1724 case LibFunc_strcpy: 1725 case LibFunc_strncpy: 1726 case LibFunc_strcat: 1727 case LibFunc_strncat: 1728 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1729 default: 1730 break; 1731 } 1732 } 1733 switch (CB->getIntrinsicID()) { 1734 case Intrinsic::init_trampoline: 1735 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1736 case Intrinsic::masked_store: 1737 return {MemoryLocation::getForArgument(CB, 1, TLI)}; 1738 default: 1739 break; 1740 } 1741 return None; 1742 } 1743 1744 return MemoryLocation::getOrNone(I); 1745 } 1746 1747 /// Returns true if \p UseInst completely overwrites \p DefLoc 1748 /// (stored by \p DefInst). 1749 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1750 Instruction *UseInst) { 1751 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1752 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1753 // MemoryDef. 1754 if (!UseInst->mayWriteToMemory()) 1755 return false; 1756 1757 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1758 if (CB->onlyAccessesInaccessibleMemory()) 1759 return false; 1760 1761 int64_t InstWriteOffset, DepWriteOffset; 1762 if (auto CC = getLocForWriteEx(UseInst)) 1763 return isOverwrite(UseInst, DefInst, *CC, DefLoc, DL, TLI, DepWriteOffset, 1764 InstWriteOffset, BatchAA, &F) == OW_Complete; 1765 return false; 1766 } 1767 1768 /// Returns true if \p Def is not read before returning from the function. 1769 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1770 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1771 << *Def->getMemoryInst() 1772 << ") is at the end the function \n"); 1773 1774 auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst()); 1775 if (!MaybeLoc) { 1776 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1777 return false; 1778 } 1779 1780 SmallVector<MemoryAccess *, 4> WorkList; 1781 SmallPtrSet<MemoryAccess *, 8> Visited; 1782 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1783 if (!Visited.insert(Acc).second) 1784 return; 1785 for (Use &U : Acc->uses()) 1786 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1787 }; 1788 PushMemUses(Def); 1789 for (unsigned I = 0; I < WorkList.size(); I++) { 1790 if (WorkList.size() >= MemorySSAScanLimit) { 1791 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1792 return false; 1793 } 1794 1795 MemoryAccess *UseAccess = WorkList[I]; 1796 // Simply adding the users of MemoryPhi to the worklist is not enough, 1797 // because we might miss read clobbers in different iterations of a loop, 1798 // for example. 1799 // TODO: Add support for phi translation to handle the loop case. 1800 if (isa<MemoryPhi>(UseAccess)) 1801 return false; 1802 1803 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1804 // of times this is called and/or caching it. 1805 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1806 if (isReadClobber(*MaybeLoc, UseInst)) { 1807 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1808 return false; 1809 } 1810 1811 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1812 PushMemUses(UseDef); 1813 } 1814 return true; 1815 } 1816 1817 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1818 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1819 /// indicating whether \p I is a free-like call. 1820 Optional<std::pair<MemoryLocation, bool>> 1821 getLocForTerminator(Instruction *I) const { 1822 uint64_t Len; 1823 Value *Ptr; 1824 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1825 m_Value(Ptr)))) 1826 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1827 1828 if (auto *CB = dyn_cast<CallBase>(I)) { 1829 if (isFreeCall(I, &TLI)) 1830 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1831 true)}; 1832 } 1833 1834 return None; 1835 } 1836 1837 /// Returns true if \p I is a memory terminator instruction like 1838 /// llvm.lifetime.end or free. 1839 bool isMemTerminatorInst(Instruction *I) const { 1840 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1841 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1842 isFreeCall(I, &TLI); 1843 } 1844 1845 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1846 /// instruction \p AccessI. 1847 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1848 Instruction *MaybeTerm) { 1849 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1850 getLocForTerminator(MaybeTerm); 1851 1852 if (!MaybeTermLoc) 1853 return false; 1854 1855 // If the terminator is a free-like call, all accesses to the underlying 1856 // object can be considered terminated. 1857 if (getUnderlyingObject(Loc.Ptr) != 1858 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1859 return false; 1860 1861 auto TermLoc = MaybeTermLoc->first; 1862 if (MaybeTermLoc->second) { 1863 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1864 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1865 } 1866 int64_t InstWriteOffset, DepWriteOffset; 1867 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, DL, TLI, 1868 DepWriteOffset, InstWriteOffset, BatchAA, 1869 &F) == OW_Complete; 1870 } 1871 1872 // Returns true if \p Use may read from \p DefLoc. 1873 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1874 if (isNoopIntrinsic(UseInst)) 1875 return false; 1876 1877 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1878 // treated as read clobber. 1879 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1880 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1881 1882 if (!UseInst->mayReadFromMemory()) 1883 return false; 1884 1885 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1886 if (CB->onlyAccessesInaccessibleMemory()) 1887 return false; 1888 1889 // NOTE: For calls, the number of stores removed could be slightly improved 1890 // by using AA.callCapturesBefore(UseInst, DefLoc, &DT), but that showed to 1891 // be expensive compared to the benefits in practice. For now, avoid more 1892 // expensive analysis to limit compile-time. 1893 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1894 } 1895 1896 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1897 /// loop. In particular, this guarantees that it only references a single 1898 /// MemoryLocation during execution of the containing function. 1899 bool IsGuaranteedLoopInvariant(Value *Ptr) { 1900 auto IsGuaranteedLoopInvariantBase = [this](Value *Ptr) { 1901 Ptr = Ptr->stripPointerCasts(); 1902 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1903 if (isa<AllocaInst>(Ptr)) 1904 return true; 1905 1906 if (isAllocLikeFn(I, &TLI)) 1907 return true; 1908 1909 return false; 1910 } 1911 return true; 1912 }; 1913 1914 Ptr = Ptr->stripPointerCasts(); 1915 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 1916 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 1917 GEP->hasAllConstantIndices(); 1918 } 1919 return IsGuaranteedLoopInvariantBase(Ptr); 1920 } 1921 1922 // Find a MemoryDef writing to \p DefLoc and dominating \p StartAccess, with 1923 // no read access between them or on any other path to a function exit block 1924 // if \p DefLoc is not accessible after the function returns. If there is no 1925 // such MemoryDef, return None. The returned value may not (completely) 1926 // overwrite \p DefLoc. Currently we bail out when we encounter an aliasing 1927 // MemoryUse (read). 1928 Optional<MemoryAccess *> 1929 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1930 const MemoryLocation &DefLoc, const Value *DefUO, 1931 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1932 bool IsMemTerm, unsigned &PartialLimit) { 1933 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1934 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1935 return None; 1936 } 1937 1938 MemoryAccess *Current = StartAccess; 1939 Instruction *KillingI = KillingDef->getMemoryInst(); 1940 bool StepAgain; 1941 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1942 1943 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1944 Optional<MemoryLocation> CurrentLoc; 1945 do { 1946 StepAgain = false; 1947 LLVM_DEBUG({ 1948 dbgs() << " visiting " << *Current; 1949 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1950 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1951 << ")"; 1952 dbgs() << "\n"; 1953 }); 1954 1955 // Reached TOP. 1956 if (MSSA.isLiveOnEntryDef(Current)) { 1957 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1958 return None; 1959 } 1960 1961 // Cost of a step. Accesses in the same block are more likely to be valid 1962 // candidates for elimination, hence consider them cheaper. 1963 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1964 ? MemorySSASameBBStepCost 1965 : MemorySSAOtherBBStepCost; 1966 if (WalkerStepLimit <= StepCost) { 1967 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1968 return None; 1969 } 1970 WalkerStepLimit -= StepCost; 1971 1972 // Return for MemoryPhis. They cannot be eliminated directly and the 1973 // caller is responsible for traversing them. 1974 if (isa<MemoryPhi>(Current)) { 1975 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1976 return Current; 1977 } 1978 1979 // Below, check if CurrentDef is a valid candidate to be eliminated by 1980 // KillingDef. If it is not, check the next candidate. 1981 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1982 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1983 1984 if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(DefUO))) { 1985 StepAgain = true; 1986 Current = CurrentDef->getDefiningAccess(); 1987 continue; 1988 } 1989 1990 // Before we try to remove anything, check for any extra throwing 1991 // instructions that block us from DSEing 1992 if (mayThrowBetween(KillingI, CurrentI, DefUO)) { 1993 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1994 return None; 1995 } 1996 1997 // Check for anything that looks like it will be a barrier to further 1998 // removal 1999 if (isDSEBarrier(DefUO, CurrentI)) { 2000 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 2001 return None; 2002 } 2003 2004 // If Current is known to be on path that reads DefLoc or is a read 2005 // clobber, bail out, as the path is not profitable. We skip this check 2006 // for intrinsic calls, because the code knows how to handle memcpy 2007 // intrinsics. 2008 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(DefLoc, CurrentI)) 2009 return None; 2010 2011 // Quick check if there are direct uses that are read-clobbers. 2012 if (any_of(Current->uses(), [this, &DefLoc, StartAccess](Use &U) { 2013 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 2014 return !MSSA.dominates(StartAccess, UseOrDef) && 2015 isReadClobber(DefLoc, UseOrDef->getMemoryInst()); 2016 return false; 2017 })) { 2018 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 2019 return None; 2020 } 2021 2022 // If Current cannot be analyzed or is not removable, check the next 2023 // candidate. 2024 if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI)) { 2025 StepAgain = true; 2026 Current = CurrentDef->getDefiningAccess(); 2027 continue; 2028 } 2029 2030 // If Current does not have an analyzable write location, skip it 2031 CurrentLoc = getLocForWriteEx(CurrentI); 2032 if (!CurrentLoc) { 2033 StepAgain = true; 2034 Current = CurrentDef->getDefiningAccess(); 2035 continue; 2036 } 2037 2038 // AliasAnalysis does not account for loops. Limit elimination to 2039 // candidates for which we can guarantee they always store to the same 2040 // memory location and not multiple locations in a loop. 2041 if (Current->getBlock() != KillingDef->getBlock() && 2042 !IsGuaranteedLoopInvariant(const_cast<Value *>(CurrentLoc->Ptr))) { 2043 StepAgain = true; 2044 Current = CurrentDef->getDefiningAccess(); 2045 WalkerStepLimit -= 1; 2046 continue; 2047 } 2048 2049 if (IsMemTerm) { 2050 // If the killing def is a memory terminator (e.g. lifetime.end), check 2051 // the next candidate if the current Current does not write the same 2052 // underlying object as the terminator. 2053 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 2054 StepAgain = true; 2055 Current = CurrentDef->getDefiningAccess(); 2056 } 2057 continue; 2058 } else { 2059 int64_t InstWriteOffset, DepWriteOffset; 2060 auto OR = isOverwrite(KillingI, CurrentI, DefLoc, *CurrentLoc, DL, TLI, 2061 DepWriteOffset, InstWriteOffset, BatchAA, &F); 2062 // If Current does not write to the same object as KillingDef, check 2063 // the next candidate. 2064 if (OR == OW_Unknown) { 2065 StepAgain = true; 2066 Current = CurrentDef->getDefiningAccess(); 2067 } else if (OR == OW_MaybePartial) { 2068 // If KillingDef only partially overwrites Current, check the next 2069 // candidate if the partial step limit is exceeded. This aggressively 2070 // limits the number of candidates for partial store elimination, 2071 // which are less likely to be removable in the end. 2072 if (PartialLimit <= 1) { 2073 StepAgain = true; 2074 Current = CurrentDef->getDefiningAccess(); 2075 WalkerStepLimit -= 1; 2076 continue; 2077 } 2078 PartialLimit -= 1; 2079 } 2080 } 2081 } while (StepAgain); 2082 2083 // Accesses to objects accessible after the function returns can only be 2084 // eliminated if the access is killed along all paths to the exit. Collect 2085 // the blocks with killing (=completely overwriting MemoryDefs) and check if 2086 // they cover all paths from EarlierAccess to any function exit. 2087 SmallPtrSet<Instruction *, 16> KillingDefs; 2088 KillingDefs.insert(KillingDef->getMemoryInst()); 2089 MemoryAccess *EarlierAccess = Current; 2090 Instruction *EarlierMemInst = 2091 cast<MemoryDef>(EarlierAccess)->getMemoryInst(); 2092 LLVM_DEBUG(dbgs() << " Checking for reads of " << *EarlierAccess << " (" 2093 << *EarlierMemInst << ")\n"); 2094 2095 SmallSetVector<MemoryAccess *, 32> WorkList; 2096 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 2097 for (Use &U : Acc->uses()) 2098 WorkList.insert(cast<MemoryAccess>(U.getUser())); 2099 }; 2100 PushMemUses(EarlierAccess); 2101 2102 // Optimistically collect all accesses for reads. If we do not find any 2103 // read clobbers, add them to the cache. 2104 SmallPtrSet<MemoryAccess *, 16> KnownNoReads; 2105 if (!EarlierMemInst->mayReadFromMemory()) 2106 KnownNoReads.insert(EarlierAccess); 2107 // Check if EarlierDef may be read. 2108 for (unsigned I = 0; I < WorkList.size(); I++) { 2109 MemoryAccess *UseAccess = WorkList[I]; 2110 2111 LLVM_DEBUG(dbgs() << " " << *UseAccess); 2112 // Bail out if the number of accesses to check exceeds the scan limit. 2113 if (ScanLimit < (WorkList.size() - I)) { 2114 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 2115 return None; 2116 } 2117 --ScanLimit; 2118 NumDomMemDefChecks++; 2119 KnownNoReads.insert(UseAccess); 2120 2121 if (isa<MemoryPhi>(UseAccess)) { 2122 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 2123 return DT.properlyDominates(KI->getParent(), 2124 UseAccess->getBlock()); 2125 })) { 2126 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 2127 continue; 2128 } 2129 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 2130 PushMemUses(UseAccess); 2131 continue; 2132 } 2133 2134 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 2135 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 2136 2137 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 2138 return DT.dominates(KI, UseInst); 2139 })) { 2140 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 2141 continue; 2142 } 2143 2144 // A memory terminator kills all preceeding MemoryDefs and all succeeding 2145 // MemoryAccesses. We do not have to check it's users. 2146 if (isMemTerminator(*CurrentLoc, EarlierMemInst, UseInst)) { 2147 LLVM_DEBUG( 2148 dbgs() 2149 << " ... skipping, memterminator invalidates following accesses\n"); 2150 continue; 2151 } 2152 2153 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 2154 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 2155 PushMemUses(UseAccess); 2156 continue; 2157 } 2158 2159 if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(DefUO)) { 2160 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 2161 return None; 2162 } 2163 2164 // Uses which may read the original MemoryDef mean we cannot eliminate the 2165 // original MD. Stop walk. 2166 if (isReadClobber(*CurrentLoc, UseInst)) { 2167 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 2168 return None; 2169 } 2170 2171 // For the KillingDef and EarlierAccess we only have to check if it reads 2172 // the memory location. 2173 // TODO: It would probably be better to check for self-reads before 2174 // calling the function. 2175 if (KillingDef == UseAccess || EarlierAccess == UseAccess) { 2176 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 2177 continue; 2178 } 2179 2180 // Check all uses for MemoryDefs, except for defs completely overwriting 2181 // the original location. Otherwise we have to check uses of *all* 2182 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 2183 // miss cases like the following 2184 // 1 = Def(LoE) ; <----- EarlierDef stores [0,1] 2185 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 2186 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 2187 // (The Use points to the *first* Def it may alias) 2188 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 2189 // stores [0,1] 2190 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 2191 if (isCompleteOverwrite(*CurrentLoc, EarlierMemInst, UseInst)) { 2192 if (!isInvisibleToCallerAfterRet(DefUO) && 2193 UseAccess != EarlierAccess) { 2194 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 2195 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 2196 PostOrderNumbers.find(EarlierAccess->getBlock())->second) { 2197 2198 LLVM_DEBUG(dbgs() 2199 << " ... found killing def " << *UseInst << "\n"); 2200 KillingDefs.insert(UseInst); 2201 } 2202 } 2203 } else 2204 PushMemUses(UseDef); 2205 } 2206 } 2207 2208 // For accesses to locations visible after the function returns, make sure 2209 // that the location is killed (=overwritten) along all paths from 2210 // EarlierAccess to the exit. 2211 if (!isInvisibleToCallerAfterRet(DefUO)) { 2212 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 2213 for (Instruction *KD : KillingDefs) 2214 KillingBlocks.insert(KD->getParent()); 2215 assert(!KillingBlocks.empty() && 2216 "Expected at least a single killing block"); 2217 2218 // Find the common post-dominator of all killing blocks. 2219 BasicBlock *CommonPred = *KillingBlocks.begin(); 2220 for (auto I = std::next(KillingBlocks.begin()), E = KillingBlocks.end(); 2221 I != E; I++) { 2222 if (!CommonPred) 2223 break; 2224 CommonPred = PDT.findNearestCommonDominator(CommonPred, *I); 2225 } 2226 2227 // If CommonPred is in the set of killing blocks, just check if it 2228 // post-dominates EarlierAccess. 2229 if (KillingBlocks.count(CommonPred)) { 2230 if (PDT.dominates(CommonPred, EarlierAccess->getBlock())) 2231 return {EarlierAccess}; 2232 return None; 2233 } 2234 2235 // If the common post-dominator does not post-dominate EarlierAccess, 2236 // there is a path from EarlierAccess to an exit not going through a 2237 // killing block. 2238 if (PDT.dominates(CommonPred, EarlierAccess->getBlock())) { 2239 SetVector<BasicBlock *> WorkList; 2240 2241 // If CommonPred is null, there are multiple exits from the function. 2242 // They all have to be added to the worklist. 2243 if (CommonPred) 2244 WorkList.insert(CommonPred); 2245 else 2246 for (BasicBlock *R : PDT.roots()) 2247 WorkList.insert(R); 2248 2249 NumCFGTries++; 2250 // Check if all paths starting from an exit node go through one of the 2251 // killing blocks before reaching EarlierAccess. 2252 for (unsigned I = 0; I < WorkList.size(); I++) { 2253 NumCFGChecks++; 2254 BasicBlock *Current = WorkList[I]; 2255 if (KillingBlocks.count(Current)) 2256 continue; 2257 if (Current == EarlierAccess->getBlock()) 2258 return None; 2259 2260 // EarlierAccess is reachable from the entry, so we don't have to 2261 // explore unreachable blocks further. 2262 if (!DT.isReachableFromEntry(Current)) 2263 continue; 2264 2265 for (BasicBlock *Pred : predecessors(Current)) 2266 WorkList.insert(Pred); 2267 2268 if (WorkList.size() >= MemorySSAPathCheckLimit) 2269 return None; 2270 } 2271 NumCFGSuccess++; 2272 return {EarlierAccess}; 2273 } 2274 return None; 2275 } 2276 2277 // No aliasing MemoryUses of EarlierAccess found, EarlierAccess is 2278 // potentially dead. 2279 return {EarlierAccess}; 2280 } 2281 2282 // Delete dead memory defs 2283 void deleteDeadInstruction(Instruction *SI) { 2284 MemorySSAUpdater Updater(&MSSA); 2285 SmallVector<Instruction *, 32> NowDeadInsts; 2286 NowDeadInsts.push_back(SI); 2287 --NumFastOther; 2288 2289 while (!NowDeadInsts.empty()) { 2290 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 2291 ++NumFastOther; 2292 2293 // Try to preserve debug information attached to the dead instruction. 2294 salvageDebugInfo(*DeadInst); 2295 salvageKnowledge(DeadInst); 2296 2297 // Remove the Instruction from MSSA. 2298 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 2299 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 2300 SkipStores.insert(MD); 2301 } 2302 Updater.removeMemoryAccess(MA); 2303 } 2304 2305 auto I = IOLs.find(DeadInst->getParent()); 2306 if (I != IOLs.end()) 2307 I->second.erase(DeadInst); 2308 // Remove its operands 2309 for (Use &O : DeadInst->operands()) 2310 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 2311 O = nullptr; 2312 if (isInstructionTriviallyDead(OpI, &TLI)) 2313 NowDeadInsts.push_back(OpI); 2314 } 2315 2316 DeadInst->eraseFromParent(); 2317 } 2318 } 2319 2320 // Check for any extra throws between SI and NI that block DSE. This only 2321 // checks extra maythrows (those that aren't MemoryDef's). MemoryDef that may 2322 // throw are handled during the walk from one def to the next. 2323 bool mayThrowBetween(Instruction *SI, Instruction *NI, 2324 const Value *SILocUnd) { 2325 // First see if we can ignore it by using the fact that SI is an 2326 // alloca/alloca like object that is not visible to the caller during 2327 // execution of the function. 2328 if (SILocUnd && isInvisibleToCallerBeforeRet(SILocUnd)) 2329 return false; 2330 2331 if (SI->getParent() == NI->getParent()) 2332 return ThrowingBlocks.count(SI->getParent()); 2333 return !ThrowingBlocks.empty(); 2334 } 2335 2336 // Check if \p NI acts as a DSE barrier for \p SI. The following instructions 2337 // act as barriers: 2338 // * A memory instruction that may throw and \p SI accesses a non-stack 2339 // object. 2340 // * Atomic stores stronger that monotonic. 2341 bool isDSEBarrier(const Value *SILocUnd, Instruction *NI) { 2342 // If NI may throw it acts as a barrier, unless we are to an alloca/alloca 2343 // like object that does not escape. 2344 if (NI->mayThrow() && !isInvisibleToCallerBeforeRet(SILocUnd)) 2345 return true; 2346 2347 // If NI is an atomic load/store stronger than monotonic, do not try to 2348 // eliminate/reorder it. 2349 if (NI->isAtomic()) { 2350 if (auto *LI = dyn_cast<LoadInst>(NI)) 2351 return isStrongerThanMonotonic(LI->getOrdering()); 2352 if (auto *SI = dyn_cast<StoreInst>(NI)) 2353 return isStrongerThanMonotonic(SI->getOrdering()); 2354 if (auto *ARMW = dyn_cast<AtomicRMWInst>(NI)) 2355 return isStrongerThanMonotonic(ARMW->getOrdering()); 2356 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(NI)) 2357 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 2358 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 2359 llvm_unreachable("other instructions should be skipped in MemorySSA"); 2360 } 2361 return false; 2362 } 2363 2364 /// Eliminate writes to objects that are not visible in the caller and are not 2365 /// accessed before returning from the function. 2366 bool eliminateDeadWritesAtEndOfFunction() { 2367 bool MadeChange = false; 2368 LLVM_DEBUG( 2369 dbgs() 2370 << "Trying to eliminate MemoryDefs at the end of the function\n"); 2371 for (int I = MemDefs.size() - 1; I >= 0; I--) { 2372 MemoryDef *Def = MemDefs[I]; 2373 if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst())) 2374 continue; 2375 2376 Instruction *DefI = Def->getMemoryInst(); 2377 SmallVector<const Value *, 4> Pointers; 2378 auto DefLoc = getLocForWriteEx(DefI); 2379 if (!DefLoc) 2380 continue; 2381 2382 // NOTE: Currently eliminating writes at the end of a function is limited 2383 // to MemoryDefs with a single underlying object, to save compile-time. In 2384 // practice it appears the case with multiple underlying objects is very 2385 // uncommon. If it turns out to be important, we can use 2386 // getUnderlyingObjects here instead. 2387 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 2388 if (!UO || !isInvisibleToCallerAfterRet(UO)) 2389 continue; 2390 2391 if (isWriteAtEndOfFunction(Def)) { 2392 // See through pointer-to-pointer bitcasts 2393 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 2394 "of the function\n"); 2395 deleteDeadInstruction(DefI); 2396 ++NumFastStores; 2397 MadeChange = true; 2398 } 2399 } 2400 return MadeChange; 2401 } 2402 2403 /// \returns true if \p Def is a no-op store, either because it 2404 /// directly stores back a loaded value or stores zero to a calloced object. 2405 bool storeIsNoop(MemoryDef *Def, const MemoryLocation &DefLoc, 2406 const Value *DefUO) { 2407 StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst()); 2408 if (!Store) 2409 return false; 2410 2411 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 2412 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 2413 // Get the defining access for the load. 2414 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 2415 // Fast path: the defining accesses are the same. 2416 if (LoadAccess == Def->getDefiningAccess()) 2417 return true; 2418 2419 // Look through phi accesses. Recursively scan all phi accesses by 2420 // adding them to a worklist. Bail when we run into a memory def that 2421 // does not match LoadAccess. 2422 SetVector<MemoryAccess *> ToCheck; 2423 MemoryAccess *Current = 2424 MSSA.getWalker()->getClobberingMemoryAccess(Def); 2425 // We don't want to bail when we run into the store memory def. But, 2426 // the phi access may point to it. So, pretend like we've already 2427 // checked it. 2428 ToCheck.insert(Def); 2429 ToCheck.insert(Current); 2430 // Start at current (1) to simulate already having checked Def. 2431 for (unsigned I = 1; I < ToCheck.size(); ++I) { 2432 Current = ToCheck[I]; 2433 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 2434 // Check all the operands. 2435 for (auto &Use : PhiAccess->incoming_values()) 2436 ToCheck.insert(cast<MemoryAccess>(&Use)); 2437 continue; 2438 } 2439 2440 // If we found a memory def, bail. This happens when we have an 2441 // unrelated write in between an otherwise noop store. 2442 assert(isa<MemoryDef>(Current) && 2443 "Only MemoryDefs should reach here."); 2444 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 2445 // We are searching for the definition of the store's destination. 2446 // So, if that is the same definition as the load, then this is a 2447 // noop. Otherwise, fail. 2448 if (LoadAccess != Current) 2449 return false; 2450 } 2451 return true; 2452 } 2453 } 2454 2455 Constant *StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 2456 if (StoredConstant && StoredConstant->isNullValue()) { 2457 auto *DefUOInst = dyn_cast<Instruction>(DefUO); 2458 if (DefUOInst && isCallocLikeFn(DefUOInst, &TLI)) { 2459 auto *UnderlyingDef = cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst)); 2460 // If UnderlyingDef is the clobbering access of Def, no instructions 2461 // between them can modify the memory location. 2462 auto *ClobberDef = 2463 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def); 2464 return UnderlyingDef == ClobberDef; 2465 } 2466 } 2467 return false; 2468 } 2469 }; 2470 2471 bool eliminateDeadStoresMemorySSA(Function &F, AliasAnalysis &AA, 2472 MemorySSA &MSSA, DominatorTree &DT, 2473 PostDominatorTree &PDT, 2474 const TargetLibraryInfo &TLI) { 2475 bool MadeChange = false; 2476 2477 DSEState State = DSEState::get(F, AA, MSSA, DT, PDT, TLI); 2478 // For each store: 2479 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 2480 MemoryDef *KillingDef = State.MemDefs[I]; 2481 if (State.SkipStores.count(KillingDef)) 2482 continue; 2483 Instruction *SI = KillingDef->getMemoryInst(); 2484 2485 Optional<MemoryLocation> MaybeSILoc; 2486 if (State.isMemTerminatorInst(SI)) 2487 MaybeSILoc = State.getLocForTerminator(SI).map( 2488 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 2489 else 2490 MaybeSILoc = State.getLocForWriteEx(SI); 2491 2492 if (!MaybeSILoc) { 2493 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 2494 << *SI << "\n"); 2495 continue; 2496 } 2497 MemoryLocation SILoc = *MaybeSILoc; 2498 assert(SILoc.Ptr && "SILoc should not be null"); 2499 const Value *SILocUnd = getUnderlyingObject(SILoc.Ptr); 2500 2501 MemoryAccess *Current = KillingDef; 2502 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 2503 << *KillingDef << " (" << *SI << ")\n"); 2504 2505 unsigned ScanLimit = MemorySSAScanLimit; 2506 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 2507 unsigned PartialLimit = MemorySSAPartialStoreLimit; 2508 // Worklist of MemoryAccesses that may be killed by KillingDef. 2509 SetVector<MemoryAccess *> ToCheck; 2510 2511 if (SILocUnd) 2512 ToCheck.insert(KillingDef->getDefiningAccess()); 2513 2514 bool Shortend = false; 2515 bool IsMemTerm = State.isMemTerminatorInst(SI); 2516 // Check if MemoryAccesses in the worklist are killed by KillingDef. 2517 for (unsigned I = 0; I < ToCheck.size(); I++) { 2518 Current = ToCheck[I]; 2519 if (State.SkipStores.count(Current)) 2520 continue; 2521 2522 Optional<MemoryAccess *> Next = State.getDomMemoryDef( 2523 KillingDef, Current, SILoc, SILocUnd, ScanLimit, WalkerStepLimit, 2524 IsMemTerm, PartialLimit); 2525 2526 if (!Next) { 2527 LLVM_DEBUG(dbgs() << " finished walk\n"); 2528 continue; 2529 } 2530 2531 MemoryAccess *EarlierAccess = *Next; 2532 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *EarlierAccess); 2533 if (isa<MemoryPhi>(EarlierAccess)) { 2534 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 2535 for (Value *V : cast<MemoryPhi>(EarlierAccess)->incoming_values()) { 2536 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2537 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2538 BasicBlock *PhiBlock = EarlierAccess->getBlock(); 2539 2540 // We only consider incoming MemoryAccesses that come before the 2541 // MemoryPhi. Otherwise we could discover candidates that do not 2542 // strictly dominate our starting def. 2543 if (State.PostOrderNumbers[IncomingBlock] > 2544 State.PostOrderNumbers[PhiBlock]) 2545 ToCheck.insert(IncomingAccess); 2546 } 2547 continue; 2548 } 2549 auto *NextDef = cast<MemoryDef>(EarlierAccess); 2550 Instruction *NI = NextDef->getMemoryInst(); 2551 LLVM_DEBUG(dbgs() << " (" << *NI << ")\n"); 2552 ToCheck.insert(NextDef->getDefiningAccess()); 2553 NumGetDomMemoryDefPassed++; 2554 2555 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2556 continue; 2557 2558 MemoryLocation NILoc = *State.getLocForWriteEx(NI); 2559 2560 if (IsMemTerm) { 2561 const Value *NIUnd = getUnderlyingObject(NILoc.Ptr); 2562 if (SILocUnd != NIUnd) 2563 continue; 2564 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *NI 2565 << "\n KILLER: " << *SI << '\n'); 2566 State.deleteDeadInstruction(NI); 2567 ++NumFastStores; 2568 MadeChange = true; 2569 } else { 2570 // Check if NI overwrites SI. 2571 int64_t InstWriteOffset, DepWriteOffset; 2572 OverwriteResult OR = 2573 isOverwrite(SI, NI, SILoc, NILoc, State.DL, TLI, DepWriteOffset, 2574 InstWriteOffset, State.BatchAA, &F); 2575 if (OR == OW_MaybePartial) { 2576 auto Iter = State.IOLs.insert( 2577 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2578 NI->getParent(), InstOverlapIntervalsTy())); 2579 auto &IOL = Iter.first->second; 2580 OR = isPartialOverwrite(SILoc, NILoc, DepWriteOffset, InstWriteOffset, 2581 NI, IOL); 2582 } 2583 2584 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2585 auto *Earlier = dyn_cast<StoreInst>(NI); 2586 auto *Later = dyn_cast<StoreInst>(SI); 2587 // We are re-using tryToMergePartialOverlappingStores, which requires 2588 // Earlier to domiante Later. 2589 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2590 if (Earlier && Later && DT.dominates(Earlier, Later)) { 2591 if (Constant *Merged = tryToMergePartialOverlappingStores( 2592 Earlier, Later, InstWriteOffset, DepWriteOffset, State.DL, 2593 State.BatchAA, &DT)) { 2594 2595 // Update stored value of earlier store to merged constant. 2596 Earlier->setOperand(0, Merged); 2597 ++NumModifiedStores; 2598 MadeChange = true; 2599 2600 Shortend = true; 2601 // Remove later store and remove any outstanding overlap intervals 2602 // for the updated store. 2603 State.deleteDeadInstruction(Later); 2604 auto I = State.IOLs.find(Earlier->getParent()); 2605 if (I != State.IOLs.end()) 2606 I->second.erase(Earlier); 2607 break; 2608 } 2609 } 2610 } 2611 2612 if (OR == OW_Complete) { 2613 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *NI 2614 << "\n KILLER: " << *SI << '\n'); 2615 State.deleteDeadInstruction(NI); 2616 ++NumFastStores; 2617 MadeChange = true; 2618 } 2619 } 2620 } 2621 2622 // Check if the store is a no-op. 2623 if (!Shortend && isRemovable(SI) && 2624 State.storeIsNoop(KillingDef, SILoc, SILocUnd)) { 2625 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *SI << '\n'); 2626 State.deleteDeadInstruction(SI); 2627 NumRedundantStores++; 2628 MadeChange = true; 2629 continue; 2630 } 2631 } 2632 2633 if (EnablePartialOverwriteTracking) 2634 for (auto &KV : State.IOLs) 2635 MadeChange |= removePartiallyOverlappedStores(State.DL, KV.second, TLI); 2636 2637 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2638 return MadeChange; 2639 } 2640 } // end anonymous namespace 2641 2642 //===----------------------------------------------------------------------===// 2643 // DSE Pass 2644 //===----------------------------------------------------------------------===// 2645 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2646 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2647 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2648 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2649 2650 bool Changed = false; 2651 if (EnableMemorySSA) { 2652 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2653 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2654 2655 Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI); 2656 } else { 2657 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 2658 2659 Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI); 2660 } 2661 2662 #ifdef LLVM_ENABLE_STATS 2663 if (AreStatisticsEnabled()) 2664 for (auto &I : instructions(F)) 2665 NumRemainingStores += isa<StoreInst>(&I); 2666 #endif 2667 2668 if (!Changed) 2669 return PreservedAnalyses::all(); 2670 2671 PreservedAnalyses PA; 2672 PA.preserveSet<CFGAnalyses>(); 2673 PA.preserve<GlobalsAA>(); 2674 if (EnableMemorySSA) 2675 PA.preserve<MemorySSAAnalysis>(); 2676 else 2677 PA.preserve<MemoryDependenceAnalysis>(); 2678 return PA; 2679 } 2680 2681 namespace { 2682 2683 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2684 class DSELegacyPass : public FunctionPass { 2685 public: 2686 static char ID; // Pass identification, replacement for typeid 2687 2688 DSELegacyPass() : FunctionPass(ID) { 2689 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2690 } 2691 2692 bool runOnFunction(Function &F) override { 2693 if (skipFunction(F)) 2694 return false; 2695 2696 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2697 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2698 const TargetLibraryInfo &TLI = 2699 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2700 2701 bool Changed = false; 2702 if (EnableMemorySSA) { 2703 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2704 PostDominatorTree &PDT = 2705 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2706 2707 Changed = eliminateDeadStoresMemorySSA(F, AA, MSSA, DT, PDT, TLI); 2708 } else { 2709 MemoryDependenceResults &MD = 2710 getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 2711 2712 Changed = eliminateDeadStores(F, &AA, &MD, &DT, &TLI); 2713 } 2714 2715 #ifdef LLVM_ENABLE_STATS 2716 if (AreStatisticsEnabled()) 2717 for (auto &I : instructions(F)) 2718 NumRemainingStores += isa<StoreInst>(&I); 2719 #endif 2720 2721 return Changed; 2722 } 2723 2724 void getAnalysisUsage(AnalysisUsage &AU) const override { 2725 AU.setPreservesCFG(); 2726 AU.addRequired<AAResultsWrapperPass>(); 2727 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2728 AU.addPreserved<GlobalsAAWrapperPass>(); 2729 AU.addRequired<DominatorTreeWrapperPass>(); 2730 AU.addPreserved<DominatorTreeWrapperPass>(); 2731 2732 if (EnableMemorySSA) { 2733 AU.addRequired<PostDominatorTreeWrapperPass>(); 2734 AU.addRequired<MemorySSAWrapperPass>(); 2735 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2736 AU.addPreserved<MemorySSAWrapperPass>(); 2737 } else { 2738 AU.addRequired<MemoryDependenceWrapperPass>(); 2739 AU.addPreserved<MemoryDependenceWrapperPass>(); 2740 } 2741 } 2742 }; 2743 2744 } // end anonymous namespace 2745 2746 char DSELegacyPass::ID = 0; 2747 2748 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2749 false) 2750 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2751 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2752 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2753 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2754 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2755 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2756 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2757 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2758 false) 2759 2760 FunctionPass *llvm::createDeadStoreEliminationPass() { 2761 return new DSELegacyPass(); 2762 } 2763