1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstIterator.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/DebugCounter.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BuildLibCalls.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace PatternMatch; 94 95 #define DEBUG_TYPE "dse" 96 97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 99 STATISTIC(NumFastStores, "Number of stores deleted"); 100 STATISTIC(NumFastOther, "Number of other instrs removed"); 101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 102 STATISTIC(NumModifiedStores, "Number of stores modified"); 103 STATISTIC(NumCFGChecks, "Number of stores modified"); 104 STATISTIC(NumCFGTries, "Number of stores modified"); 105 STATISTIC(NumCFGSuccess, "Number of stores modified"); 106 STATISTIC(NumGetDomMemoryDefPassed, 107 "Number of times a valid candidate is returned from getDomMemoryDef"); 108 STATISTIC(NumDomMemDefChecks, 109 "Number iterations check for reads in getDomMemoryDef"); 110 111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 112 "Controls which MemoryDefs are eliminated."); 113 114 static cl::opt<bool> 115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial-overwrite tracking in DSE")); 118 119 static cl::opt<bool> 120 EnablePartialStoreMerging("enable-dse-partial-store-merging", 121 cl::init(true), cl::Hidden, 122 cl::desc("Enable partial store merging in DSE")); 123 124 static cl::opt<unsigned> 125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 126 cl::desc("The number of memory instructions to scan for " 127 "dead store elimination (default = 150)")); 128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 130 cl::desc("The maximum number of steps while walking upwards to find " 131 "MemoryDefs that may be killed (default = 90)")); 132 133 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 135 cl::desc("The maximum number candidates that only partially overwrite the " 136 "killing MemoryDef to consider" 137 " (default = 5)")); 138 139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 142 "other stores per basic block (default = 5000)")); 143 144 static cl::opt<unsigned> MemorySSASameBBStepCost( 145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 146 cl::desc( 147 "The cost of a step in the same basic block as the killing MemoryDef" 148 "(default = 1)")); 149 150 static cl::opt<unsigned> 151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 152 cl::Hidden, 153 cl::desc("The cost of a step in a different basic " 154 "block than the killing MemoryDef" 155 "(default = 5)")); 156 157 static cl::opt<unsigned> MemorySSAPathCheckLimit( 158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 159 cl::desc("The maximum number of blocks to check when trying to prove that " 160 "all paths to an exit go through a killing block (default = 50)")); 161 162 //===----------------------------------------------------------------------===// 163 // Helper functions 164 //===----------------------------------------------------------------------===// 165 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 166 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 167 168 /// Does this instruction write some memory? This only returns true for things 169 /// that we can analyze with other helpers below. 170 static bool hasAnalyzableMemoryWrite(Instruction *I, 171 const TargetLibraryInfo &TLI) { 172 if (isa<StoreInst>(I)) 173 return true; 174 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 175 switch (II->getIntrinsicID()) { 176 default: 177 return false; 178 case Intrinsic::memset: 179 case Intrinsic::memmove: 180 case Intrinsic::memcpy: 181 case Intrinsic::memcpy_inline: 182 case Intrinsic::memcpy_element_unordered_atomic: 183 case Intrinsic::memmove_element_unordered_atomic: 184 case Intrinsic::memset_element_unordered_atomic: 185 case Intrinsic::init_trampoline: 186 case Intrinsic::lifetime_end: 187 case Intrinsic::masked_store: 188 return true; 189 } 190 } 191 if (auto *CB = dyn_cast<CallBase>(I)) { 192 LibFunc LF; 193 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 194 switch (LF) { 195 case LibFunc_strcpy: 196 case LibFunc_strncpy: 197 case LibFunc_strcat: 198 case LibFunc_strncat: 199 return true; 200 default: 201 return false; 202 } 203 } 204 } 205 return false; 206 } 207 208 /// If the value of this instruction and the memory it writes to is unused, may 209 /// we delete this instruction? 210 static bool isRemovable(Instruction *I) { 211 // Don't remove volatile/atomic stores. 212 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 213 return SI->isUnordered(); 214 215 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 216 switch (II->getIntrinsicID()) { 217 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); 218 case Intrinsic::lifetime_end: 219 // Never remove dead lifetime_end's, e.g. because it is followed by a 220 // free. 221 return false; 222 case Intrinsic::init_trampoline: 223 // Always safe to remove init_trampoline. 224 return true; 225 case Intrinsic::memset: 226 case Intrinsic::memmove: 227 case Intrinsic::memcpy: 228 case Intrinsic::memcpy_inline: 229 // Don't remove volatile memory intrinsics. 230 return !cast<MemIntrinsic>(II)->isVolatile(); 231 case Intrinsic::memcpy_element_unordered_atomic: 232 case Intrinsic::memmove_element_unordered_atomic: 233 case Intrinsic::memset_element_unordered_atomic: 234 case Intrinsic::masked_store: 235 return true; 236 } 237 } 238 239 // note: only get here for calls with analyzable writes - i.e. libcalls 240 if (auto *CB = dyn_cast<CallBase>(I)) 241 return CB->use_empty(); 242 243 return false; 244 } 245 246 /// Returns true if the end of this instruction can be safely shortened in 247 /// length. 248 static bool isShortenableAtTheEnd(Instruction *I) { 249 // Don't shorten stores for now 250 if (isa<StoreInst>(I)) 251 return false; 252 253 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 254 switch (II->getIntrinsicID()) { 255 default: return false; 256 case Intrinsic::memset: 257 case Intrinsic::memcpy: 258 case Intrinsic::memcpy_element_unordered_atomic: 259 case Intrinsic::memset_element_unordered_atomic: 260 // Do shorten memory intrinsics. 261 // FIXME: Add memmove if it's also safe to transform. 262 return true; 263 } 264 } 265 266 // Don't shorten libcalls calls for now. 267 268 return false; 269 } 270 271 /// Returns true if the beginning of this instruction can be safely shortened 272 /// in length. 273 static bool isShortenableAtTheBeginning(Instruction *I) { 274 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 275 // easily done by offsetting the source address. 276 return isa<AnyMemSetInst>(I); 277 } 278 279 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 280 const TargetLibraryInfo &TLI, 281 const Function *F) { 282 uint64_t Size; 283 ObjectSizeOpts Opts; 284 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 285 286 if (getObjectSize(V, Size, DL, &TLI, Opts)) 287 return Size; 288 return MemoryLocation::UnknownSize; 289 } 290 291 namespace { 292 293 enum OverwriteResult { 294 OW_Begin, 295 OW_Complete, 296 OW_End, 297 OW_PartialEarlierWithFullLater, 298 OW_MaybePartial, 299 OW_Unknown 300 }; 301 302 } // end anonymous namespace 303 304 /// Check if two instruction are masked stores that completely 305 /// overwrite one another. More specifically, \p KillingI has to 306 /// overwrite \p DeadI. 307 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 308 const Instruction *DeadI, 309 BatchAAResults &AA) { 310 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 311 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 312 if (KillingII == nullptr || DeadII == nullptr) 313 return OW_Unknown; 314 if (KillingII->getIntrinsicID() != Intrinsic::masked_store || 315 DeadII->getIntrinsicID() != Intrinsic::masked_store) 316 return OW_Unknown; 317 // Pointers. 318 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 319 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 320 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 321 return OW_Unknown; 322 // Masks. 323 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 324 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 325 return OW_Unknown; 326 return OW_Complete; 327 } 328 329 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 330 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 331 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 332 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 333 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 334 /// overwritten by a killing (smaller) store which doesn't write outside the big 335 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 336 /// NOTE: This function must only be called if both \p KillingLoc and \p 337 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 338 /// \p DeadOff. 339 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 340 const MemoryLocation &DeadLoc, 341 int64_t KillingOff, int64_t DeadOff, 342 Instruction *DeadI, 343 InstOverlapIntervalsTy &IOL) { 344 const uint64_t KillingSize = KillingLoc.Size.getValue(); 345 const uint64_t DeadSize = DeadLoc.Size.getValue(); 346 // We may now overlap, although the overlap is not complete. There might also 347 // be other incomplete overlaps, and together, they might cover the complete 348 // dead store. 349 // Note: The correctness of this logic depends on the fact that this function 350 // is not even called providing DepWrite when there are any intervening reads. 351 if (EnablePartialOverwriteTracking && 352 KillingOff < int64_t(DeadOff + DeadSize) && 353 int64_t(KillingOff + KillingSize) >= DeadOff) { 354 355 // Insert our part of the overlap into the map. 356 auto &IM = IOL[DeadI]; 357 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 358 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 359 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 360 << ")\n"); 361 362 // Make sure that we only insert non-overlapping intervals and combine 363 // adjacent intervals. The intervals are stored in the map with the ending 364 // offset as the key (in the half-open sense) and the starting offset as 365 // the value. 366 int64_t KillingIntStart = KillingOff; 367 int64_t KillingIntEnd = KillingOff + KillingSize; 368 369 // Find any intervals ending at, or after, KillingIntStart which start 370 // before KillingIntEnd. 371 auto ILI = IM.lower_bound(KillingIntStart); 372 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 373 // This existing interval is overlapped with the current store somewhere 374 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 375 // intervals and adjusting our start and end. 376 KillingIntStart = std::min(KillingIntStart, ILI->second); 377 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 378 ILI = IM.erase(ILI); 379 380 // Continue erasing and adjusting our end in case other previous 381 // intervals are also overlapped with the current store. 382 // 383 // |--- dead 1 ---| |--- dead 2 ---| 384 // |------- killing---------| 385 // 386 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 387 assert(ILI->second > KillingIntStart && "Unexpected interval"); 388 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 389 ILI = IM.erase(ILI); 390 } 391 } 392 393 IM[KillingIntEnd] = KillingIntStart; 394 395 ILI = IM.begin(); 396 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 397 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 398 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 399 << ") Composite KillingLoc [" << ILI->second << ", " 400 << ILI->first << ")\n"); 401 ++NumCompletePartials; 402 return OW_Complete; 403 } 404 } 405 406 // Check for a dead store which writes to all the memory locations that 407 // the killing store writes to. 408 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 409 int64_t(DeadOff + DeadSize) > KillingOff && 410 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 411 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 412 << ", " << int64_t(DeadOff + DeadSize) 413 << ") by a killing store [" << KillingOff << ", " 414 << int64_t(KillingOff + KillingSize) << ")\n"); 415 // TODO: Maybe come up with a better name? 416 return OW_PartialEarlierWithFullLater; 417 } 418 419 // Another interesting case is if the killing store overwrites the end of the 420 // dead store. 421 // 422 // |--dead--| 423 // |-- killing --| 424 // 425 // In this case we may want to trim the size of dead store to avoid 426 // generating stores to addresses which will definitely be overwritten killing 427 // store. 428 if (!EnablePartialOverwriteTracking && 429 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 430 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 431 return OW_End; 432 433 // Finally, we also need to check if the killing store overwrites the 434 // beginning of the dead store. 435 // 436 // |--dead--| 437 // |-- killing --| 438 // 439 // In this case we may want to move the destination address and trim the size 440 // of dead store to avoid generating stores to addresses which will definitely 441 // be overwritten killing store. 442 if (!EnablePartialOverwriteTracking && 443 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 444 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 445 "Expect to be handled as OW_Complete"); 446 return OW_Begin; 447 } 448 // Otherwise, they don't completely overlap. 449 return OW_Unknown; 450 } 451 452 /// Returns true if the memory which is accessed by the second instruction is not 453 /// modified between the first and the second instruction. 454 /// Precondition: Second instruction must be dominated by the first 455 /// instruction. 456 static bool 457 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 458 BatchAAResults &AA, const DataLayout &DL, 459 DominatorTree *DT) { 460 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 461 // instructions which can modify the memory location accessed by SecondI. 462 // 463 // While doing the walk keep track of the address to check. It might be 464 // different in different basic blocks due to PHI translation. 465 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 466 SmallVector<BlockAddressPair, 16> WorkList; 467 // Keep track of the address we visited each block with. Bail out if we 468 // visit a block with different addresses. 469 DenseMap<BasicBlock *, Value *> Visited; 470 471 BasicBlock::iterator FirstBBI(FirstI); 472 ++FirstBBI; 473 BasicBlock::iterator SecondBBI(SecondI); 474 BasicBlock *FirstBB = FirstI->getParent(); 475 BasicBlock *SecondBB = SecondI->getParent(); 476 MemoryLocation MemLoc; 477 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 478 MemLoc = MemoryLocation::getForDest(MemSet); 479 else 480 MemLoc = MemoryLocation::get(SecondI); 481 482 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 483 484 // Start checking the SecondBB. 485 WorkList.push_back( 486 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 487 bool isFirstBlock = true; 488 489 // Check all blocks going backward until we reach the FirstBB. 490 while (!WorkList.empty()) { 491 BlockAddressPair Current = WorkList.pop_back_val(); 492 BasicBlock *B = Current.first; 493 PHITransAddr &Addr = Current.second; 494 Value *Ptr = Addr.getAddr(); 495 496 // Ignore instructions before FirstI if this is the FirstBB. 497 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 498 499 BasicBlock::iterator EI; 500 if (isFirstBlock) { 501 // Ignore instructions after SecondI if this is the first visit of SecondBB. 502 assert(B == SecondBB && "first block is not the store block"); 503 EI = SecondBBI; 504 isFirstBlock = false; 505 } else { 506 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 507 // In this case we also have to look at instructions after SecondI. 508 EI = B->end(); 509 } 510 for (; BI != EI; ++BI) { 511 Instruction *I = &*BI; 512 if (I->mayWriteToMemory() && I != SecondI) 513 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 514 return false; 515 } 516 if (B != FirstBB) { 517 assert(B != &FirstBB->getParent()->getEntryBlock() && 518 "Should not hit the entry block because SI must be dominated by LI"); 519 for (BasicBlock *Pred : predecessors(B)) { 520 PHITransAddr PredAddr = Addr; 521 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 522 if (!PredAddr.IsPotentiallyPHITranslatable()) 523 return false; 524 if (PredAddr.PHITranslateValue(B, Pred, DT, false)) 525 return false; 526 } 527 Value *TranslatedPtr = PredAddr.getAddr(); 528 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 529 if (!Inserted.second) { 530 // We already visited this block before. If it was with a different 531 // address - bail out! 532 if (TranslatedPtr != Inserted.first->second) 533 return false; 534 // ... otherwise just skip it. 535 continue; 536 } 537 WorkList.push_back(std::make_pair(Pred, PredAddr)); 538 } 539 } 540 } 541 return true; 542 } 543 544 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 545 uint64_t &DeadSize, int64_t KillingStart, 546 uint64_t KillingSize, bool IsOverwriteEnd) { 547 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 548 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 549 550 // We assume that memet/memcpy operates in chunks of the "largest" native 551 // type size and aligned on the same value. That means optimal start and size 552 // of memset/memcpy should be modulo of preferred alignment of that type. That 553 // is it there is no any sense in trying to reduce store size any further 554 // since any "extra" stores comes for free anyway. 555 // On the other hand, maximum alignment we can achieve is limited by alignment 556 // of initial store. 557 558 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 559 // "largest" native type. 560 // Note: What is the proper way to get that value? 561 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 562 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 563 564 int64_t ToRemoveStart = 0; 565 uint64_t ToRemoveSize = 0; 566 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 567 // maintained on the remaining store. 568 if (IsOverwriteEnd) { 569 // Calculate required adjustment for 'KillingStart' in order to keep 570 // remaining store size aligned on 'PerfAlign'. 571 uint64_t Off = 572 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 573 ToRemoveStart = KillingStart + Off; 574 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 575 return false; 576 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 577 } else { 578 ToRemoveStart = DeadStart; 579 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 580 "Not overlapping accesses?"); 581 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 582 // Calculate required adjustment for 'ToRemoveSize'in order to keep 583 // start of the remaining store aligned on 'PerfAlign'. 584 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 585 if (Off != 0) { 586 if (ToRemoveSize <= (PrefAlign.value() - Off)) 587 return false; 588 ToRemoveSize -= PrefAlign.value() - Off; 589 } 590 assert(isAligned(PrefAlign, ToRemoveSize) && 591 "Should preserve selected alignment"); 592 } 593 594 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 595 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 596 597 uint64_t NewSize = DeadSize - ToRemoveSize; 598 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 599 // When shortening an atomic memory intrinsic, the newly shortened 600 // length must remain an integer multiple of the element size. 601 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 602 if (0 != NewSize % ElementSize) 603 return false; 604 } 605 606 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 607 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 608 << "\n KILLER [" << ToRemoveStart << ", " 609 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 610 611 Value *DeadWriteLength = DeadIntrinsic->getLength(); 612 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 613 DeadIntrinsic->setLength(TrimmedLength); 614 DeadIntrinsic->setDestAlignment(PrefAlign); 615 616 if (!IsOverwriteEnd) { 617 Value *OrigDest = DeadIntrinsic->getRawDest(); 618 Type *Int8PtrTy = 619 Type::getInt8PtrTy(DeadIntrinsic->getContext(), 620 OrigDest->getType()->getPointerAddressSpace()); 621 Value *Dest = OrigDest; 622 if (OrigDest->getType() != Int8PtrTy) 623 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI); 624 Value *Indices[1] = { 625 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 626 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 627 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI); 628 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 629 if (NewDestGEP->getType() != OrigDest->getType()) 630 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(), 631 "", DeadI); 632 DeadIntrinsic->setDest(NewDestGEP); 633 } 634 635 // Finally update start and size of dead access. 636 if (!IsOverwriteEnd) 637 DeadStart += ToRemoveSize; 638 DeadSize = NewSize; 639 640 return true; 641 } 642 643 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 644 int64_t &DeadStart, uint64_t &DeadSize) { 645 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 646 return false; 647 648 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 649 int64_t KillingStart = OII->second; 650 uint64_t KillingSize = OII->first - KillingStart; 651 652 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 653 654 if (KillingStart > DeadStart && 655 // Note: "KillingStart - KillingStart" is known to be positive due to 656 // preceding check. 657 (uint64_t)(KillingStart - DeadStart) < DeadSize && 658 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 659 // be non negative due to preceding checks. 660 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 661 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 662 true)) { 663 IntervalMap.erase(OII); 664 return true; 665 } 666 } 667 return false; 668 } 669 670 static bool tryToShortenBegin(Instruction *DeadI, 671 OverlapIntervalsTy &IntervalMap, 672 int64_t &DeadStart, uint64_t &DeadSize) { 673 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 674 return false; 675 676 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 677 int64_t KillingStart = OII->second; 678 uint64_t KillingSize = OII->first - KillingStart; 679 680 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 681 682 if (KillingStart <= DeadStart && 683 // Note: "DeadStart - KillingStart" is known to be non negative due to 684 // preceding check. 685 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 686 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 687 // be positive due to preceding checks. 688 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 689 "Should have been handled as OW_Complete"); 690 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 691 false)) { 692 IntervalMap.erase(OII); 693 return true; 694 } 695 } 696 return false; 697 } 698 699 static Constant * 700 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 701 int64_t KillingOffset, int64_t DeadOffset, 702 const DataLayout &DL, BatchAAResults &AA, 703 DominatorTree *DT) { 704 705 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 706 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 707 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 708 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 709 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 710 // If the store we find is: 711 // a) partially overwritten by the store to 'Loc' 712 // b) the killing store is fully contained in the dead one and 713 // c) they both have a constant value 714 // d) none of the two stores need padding 715 // Merge the two stores, replacing the dead store's value with a 716 // merge of both values. 717 // TODO: Deal with other constant types (vectors, etc), and probably 718 // some mem intrinsics (if needed) 719 720 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 721 APInt KillingValue = 722 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 723 unsigned KillingBits = KillingValue.getBitWidth(); 724 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 725 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 726 727 // Offset of the smaller store inside the larger store 728 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 729 unsigned LShiftAmount = 730 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 731 : BitOffsetDiff; 732 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 733 LShiftAmount + KillingBits); 734 // Clear the bits we'll be replacing, then OR with the smaller 735 // store, shifted appropriately. 736 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 737 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 738 << "\n Killing: " << *KillingI 739 << "\n Merged Value: " << Merged << '\n'); 740 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 741 } 742 return nullptr; 743 } 744 745 namespace { 746 // Returns true if \p I is an intrisnic that does not read or write memory. 747 bool isNoopIntrinsic(Instruction *I) { 748 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 749 switch (II->getIntrinsicID()) { 750 case Intrinsic::lifetime_start: 751 case Intrinsic::lifetime_end: 752 case Intrinsic::invariant_end: 753 case Intrinsic::launder_invariant_group: 754 case Intrinsic::assume: 755 return true; 756 case Intrinsic::dbg_addr: 757 case Intrinsic::dbg_declare: 758 case Intrinsic::dbg_label: 759 case Intrinsic::dbg_value: 760 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 761 default: 762 return false; 763 } 764 } 765 return false; 766 } 767 768 // Check if we can ignore \p D for DSE. 769 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller, 770 const TargetLibraryInfo &TLI) { 771 Instruction *DI = D->getMemoryInst(); 772 // Calls that only access inaccessible memory cannot read or write any memory 773 // locations we consider for elimination. 774 if (auto *CB = dyn_cast<CallBase>(DI)) 775 if (CB->onlyAccessesInaccessibleMemory()) { 776 if (isAllocLikeFn(DI, &TLI)) 777 return false; 778 return true; 779 } 780 // We can eliminate stores to locations not visible to the caller across 781 // throwing instructions. 782 if (DI->mayThrow() && !DefVisibleToCaller) 783 return true; 784 785 // We can remove the dead stores, irrespective of the fence and its ordering 786 // (release/acquire/seq_cst). Fences only constraints the ordering of 787 // already visible stores, it does not make a store visible to other 788 // threads. So, skipping over a fence does not change a store from being 789 // dead. 790 if (isa<FenceInst>(DI)) 791 return true; 792 793 // Skip intrinsics that do not really read or modify memory. 794 if (isNoopIntrinsic(DI)) 795 return true; 796 797 return false; 798 } 799 800 struct DSEState { 801 Function &F; 802 AliasAnalysis &AA; 803 EarliestEscapeInfo EI; 804 805 /// The single BatchAA instance that is used to cache AA queries. It will 806 /// not be invalidated over the whole run. This is safe, because: 807 /// 1. Only memory writes are removed, so the alias cache for memory 808 /// locations remains valid. 809 /// 2. No new instructions are added (only instructions removed), so cached 810 /// information for a deleted value cannot be accessed by a re-used new 811 /// value pointer. 812 BatchAAResults BatchAA; 813 814 MemorySSA &MSSA; 815 DominatorTree &DT; 816 PostDominatorTree &PDT; 817 const TargetLibraryInfo &TLI; 818 const DataLayout &DL; 819 const LoopInfo &LI; 820 821 // Whether the function contains any irreducible control flow, useful for 822 // being accurately able to detect loops. 823 bool ContainsIrreducibleLoops; 824 825 // All MemoryDefs that potentially could kill other MemDefs. 826 SmallVector<MemoryDef *, 64> MemDefs; 827 // Any that should be skipped as they are already deleted 828 SmallPtrSet<MemoryAccess *, 4> SkipStores; 829 // Keep track of all of the objects that are invisible to the caller before 830 // the function returns. 831 // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet; 832 DenseMap<const Value *, bool> InvisibleToCallerBeforeRet; 833 // Keep track of all of the objects that are invisible to the caller after 834 // the function returns. 835 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 836 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 837 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 838 // Post-order numbers for each basic block. Used to figure out if memory 839 // accesses are executed before another access. 840 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 841 842 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 843 /// basic block. 844 DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs; 845 846 // Class contains self-reference, make sure it's not copied/moved. 847 DSEState(const DSEState &) = delete; 848 DSEState &operator=(const DSEState &) = delete; 849 850 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 851 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 852 const LoopInfo &LI) 853 : F(F), AA(AA), EI(DT, LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT), 854 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 855 // Collect blocks with throwing instructions not modeled in MemorySSA and 856 // alloc-like objects. 857 unsigned PO = 0; 858 for (BasicBlock *BB : post_order(&F)) { 859 PostOrderNumbers[BB] = PO++; 860 for (Instruction &I : *BB) { 861 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 862 if (I.mayThrow() && !MA) 863 ThrowingBlocks.insert(I.getParent()); 864 865 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 866 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 867 (getLocForWriteEx(&I) || isMemTerminatorInst(&I))) 868 MemDefs.push_back(MD); 869 } 870 } 871 872 // Treat byval or inalloca arguments the same as Allocas, stores to them are 873 // dead at the end of the function. 874 for (Argument &AI : F.args()) 875 if (AI.hasPassPointeeByValueCopyAttr()) { 876 // For byval, the caller doesn't know the address of the allocation. 877 if (AI.hasByValAttr()) 878 InvisibleToCallerBeforeRet.insert({&AI, true}); 879 InvisibleToCallerAfterRet.insert({&AI, true}); 880 } 881 882 // Collect whether there is any irreducible control flow in the function. 883 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 884 } 885 886 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 887 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 888 /// location (by \p DeadI instruction). 889 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 890 /// \p DeadI, but they both write to the same underlying object. In that 891 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 892 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 893 OverwriteResult isOverwrite(const Instruction *KillingI, 894 const Instruction *DeadI, 895 const MemoryLocation &KillingLoc, 896 const MemoryLocation &DeadLoc, 897 int64_t &KillingOff, int64_t &DeadOff) { 898 // AliasAnalysis does not always account for loops. Limit overwrite checks 899 // to dependencies for which we can guarantee they are independent of any 900 // loops they are in. 901 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 902 return OW_Unknown; 903 904 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 905 // get imprecise values here, though (except for unknown sizes). 906 if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) { 907 // In case no constant size is known, try to an IR values for the number 908 // of bytes written and check if they match. 909 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 910 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 911 if (KillingMemI && DeadMemI) { 912 const Value *KillingV = KillingMemI->getLength(); 913 const Value *DeadV = DeadMemI->getLength(); 914 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 915 return OW_Complete; 916 } 917 918 // Masked stores have imprecise locations, but we can reason about them 919 // to some extent. 920 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 921 } 922 923 const uint64_t KillingSize = KillingLoc.Size.getValue(); 924 const uint64_t DeadSize = DeadLoc.Size.getValue(); 925 926 // Query the alias information 927 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 928 929 // If the start pointers are the same, we just have to compare sizes to see if 930 // the killing store was larger than the dead store. 931 if (AAR == AliasResult::MustAlias) { 932 // Make sure that the KillingSize size is >= the DeadSize size. 933 if (KillingSize >= DeadSize) 934 return OW_Complete; 935 } 936 937 // If we hit a partial alias we may have a full overwrite 938 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 939 int32_t Off = AAR.getOffset(); 940 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 941 return OW_Complete; 942 } 943 944 // Check to see if the killing store is to the entire object (either a 945 // global, an alloca, or a byval/inalloca argument). If so, then it clearly 946 // overwrites any other store to the same object. 947 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 948 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 949 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 950 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 951 952 // If we can't resolve the same pointers to the same object, then we can't 953 // analyze them at all. 954 if (DeadUndObj != KillingUndObj) 955 return OW_Unknown; 956 957 // If the KillingI store is to a recognizable object, get its size. 958 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F); 959 if (KillingUndObjSize != MemoryLocation::UnknownSize) 960 if (KillingUndObjSize == KillingSize && KillingUndObjSize >= DeadSize) 961 return OW_Complete; 962 963 // Okay, we have stores to two completely different pointers. Try to 964 // decompose the pointer into a "base + constant_offset" form. If the base 965 // pointers are equal, then we can reason about the two stores. 966 DeadOff = 0; 967 KillingOff = 0; 968 const Value *DeadBasePtr = 969 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 970 const Value *KillingBasePtr = 971 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 972 973 // If the base pointers still differ, we have two completely different 974 // stores. 975 if (DeadBasePtr != KillingBasePtr) 976 return OW_Unknown; 977 978 // The killing access completely overlaps the dead store if and only if 979 // both start and end of the dead one is "inside" the killing one: 980 // |<->|--dead--|<->| 981 // |-----killing------| 982 // Accesses may overlap if and only if start of one of them is "inside" 983 // another one: 984 // |<->|--dead--|<-------->| 985 // |-------killing--------| 986 // OR 987 // |-------dead-------| 988 // |<->|---killing---|<----->| 989 // 990 // We have to be careful here as *Off is signed while *.Size is unsigned. 991 992 // Check if the dead access starts "not before" the killing one. 993 if (DeadOff >= KillingOff) { 994 // If the dead access ends "not after" the killing access then the 995 // dead one is completely overwritten by the killing one. 996 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 997 return OW_Complete; 998 // If start of the dead access is "before" end of the killing access 999 // then accesses overlap. 1000 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 1001 return OW_MaybePartial; 1002 } 1003 // If start of the killing access is "before" end of the dead access then 1004 // accesses overlap. 1005 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 1006 return OW_MaybePartial; 1007 } 1008 1009 // Can reach here only if accesses are known not to overlap. There is no 1010 // dedicated code to indicate no overlap so signal "unknown". 1011 return OW_Unknown; 1012 } 1013 1014 bool isInvisibleToCallerAfterRet(const Value *V) { 1015 if (isa<AllocaInst>(V)) 1016 return true; 1017 auto I = InvisibleToCallerAfterRet.insert({V, false}); 1018 if (I.second) { 1019 if (!isInvisibleToCallerBeforeRet(V)) { 1020 I.first->second = false; 1021 } else { 1022 auto *Inst = dyn_cast<Instruction>(V); 1023 if (Inst && isAllocLikeFn(Inst, &TLI)) 1024 I.first->second = !PointerMayBeCaptured(V, true, false); 1025 } 1026 } 1027 return I.first->second; 1028 } 1029 1030 bool isInvisibleToCallerBeforeRet(const Value *V) { 1031 if (isa<AllocaInst>(V)) 1032 return true; 1033 auto I = InvisibleToCallerBeforeRet.insert({V, false}); 1034 if (I.second) { 1035 auto *Inst = dyn_cast<Instruction>(V); 1036 if (Inst && isAllocLikeFn(Inst, &TLI)) 1037 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1038 // with the killing MemoryDef. But we refrain from doing so for now to 1039 // limit compile-time and this does not cause any changes to the number 1040 // of stores removed on a large test set in practice. 1041 I.first->second = !PointerMayBeCaptured(V, false, true); 1042 } 1043 return I.first->second; 1044 } 1045 1046 Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const { 1047 if (!I->mayWriteToMemory()) 1048 return None; 1049 1050 if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I)) 1051 return {MemoryLocation::getForDest(MTI)}; 1052 1053 if (auto *CB = dyn_cast<CallBase>(I)) { 1054 // If the functions may write to memory we do not know about, bail out. 1055 if (!CB->onlyAccessesArgMemory() && 1056 !CB->onlyAccessesInaccessibleMemOrArgMem()) 1057 return None; 1058 1059 LibFunc LF; 1060 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) { 1061 switch (LF) { 1062 case LibFunc_strncpy: 1063 if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2))) 1064 return MemoryLocation(CB->getArgOperand(0), 1065 LocationSize::precise(Len->getZExtValue()), 1066 CB->getAAMetadata()); 1067 LLVM_FALLTHROUGH; 1068 case LibFunc_strcpy: 1069 case LibFunc_strcat: 1070 case LibFunc_strncat: 1071 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1072 default: 1073 break; 1074 } 1075 } 1076 switch (CB->getIntrinsicID()) { 1077 case Intrinsic::init_trampoline: 1078 return {MemoryLocation::getAfter(CB->getArgOperand(0))}; 1079 case Intrinsic::masked_store: 1080 return {MemoryLocation::getForArgument(CB, 1, TLI)}; 1081 default: 1082 break; 1083 } 1084 return None; 1085 } 1086 1087 return MemoryLocation::getOrNone(I); 1088 } 1089 1090 /// Returns true if \p UseInst completely overwrites \p DefLoc 1091 /// (stored by \p DefInst). 1092 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1093 Instruction *UseInst) { 1094 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1095 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1096 // MemoryDef. 1097 if (!UseInst->mayWriteToMemory()) 1098 return false; 1099 1100 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1101 if (CB->onlyAccessesInaccessibleMemory()) 1102 return false; 1103 1104 int64_t InstWriteOffset, DepWriteOffset; 1105 if (auto CC = getLocForWriteEx(UseInst)) 1106 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1107 DepWriteOffset) == OW_Complete; 1108 return false; 1109 } 1110 1111 /// Returns true if \p Def is not read before returning from the function. 1112 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1113 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1114 << *Def->getMemoryInst() 1115 << ") is at the end the function \n"); 1116 1117 auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst()); 1118 if (!MaybeLoc) { 1119 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1120 return false; 1121 } 1122 1123 SmallVector<MemoryAccess *, 4> WorkList; 1124 SmallPtrSet<MemoryAccess *, 8> Visited; 1125 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1126 if (!Visited.insert(Acc).second) 1127 return; 1128 for (Use &U : Acc->uses()) 1129 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1130 }; 1131 PushMemUses(Def); 1132 for (unsigned I = 0; I < WorkList.size(); I++) { 1133 if (WorkList.size() >= MemorySSAScanLimit) { 1134 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1135 return false; 1136 } 1137 1138 MemoryAccess *UseAccess = WorkList[I]; 1139 // Simply adding the users of MemoryPhi to the worklist is not enough, 1140 // because we might miss read clobbers in different iterations of a loop, 1141 // for example. 1142 // TODO: Add support for phi translation to handle the loop case. 1143 if (isa<MemoryPhi>(UseAccess)) 1144 return false; 1145 1146 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1147 // of times this is called and/or caching it. 1148 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1149 if (isReadClobber(*MaybeLoc, UseInst)) { 1150 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1151 return false; 1152 } 1153 1154 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1155 PushMemUses(UseDef); 1156 } 1157 return true; 1158 } 1159 1160 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1161 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1162 /// indicating whether \p I is a free-like call. 1163 Optional<std::pair<MemoryLocation, bool>> 1164 getLocForTerminator(Instruction *I) const { 1165 uint64_t Len; 1166 Value *Ptr; 1167 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1168 m_Value(Ptr)))) 1169 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1170 1171 if (auto *CB = dyn_cast<CallBase>(I)) { 1172 if (isFreeCall(I, &TLI)) 1173 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1174 true)}; 1175 } 1176 1177 return None; 1178 } 1179 1180 /// Returns true if \p I is a memory terminator instruction like 1181 /// llvm.lifetime.end or free. 1182 bool isMemTerminatorInst(Instruction *I) const { 1183 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1184 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1185 isFreeCall(I, &TLI); 1186 } 1187 1188 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1189 /// instruction \p AccessI. 1190 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1191 Instruction *MaybeTerm) { 1192 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1193 getLocForTerminator(MaybeTerm); 1194 1195 if (!MaybeTermLoc) 1196 return false; 1197 1198 // If the terminator is a free-like call, all accesses to the underlying 1199 // object can be considered terminated. 1200 if (getUnderlyingObject(Loc.Ptr) != 1201 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1202 return false; 1203 1204 auto TermLoc = MaybeTermLoc->first; 1205 if (MaybeTermLoc->second) { 1206 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1207 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1208 } 1209 int64_t InstWriteOffset = 0; 1210 int64_t DepWriteOffset = 0; 1211 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1212 DepWriteOffset) == OW_Complete; 1213 } 1214 1215 // Returns true if \p Use may read from \p DefLoc. 1216 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1217 if (isNoopIntrinsic(UseInst)) 1218 return false; 1219 1220 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1221 // treated as read clobber. 1222 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1223 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1224 1225 if (!UseInst->mayReadFromMemory()) 1226 return false; 1227 1228 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1229 if (CB->onlyAccessesInaccessibleMemory()) 1230 return false; 1231 1232 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1233 } 1234 1235 /// Returns true if a dependency between \p Current and \p KillingDef is 1236 /// guaranteed to be loop invariant for the loops that they are in. Either 1237 /// because they are known to be in the same block, in the same loop level or 1238 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1239 /// during execution of the containing function. 1240 bool isGuaranteedLoopIndependent(const Instruction *Current, 1241 const Instruction *KillingDef, 1242 const MemoryLocation &CurrentLoc) { 1243 // If the dependency is within the same block or loop level (being careful 1244 // of irreducible loops), we know that AA will return a valid result for the 1245 // memory dependency. (Both at the function level, outside of any loop, 1246 // would also be valid but we currently disable that to limit compile time). 1247 if (Current->getParent() == KillingDef->getParent()) 1248 return true; 1249 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1250 if (!ContainsIrreducibleLoops && CurrentLI && 1251 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1252 return true; 1253 // Otherwise check the memory location is invariant to any loops. 1254 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1255 } 1256 1257 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1258 /// loop. In particular, this guarantees that it only references a single 1259 /// MemoryLocation during execution of the containing function. 1260 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1261 auto IsGuaranteedLoopInvariantBase = [this](const Value *Ptr) { 1262 Ptr = Ptr->stripPointerCasts(); 1263 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1264 if (isa<AllocaInst>(Ptr)) 1265 return true; 1266 1267 if (isAllocLikeFn(I, &TLI)) 1268 return true; 1269 1270 return false; 1271 } 1272 return true; 1273 }; 1274 1275 Ptr = Ptr->stripPointerCasts(); 1276 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1277 if (I->getParent()->isEntryBlock()) 1278 return true; 1279 } 1280 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 1281 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 1282 GEP->hasAllConstantIndices(); 1283 } 1284 return IsGuaranteedLoopInvariantBase(Ptr); 1285 } 1286 1287 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1288 // with no read access between them or on any other path to a function exit 1289 // block if \p KillingLoc is not accessible after the function returns. If 1290 // there is no such MemoryDef, return None. The returned value may not 1291 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1292 // encounter an aliasing MemoryUse (read). 1293 Optional<MemoryAccess *> 1294 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1295 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1296 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1297 bool IsMemTerm, unsigned &PartialLimit) { 1298 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1299 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1300 return None; 1301 } 1302 1303 MemoryAccess *Current = StartAccess; 1304 Instruction *KillingI = KillingDef->getMemoryInst(); 1305 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1306 1307 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1308 Optional<MemoryLocation> CurrentLoc; 1309 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1310 LLVM_DEBUG({ 1311 dbgs() << " visiting " << *Current; 1312 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1313 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1314 << ")"; 1315 dbgs() << "\n"; 1316 }); 1317 1318 // Reached TOP. 1319 if (MSSA.isLiveOnEntryDef(Current)) { 1320 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1321 return None; 1322 } 1323 1324 // Cost of a step. Accesses in the same block are more likely to be valid 1325 // candidates for elimination, hence consider them cheaper. 1326 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1327 ? MemorySSASameBBStepCost 1328 : MemorySSAOtherBBStepCost; 1329 if (WalkerStepLimit <= StepCost) { 1330 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1331 return None; 1332 } 1333 WalkerStepLimit -= StepCost; 1334 1335 // Return for MemoryPhis. They cannot be eliminated directly and the 1336 // caller is responsible for traversing them. 1337 if (isa<MemoryPhi>(Current)) { 1338 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1339 return Current; 1340 } 1341 1342 // Below, check if CurrentDef is a valid candidate to be eliminated by 1343 // KillingDef. If it is not, check the next candidate. 1344 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1345 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1346 1347 if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(KillingUndObj), 1348 TLI)) 1349 continue; 1350 1351 // Before we try to remove anything, check for any extra throwing 1352 // instructions that block us from DSEing 1353 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1354 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1355 return None; 1356 } 1357 1358 // Check for anything that looks like it will be a barrier to further 1359 // removal 1360 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1361 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1362 return None; 1363 } 1364 1365 // If Current is known to be on path that reads DefLoc or is a read 1366 // clobber, bail out, as the path is not profitable. We skip this check 1367 // for intrinsic calls, because the code knows how to handle memcpy 1368 // intrinsics. 1369 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1370 return None; 1371 1372 // Quick check if there are direct uses that are read-clobbers. 1373 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1374 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1375 return !MSSA.dominates(StartAccess, UseOrDef) && 1376 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1377 return false; 1378 })) { 1379 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1380 return None; 1381 } 1382 1383 // If Current cannot be analyzed or is not removable, check the next 1384 // candidate. 1385 if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI)) 1386 continue; 1387 1388 // If Current does not have an analyzable write location, skip it 1389 CurrentLoc = getLocForWriteEx(CurrentI); 1390 if (!CurrentLoc) 1391 continue; 1392 1393 // AliasAnalysis does not account for loops. Limit elimination to 1394 // candidates for which we can guarantee they always store to the same 1395 // memory location and not located in different loops. 1396 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1397 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1398 WalkerStepLimit -= 1; 1399 continue; 1400 } 1401 1402 if (IsMemTerm) { 1403 // If the killing def is a memory terminator (e.g. lifetime.end), check 1404 // the next candidate if the current Current does not write the same 1405 // underlying object as the terminator. 1406 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) 1407 continue; 1408 } else { 1409 int64_t KillingOffset = 0; 1410 int64_t DeadOffset = 0; 1411 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1412 KillingOffset, DeadOffset); 1413 // If Current does not write to the same object as KillingDef, check 1414 // the next candidate. 1415 if (OR == OW_Unknown) 1416 continue; 1417 else if (OR == OW_MaybePartial) { 1418 // If KillingDef only partially overwrites Current, check the next 1419 // candidate if the partial step limit is exceeded. This aggressively 1420 // limits the number of candidates for partial store elimination, 1421 // which are less likely to be removable in the end. 1422 if (PartialLimit <= 1) { 1423 WalkerStepLimit -= 1; 1424 continue; 1425 } 1426 PartialLimit -= 1; 1427 } 1428 } 1429 break; 1430 }; 1431 1432 // Accesses to objects accessible after the function returns can only be 1433 // eliminated if the access is dead along all paths to the exit. Collect 1434 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1435 // they cover all paths from MaybeDeadAccess to any function exit. 1436 SmallPtrSet<Instruction *, 16> KillingDefs; 1437 KillingDefs.insert(KillingDef->getMemoryInst()); 1438 MemoryAccess *MaybeDeadAccess = Current; 1439 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1440 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1441 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1442 << *MaybeDeadI << ")\n"); 1443 1444 SmallSetVector<MemoryAccess *, 32> WorkList; 1445 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1446 for (Use &U : Acc->uses()) 1447 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1448 }; 1449 PushMemUses(MaybeDeadAccess); 1450 1451 // Check if DeadDef may be read. 1452 for (unsigned I = 0; I < WorkList.size(); I++) { 1453 MemoryAccess *UseAccess = WorkList[I]; 1454 1455 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1456 // Bail out if the number of accesses to check exceeds the scan limit. 1457 if (ScanLimit < (WorkList.size() - I)) { 1458 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1459 return None; 1460 } 1461 --ScanLimit; 1462 NumDomMemDefChecks++; 1463 1464 if (isa<MemoryPhi>(UseAccess)) { 1465 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1466 return DT.properlyDominates(KI->getParent(), 1467 UseAccess->getBlock()); 1468 })) { 1469 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1470 continue; 1471 } 1472 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1473 PushMemUses(UseAccess); 1474 continue; 1475 } 1476 1477 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1478 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1479 1480 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1481 return DT.dominates(KI, UseInst); 1482 })) { 1483 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1484 continue; 1485 } 1486 1487 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1488 // MemoryAccesses. We do not have to check it's users. 1489 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1490 LLVM_DEBUG( 1491 dbgs() 1492 << " ... skipping, memterminator invalidates following accesses\n"); 1493 continue; 1494 } 1495 1496 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1497 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1498 PushMemUses(UseAccess); 1499 continue; 1500 } 1501 1502 if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) { 1503 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1504 return None; 1505 } 1506 1507 // Uses which may read the original MemoryDef mean we cannot eliminate the 1508 // original MD. Stop walk. 1509 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1510 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1511 return None; 1512 } 1513 1514 // If this worklist walks back to the original memory access (and the 1515 // pointer is not guarenteed loop invariant) then we cannot assume that a 1516 // store kills itself. 1517 if (MaybeDeadAccess == UseAccess && 1518 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1519 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1520 return None; 1521 } 1522 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1523 // if it reads the memory location. 1524 // TODO: It would probably be better to check for self-reads before 1525 // calling the function. 1526 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1527 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1528 continue; 1529 } 1530 1531 // Check all uses for MemoryDefs, except for defs completely overwriting 1532 // the original location. Otherwise we have to check uses of *all* 1533 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1534 // miss cases like the following 1535 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1536 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1537 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1538 // (The Use points to the *first* Def it may alias) 1539 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1540 // stores [0,1] 1541 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1542 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1543 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1544 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1545 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1546 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1547 LLVM_DEBUG(dbgs() 1548 << " ... found killing def " << *UseInst << "\n"); 1549 KillingDefs.insert(UseInst); 1550 } 1551 } else { 1552 LLVM_DEBUG(dbgs() 1553 << " ... found preceeding def " << *UseInst << "\n"); 1554 return None; 1555 } 1556 } else 1557 PushMemUses(UseDef); 1558 } 1559 } 1560 1561 // For accesses to locations visible after the function returns, make sure 1562 // that the location is dead (=overwritten) along all paths from 1563 // MaybeDeadAccess to the exit. 1564 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1565 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1566 for (Instruction *KD : KillingDefs) 1567 KillingBlocks.insert(KD->getParent()); 1568 assert(!KillingBlocks.empty() && 1569 "Expected at least a single killing block"); 1570 1571 // Find the common post-dominator of all killing blocks. 1572 BasicBlock *CommonPred = *KillingBlocks.begin(); 1573 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1574 if (!CommonPred) 1575 break; 1576 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1577 } 1578 1579 // If CommonPred is in the set of killing blocks, just check if it 1580 // post-dominates MaybeDeadAccess. 1581 if (KillingBlocks.count(CommonPred)) { 1582 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) 1583 return {MaybeDeadAccess}; 1584 return None; 1585 } 1586 1587 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1588 // there is a path from MaybeDeadAccess to an exit not going through a 1589 // killing block. 1590 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1591 SetVector<BasicBlock *> WorkList; 1592 1593 // If CommonPred is null, there are multiple exits from the function. 1594 // They all have to be added to the worklist. 1595 if (CommonPred) 1596 WorkList.insert(CommonPred); 1597 else 1598 for (BasicBlock *R : PDT.roots()) 1599 WorkList.insert(R); 1600 1601 NumCFGTries++; 1602 // Check if all paths starting from an exit node go through one of the 1603 // killing blocks before reaching MaybeDeadAccess. 1604 for (unsigned I = 0; I < WorkList.size(); I++) { 1605 NumCFGChecks++; 1606 BasicBlock *Current = WorkList[I]; 1607 if (KillingBlocks.count(Current)) 1608 continue; 1609 if (Current == MaybeDeadAccess->getBlock()) 1610 return None; 1611 1612 // MaybeDeadAccess is reachable from the entry, so we don't have to 1613 // explore unreachable blocks further. 1614 if (!DT.isReachableFromEntry(Current)) 1615 continue; 1616 1617 for (BasicBlock *Pred : predecessors(Current)) 1618 WorkList.insert(Pred); 1619 1620 if (WorkList.size() >= MemorySSAPathCheckLimit) 1621 return None; 1622 } 1623 NumCFGSuccess++; 1624 return {MaybeDeadAccess}; 1625 } 1626 return None; 1627 } 1628 1629 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1630 // potentially dead. 1631 return {MaybeDeadAccess}; 1632 } 1633 1634 // Delete dead memory defs 1635 void deleteDeadInstruction(Instruction *SI) { 1636 MemorySSAUpdater Updater(&MSSA); 1637 SmallVector<Instruction *, 32> NowDeadInsts; 1638 NowDeadInsts.push_back(SI); 1639 --NumFastOther; 1640 1641 while (!NowDeadInsts.empty()) { 1642 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1643 ++NumFastOther; 1644 1645 // Try to preserve debug information attached to the dead instruction. 1646 salvageDebugInfo(*DeadInst); 1647 salvageKnowledge(DeadInst); 1648 1649 // Remove the Instruction from MSSA. 1650 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 1651 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 1652 SkipStores.insert(MD); 1653 } 1654 1655 Updater.removeMemoryAccess(MA); 1656 } 1657 1658 auto I = IOLs.find(DeadInst->getParent()); 1659 if (I != IOLs.end()) 1660 I->second.erase(DeadInst); 1661 // Remove its operands 1662 for (Use &O : DeadInst->operands()) 1663 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1664 O = nullptr; 1665 if (isInstructionTriviallyDead(OpI, &TLI)) 1666 NowDeadInsts.push_back(OpI); 1667 } 1668 1669 EI.removeInstruction(DeadInst); 1670 DeadInst->eraseFromParent(); 1671 } 1672 } 1673 1674 // Check for any extra throws between \p KillingI and \p DeadI that block 1675 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1676 // MemoryDef that may throw are handled during the walk from one def to the 1677 // next. 1678 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1679 const Value *KillingUndObj) { 1680 // First see if we can ignore it by using the fact that KillingI is an 1681 // alloca/alloca like object that is not visible to the caller during 1682 // execution of the function. 1683 if (KillingUndObj && isInvisibleToCallerBeforeRet(KillingUndObj)) 1684 return false; 1685 1686 if (KillingI->getParent() == DeadI->getParent()) 1687 return ThrowingBlocks.count(KillingI->getParent()); 1688 return !ThrowingBlocks.empty(); 1689 } 1690 1691 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1692 // instructions act as barriers: 1693 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1694 // object. 1695 // * Atomic stores stronger that monotonic. 1696 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1697 // If DeadI may throw it acts as a barrier, unless we are to an 1698 // alloca/alloca like object that does not escape. 1699 if (DeadI->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) 1700 return true; 1701 1702 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1703 // eliminate/reorder it. 1704 if (DeadI->isAtomic()) { 1705 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1706 return isStrongerThanMonotonic(LI->getOrdering()); 1707 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1708 return isStrongerThanMonotonic(SI->getOrdering()); 1709 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1710 return isStrongerThanMonotonic(ARMW->getOrdering()); 1711 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1712 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1713 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1714 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1715 } 1716 return false; 1717 } 1718 1719 /// Eliminate writes to objects that are not visible in the caller and are not 1720 /// accessed before returning from the function. 1721 bool eliminateDeadWritesAtEndOfFunction() { 1722 bool MadeChange = false; 1723 LLVM_DEBUG( 1724 dbgs() 1725 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1726 for (int I = MemDefs.size() - 1; I >= 0; I--) { 1727 MemoryDef *Def = MemDefs[I]; 1728 if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst())) 1729 continue; 1730 1731 Instruction *DefI = Def->getMemoryInst(); 1732 auto DefLoc = getLocForWriteEx(DefI); 1733 if (!DefLoc) 1734 continue; 1735 1736 // NOTE: Currently eliminating writes at the end of a function is limited 1737 // to MemoryDefs with a single underlying object, to save compile-time. In 1738 // practice it appears the case with multiple underlying objects is very 1739 // uncommon. If it turns out to be important, we can use 1740 // getUnderlyingObjects here instead. 1741 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1742 if (!isInvisibleToCallerAfterRet(UO)) 1743 continue; 1744 1745 if (isWriteAtEndOfFunction(Def)) { 1746 // See through pointer-to-pointer bitcasts 1747 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1748 "of the function\n"); 1749 deleteDeadInstruction(DefI); 1750 ++NumFastStores; 1751 MadeChange = true; 1752 } 1753 } 1754 return MadeChange; 1755 } 1756 1757 /// \returns true if \p Def is a no-op store, either because it 1758 /// directly stores back a loaded value or stores zero to a calloced object. 1759 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1760 StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst()); 1761 MemSetInst *MemSet = dyn_cast<MemSetInst>(Def->getMemoryInst()); 1762 Constant *StoredConstant = nullptr; 1763 if (Store) 1764 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1765 if (MemSet) 1766 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1767 1768 if (StoredConstant && StoredConstant->isNullValue()) { 1769 auto *DefUOInst = dyn_cast<Instruction>(DefUO); 1770 if (DefUOInst) { 1771 if (isCallocLikeFn(DefUOInst, &TLI)) { 1772 auto *UnderlyingDef = 1773 cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst)); 1774 // If UnderlyingDef is the clobbering access of Def, no instructions 1775 // between them can modify the memory location. 1776 auto *ClobberDef = 1777 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def); 1778 return UnderlyingDef == ClobberDef; 1779 } 1780 1781 if (MemSet) { 1782 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1783 F.hasFnAttribute(Attribute::SanitizeAddress) || 1784 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1785 F.getName() == "calloc") 1786 return false; 1787 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUOInst)); 1788 if (!Malloc) 1789 return false; 1790 auto *InnerCallee = Malloc->getCalledFunction(); 1791 if (!InnerCallee) 1792 return false; 1793 LibFunc Func; 1794 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1795 Func != LibFunc_malloc) 1796 return false; 1797 1798 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1799 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1800 // of malloc block 1801 auto *MallocBB = Malloc->getParent(), 1802 *MemsetBB = Memset->getParent(); 1803 if (MallocBB == MemsetBB) 1804 return true; 1805 auto *Ptr = Memset->getArgOperand(0); 1806 auto *TI = MallocBB->getTerminator(); 1807 ICmpInst::Predicate Pred; 1808 BasicBlock *TrueBB, *FalseBB; 1809 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB, 1810 FalseBB))) 1811 return false; 1812 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB) 1813 return false; 1814 return true; 1815 }; 1816 1817 if (Malloc->getOperand(0) == MemSet->getLength()) { 1818 if (shouldCreateCalloc(Malloc, MemSet) && 1819 DT.dominates(Malloc, MemSet) && 1820 memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) { 1821 IRBuilder<> IRB(Malloc); 1822 const auto &DL = Malloc->getModule()->getDataLayout(); 1823 if (auto *Calloc = 1824 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1), 1825 Malloc->getArgOperand(0), IRB, TLI)) { 1826 MemorySSAUpdater Updater(&MSSA); 1827 auto *LastDef = cast<MemoryDef>( 1828 Updater.getMemorySSA()->getMemoryAccess(Malloc)); 1829 auto *NewAccess = Updater.createMemoryAccessAfter( 1830 cast<Instruction>(Calloc), LastDef, LastDef); 1831 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1832 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1833 Updater.removeMemoryAccess(Malloc); 1834 Malloc->replaceAllUsesWith(Calloc); 1835 Malloc->eraseFromParent(); 1836 return true; 1837 } 1838 return false; 1839 } 1840 } 1841 } 1842 } 1843 } 1844 1845 if (!Store) 1846 return false; 1847 1848 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1849 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1850 // Get the defining access for the load. 1851 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1852 // Fast path: the defining accesses are the same. 1853 if (LoadAccess == Def->getDefiningAccess()) 1854 return true; 1855 1856 // Look through phi accesses. Recursively scan all phi accesses by 1857 // adding them to a worklist. Bail when we run into a memory def that 1858 // does not match LoadAccess. 1859 SetVector<MemoryAccess *> ToCheck; 1860 MemoryAccess *Current = 1861 MSSA.getWalker()->getClobberingMemoryAccess(Def); 1862 // We don't want to bail when we run into the store memory def. But, 1863 // the phi access may point to it. So, pretend like we've already 1864 // checked it. 1865 ToCheck.insert(Def); 1866 ToCheck.insert(Current); 1867 // Start at current (1) to simulate already having checked Def. 1868 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1869 Current = ToCheck[I]; 1870 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1871 // Check all the operands. 1872 for (auto &Use : PhiAccess->incoming_values()) 1873 ToCheck.insert(cast<MemoryAccess>(&Use)); 1874 continue; 1875 } 1876 1877 // If we found a memory def, bail. This happens when we have an 1878 // unrelated write in between an otherwise noop store. 1879 assert(isa<MemoryDef>(Current) && 1880 "Only MemoryDefs should reach here."); 1881 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1882 // We are searching for the definition of the store's destination. 1883 // So, if that is the same definition as the load, then this is a 1884 // noop. Otherwise, fail. 1885 if (LoadAccess != Current) 1886 return false; 1887 } 1888 return true; 1889 } 1890 } 1891 1892 return false; 1893 } 1894 1895 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 1896 bool Changed = false; 1897 for (auto OI : IOL) { 1898 Instruction *DeadI = OI.first; 1899 MemoryLocation Loc = *getLocForWriteEx(DeadI); 1900 assert(isRemovable(DeadI) && "Expect only removable instruction"); 1901 1902 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 1903 int64_t DeadStart = 0; 1904 uint64_t DeadSize = Loc.Size.getValue(); 1905 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 1906 OverlapIntervalsTy &IntervalMap = OI.second; 1907 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 1908 if (IntervalMap.empty()) 1909 continue; 1910 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 1911 } 1912 return Changed; 1913 } 1914 1915 /// Eliminates writes to locations where the value that is being written 1916 /// is already stored at the same location. 1917 bool eliminateRedundantStoresOfExistingValues() { 1918 bool MadeChange = false; 1919 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 1920 "already existing value\n"); 1921 for (auto *Def : MemDefs) { 1922 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def) || 1923 !isRemovable(Def->getMemoryInst())) 1924 continue; 1925 auto *UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 1926 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 1927 continue; 1928 1929 Instruction *DefInst = Def->getMemoryInst(); 1930 Instruction *UpperInst = UpperDef->getMemoryInst(); 1931 auto IsRedundantStore = [this, DefInst, 1932 UpperInst](MemoryLocation UpperLoc) { 1933 if (DefInst->isIdenticalTo(UpperInst)) 1934 return true; 1935 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 1936 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 1937 auto MaybeDefLoc = getLocForWriteEx(DefInst); 1938 if (!MaybeDefLoc) 1939 return false; 1940 int64_t InstWriteOffset = 0; 1941 int64_t DepWriteOffset = 0; 1942 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc, 1943 InstWriteOffset, DepWriteOffset); 1944 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 1945 return StoredByte && StoredByte == MemSetI->getOperand(1) && 1946 OR == OW_Complete; 1947 } 1948 } 1949 return false; 1950 }; 1951 1952 auto MaybeUpperLoc = getLocForWriteEx(UpperInst); 1953 if (!MaybeUpperLoc || !IsRedundantStore(*MaybeUpperLoc) || 1954 isReadClobber(*MaybeUpperLoc, DefInst)) 1955 continue; 1956 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 1957 << '\n'); 1958 deleteDeadInstruction(DefInst); 1959 NumRedundantStores++; 1960 MadeChange = true; 1961 } 1962 return MadeChange; 1963 } 1964 }; 1965 1966 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1967 DominatorTree &DT, PostDominatorTree &PDT, 1968 const TargetLibraryInfo &TLI, 1969 const LoopInfo &LI) { 1970 bool MadeChange = false; 1971 1972 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 1973 // For each store: 1974 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 1975 MemoryDef *KillingDef = State.MemDefs[I]; 1976 if (State.SkipStores.count(KillingDef)) 1977 continue; 1978 Instruction *KillingI = KillingDef->getMemoryInst(); 1979 1980 Optional<MemoryLocation> MaybeKillingLoc; 1981 if (State.isMemTerminatorInst(KillingI)) 1982 MaybeKillingLoc = State.getLocForTerminator(KillingI).map( 1983 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 1984 else 1985 MaybeKillingLoc = State.getLocForWriteEx(KillingI); 1986 1987 if (!MaybeKillingLoc) { 1988 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 1989 << *KillingI << "\n"); 1990 continue; 1991 } 1992 MemoryLocation KillingLoc = *MaybeKillingLoc; 1993 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 1994 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 1995 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 1996 << *KillingDef << " (" << *KillingI << ")\n"); 1997 1998 unsigned ScanLimit = MemorySSAScanLimit; 1999 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 2000 unsigned PartialLimit = MemorySSAPartialStoreLimit; 2001 // Worklist of MemoryAccesses that may be killed by KillingDef. 2002 SetVector<MemoryAccess *> ToCheck; 2003 ToCheck.insert(KillingDef->getDefiningAccess()); 2004 2005 bool Shortend = false; 2006 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 2007 // Check if MemoryAccesses in the worklist are killed by KillingDef. 2008 for (unsigned I = 0; I < ToCheck.size(); I++) { 2009 MemoryAccess *Current = ToCheck[I]; 2010 if (State.SkipStores.count(Current)) 2011 continue; 2012 2013 Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 2014 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 2015 WalkerStepLimit, IsMemTerm, PartialLimit); 2016 2017 if (!MaybeDeadAccess) { 2018 LLVM_DEBUG(dbgs() << " finished walk\n"); 2019 continue; 2020 } 2021 2022 MemoryAccess *DeadAccess = *MaybeDeadAccess; 2023 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 2024 if (isa<MemoryPhi>(DeadAccess)) { 2025 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 2026 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 2027 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2028 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2029 BasicBlock *PhiBlock = DeadAccess->getBlock(); 2030 2031 // We only consider incoming MemoryAccesses that come before the 2032 // MemoryPhi. Otherwise we could discover candidates that do not 2033 // strictly dominate our starting def. 2034 if (State.PostOrderNumbers[IncomingBlock] > 2035 State.PostOrderNumbers[PhiBlock]) 2036 ToCheck.insert(IncomingAccess); 2037 } 2038 continue; 2039 } 2040 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 2041 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 2042 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 2043 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 2044 NumGetDomMemoryDefPassed++; 2045 2046 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2047 continue; 2048 2049 MemoryLocation DeadLoc = *State.getLocForWriteEx(DeadI); 2050 2051 if (IsMemTerm) { 2052 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2053 if (KillingUndObj != DeadUndObj) 2054 continue; 2055 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2056 << "\n KILLER: " << *KillingI << '\n'); 2057 State.deleteDeadInstruction(DeadI); 2058 ++NumFastStores; 2059 MadeChange = true; 2060 } else { 2061 // Check if DeadI overwrites KillingI. 2062 int64_t KillingOffset = 0; 2063 int64_t DeadOffset = 0; 2064 OverwriteResult OR = State.isOverwrite( 2065 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2066 if (OR == OW_MaybePartial) { 2067 auto Iter = State.IOLs.insert( 2068 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2069 DeadI->getParent(), InstOverlapIntervalsTy())); 2070 auto &IOL = Iter.first->second; 2071 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2072 DeadOffset, DeadI, IOL); 2073 } 2074 2075 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2076 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2077 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2078 // We are re-using tryToMergePartialOverlappingStores, which requires 2079 // DeadSI to dominate DeadSI. 2080 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2081 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2082 if (Constant *Merged = tryToMergePartialOverlappingStores( 2083 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2084 State.BatchAA, &DT)) { 2085 2086 // Update stored value of earlier store to merged constant. 2087 DeadSI->setOperand(0, Merged); 2088 ++NumModifiedStores; 2089 MadeChange = true; 2090 2091 Shortend = true; 2092 // Remove killing store and remove any outstanding overlap 2093 // intervals for the updated store. 2094 State.deleteDeadInstruction(KillingSI); 2095 auto I = State.IOLs.find(DeadSI->getParent()); 2096 if (I != State.IOLs.end()) 2097 I->second.erase(DeadSI); 2098 break; 2099 } 2100 } 2101 } 2102 2103 if (OR == OW_Complete) { 2104 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2105 << "\n KILLER: " << *KillingI << '\n'); 2106 State.deleteDeadInstruction(DeadI); 2107 ++NumFastStores; 2108 MadeChange = true; 2109 } 2110 } 2111 } 2112 2113 // Check if the store is a no-op. 2114 if (!Shortend && isRemovable(KillingI) && 2115 State.storeIsNoop(KillingDef, KillingUndObj)) { 2116 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2117 << '\n'); 2118 State.deleteDeadInstruction(KillingI); 2119 NumRedundantStores++; 2120 MadeChange = true; 2121 continue; 2122 } 2123 } 2124 2125 if (EnablePartialOverwriteTracking) 2126 for (auto &KV : State.IOLs) 2127 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2128 2129 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2130 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2131 return MadeChange; 2132 } 2133 } // end anonymous namespace 2134 2135 //===----------------------------------------------------------------------===// 2136 // DSE Pass 2137 //===----------------------------------------------------------------------===// 2138 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2139 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2140 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2141 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2142 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2143 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2144 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2145 2146 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2147 2148 #ifdef LLVM_ENABLE_STATS 2149 if (AreStatisticsEnabled()) 2150 for (auto &I : instructions(F)) 2151 NumRemainingStores += isa<StoreInst>(&I); 2152 #endif 2153 2154 if (!Changed) 2155 return PreservedAnalyses::all(); 2156 2157 PreservedAnalyses PA; 2158 PA.preserveSet<CFGAnalyses>(); 2159 PA.preserve<MemorySSAAnalysis>(); 2160 PA.preserve<LoopAnalysis>(); 2161 return PA; 2162 } 2163 2164 namespace { 2165 2166 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2167 class DSELegacyPass : public FunctionPass { 2168 public: 2169 static char ID; // Pass identification, replacement for typeid 2170 2171 DSELegacyPass() : FunctionPass(ID) { 2172 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2173 } 2174 2175 bool runOnFunction(Function &F) override { 2176 if (skipFunction(F)) 2177 return false; 2178 2179 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2180 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2181 const TargetLibraryInfo &TLI = 2182 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2183 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2184 PostDominatorTree &PDT = 2185 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2186 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2187 2188 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2189 2190 #ifdef LLVM_ENABLE_STATS 2191 if (AreStatisticsEnabled()) 2192 for (auto &I : instructions(F)) 2193 NumRemainingStores += isa<StoreInst>(&I); 2194 #endif 2195 2196 return Changed; 2197 } 2198 2199 void getAnalysisUsage(AnalysisUsage &AU) const override { 2200 AU.setPreservesCFG(); 2201 AU.addRequired<AAResultsWrapperPass>(); 2202 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2203 AU.addPreserved<GlobalsAAWrapperPass>(); 2204 AU.addRequired<DominatorTreeWrapperPass>(); 2205 AU.addPreserved<DominatorTreeWrapperPass>(); 2206 AU.addRequired<PostDominatorTreeWrapperPass>(); 2207 AU.addRequired<MemorySSAWrapperPass>(); 2208 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2209 AU.addPreserved<MemorySSAWrapperPass>(); 2210 AU.addRequired<LoopInfoWrapperPass>(); 2211 AU.addPreserved<LoopInfoWrapperPass>(); 2212 } 2213 }; 2214 2215 } // end anonymous namespace 2216 2217 char DSELegacyPass::ID = 0; 2218 2219 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2220 false) 2221 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2222 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2223 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2224 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2225 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2226 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2227 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2228 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2229 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2230 false) 2231 2232 FunctionPass *llvm::createDeadStoreEliminationPass() { 2233 return new DSELegacyPass(); 2234 } 2235