1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstIterator.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/DebugCounter.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <optional> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace PatternMatch; 89 90 #define DEBUG_TYPE "dse" 91 92 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 93 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 94 STATISTIC(NumFastStores, "Number of stores deleted"); 95 STATISTIC(NumFastOther, "Number of other instrs removed"); 96 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 97 STATISTIC(NumModifiedStores, "Number of stores modified"); 98 STATISTIC(NumCFGChecks, "Number of stores modified"); 99 STATISTIC(NumCFGTries, "Number of stores modified"); 100 STATISTIC(NumCFGSuccess, "Number of stores modified"); 101 STATISTIC(NumGetDomMemoryDefPassed, 102 "Number of times a valid candidate is returned from getDomMemoryDef"); 103 STATISTIC(NumDomMemDefChecks, 104 "Number iterations check for reads in getDomMemoryDef"); 105 106 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 107 "Controls which MemoryDefs are eliminated."); 108 109 static cl::opt<bool> 110 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 111 cl::init(true), cl::Hidden, 112 cl::desc("Enable partial-overwrite tracking in DSE")); 113 114 static cl::opt<bool> 115 EnablePartialStoreMerging("enable-dse-partial-store-merging", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial store merging in DSE")); 118 119 static cl::opt<unsigned> 120 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 121 cl::desc("The number of memory instructions to scan for " 122 "dead store elimination (default = 150)")); 123 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 124 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 125 cl::desc("The maximum number of steps while walking upwards to find " 126 "MemoryDefs that may be killed (default = 90)")); 127 128 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 129 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 130 cl::desc("The maximum number candidates that only partially overwrite the " 131 "killing MemoryDef to consider" 132 " (default = 5)")); 133 134 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 135 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 136 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 137 "other stores per basic block (default = 5000)")); 138 139 static cl::opt<unsigned> MemorySSASameBBStepCost( 140 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 141 cl::desc( 142 "The cost of a step in the same basic block as the killing MemoryDef" 143 "(default = 1)")); 144 145 static cl::opt<unsigned> 146 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 147 cl::Hidden, 148 cl::desc("The cost of a step in a different basic " 149 "block than the killing MemoryDef" 150 "(default = 5)")); 151 152 static cl::opt<unsigned> MemorySSAPathCheckLimit( 153 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 154 cl::desc("The maximum number of blocks to check when trying to prove that " 155 "all paths to an exit go through a killing block (default = 50)")); 156 157 // This flags allows or disallows DSE to optimize MemorySSA during its 158 // traversal. Note that DSE optimizing MemorySSA may impact other passes 159 // downstream of the DSE invocation and can lead to issues not being 160 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In 161 // those cases, the flag can be used to check if DSE's MemorySSA optimizations 162 // impact follow-up passes. 163 static cl::opt<bool> 164 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, 165 cl::desc("Allow DSE to optimize memory accesses.")); 166 167 //===----------------------------------------------------------------------===// 168 // Helper functions 169 //===----------------------------------------------------------------------===// 170 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 171 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 172 173 /// Returns true if the end of this instruction can be safely shortened in 174 /// length. 175 static bool isShortenableAtTheEnd(Instruction *I) { 176 // Don't shorten stores for now 177 if (isa<StoreInst>(I)) 178 return false; 179 180 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 181 switch (II->getIntrinsicID()) { 182 default: return false; 183 case Intrinsic::memset: 184 case Intrinsic::memcpy: 185 case Intrinsic::memcpy_element_unordered_atomic: 186 case Intrinsic::memset_element_unordered_atomic: 187 // Do shorten memory intrinsics. 188 // FIXME: Add memmove if it's also safe to transform. 189 return true; 190 } 191 } 192 193 // Don't shorten libcalls calls for now. 194 195 return false; 196 } 197 198 /// Returns true if the beginning of this instruction can be safely shortened 199 /// in length. 200 static bool isShortenableAtTheBeginning(Instruction *I) { 201 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 202 // easily done by offsetting the source address. 203 return isa<AnyMemSetInst>(I); 204 } 205 206 static std::optional<TypeSize> getPointerSize(const Value *V, 207 const DataLayout &DL, 208 const TargetLibraryInfo &TLI, 209 const Function *F) { 210 uint64_t Size; 211 ObjectSizeOpts Opts; 212 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 213 214 if (getObjectSize(V, Size, DL, &TLI, Opts)) 215 return TypeSize::getFixed(Size); 216 return std::nullopt; 217 } 218 219 namespace { 220 221 enum OverwriteResult { 222 OW_Begin, 223 OW_Complete, 224 OW_End, 225 OW_PartialEarlierWithFullLater, 226 OW_MaybePartial, 227 OW_None, 228 OW_Unknown 229 }; 230 231 } // end anonymous namespace 232 233 /// Check if two instruction are masked stores that completely 234 /// overwrite one another. More specifically, \p KillingI has to 235 /// overwrite \p DeadI. 236 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 237 const Instruction *DeadI, 238 BatchAAResults &AA) { 239 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 240 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 241 if (KillingII == nullptr || DeadII == nullptr) 242 return OW_Unknown; 243 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID()) 244 return OW_Unknown; 245 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) { 246 // Type size. 247 VectorType *KillingTy = 248 cast<VectorType>(KillingII->getArgOperand(0)->getType()); 249 VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType()); 250 if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits()) 251 return OW_Unknown; 252 // Element count. 253 if (KillingTy->getElementCount() != DeadTy->getElementCount()) 254 return OW_Unknown; 255 // Pointers. 256 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 257 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 258 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 259 return OW_Unknown; 260 // Masks. 261 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 262 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 263 return OW_Unknown; 264 return OW_Complete; 265 } 266 return OW_Unknown; 267 } 268 269 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 270 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 271 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 272 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 273 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 274 /// overwritten by a killing (smaller) store which doesn't write outside the big 275 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 276 /// NOTE: This function must only be called if both \p KillingLoc and \p 277 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 278 /// \p DeadOff. 279 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 280 const MemoryLocation &DeadLoc, 281 int64_t KillingOff, int64_t DeadOff, 282 Instruction *DeadI, 283 InstOverlapIntervalsTy &IOL) { 284 const uint64_t KillingSize = KillingLoc.Size.getValue(); 285 const uint64_t DeadSize = DeadLoc.Size.getValue(); 286 // We may now overlap, although the overlap is not complete. There might also 287 // be other incomplete overlaps, and together, they might cover the complete 288 // dead store. 289 // Note: The correctness of this logic depends on the fact that this function 290 // is not even called providing DepWrite when there are any intervening reads. 291 if (EnablePartialOverwriteTracking && 292 KillingOff < int64_t(DeadOff + DeadSize) && 293 int64_t(KillingOff + KillingSize) >= DeadOff) { 294 295 // Insert our part of the overlap into the map. 296 auto &IM = IOL[DeadI]; 297 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 298 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 299 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 300 << ")\n"); 301 302 // Make sure that we only insert non-overlapping intervals and combine 303 // adjacent intervals. The intervals are stored in the map with the ending 304 // offset as the key (in the half-open sense) and the starting offset as 305 // the value. 306 int64_t KillingIntStart = KillingOff; 307 int64_t KillingIntEnd = KillingOff + KillingSize; 308 309 // Find any intervals ending at, or after, KillingIntStart which start 310 // before KillingIntEnd. 311 auto ILI = IM.lower_bound(KillingIntStart); 312 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 313 // This existing interval is overlapped with the current store somewhere 314 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 315 // intervals and adjusting our start and end. 316 KillingIntStart = std::min(KillingIntStart, ILI->second); 317 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 318 ILI = IM.erase(ILI); 319 320 // Continue erasing and adjusting our end in case other previous 321 // intervals are also overlapped with the current store. 322 // 323 // |--- dead 1 ---| |--- dead 2 ---| 324 // |------- killing---------| 325 // 326 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 327 assert(ILI->second > KillingIntStart && "Unexpected interval"); 328 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 329 ILI = IM.erase(ILI); 330 } 331 } 332 333 IM[KillingIntEnd] = KillingIntStart; 334 335 ILI = IM.begin(); 336 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 337 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 338 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 339 << ") Composite KillingLoc [" << ILI->second << ", " 340 << ILI->first << ")\n"); 341 ++NumCompletePartials; 342 return OW_Complete; 343 } 344 } 345 346 // Check for a dead store which writes to all the memory locations that 347 // the killing store writes to. 348 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 349 int64_t(DeadOff + DeadSize) > KillingOff && 350 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 351 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 352 << ", " << int64_t(DeadOff + DeadSize) 353 << ") by a killing store [" << KillingOff << ", " 354 << int64_t(KillingOff + KillingSize) << ")\n"); 355 // TODO: Maybe come up with a better name? 356 return OW_PartialEarlierWithFullLater; 357 } 358 359 // Another interesting case is if the killing store overwrites the end of the 360 // dead store. 361 // 362 // |--dead--| 363 // |-- killing --| 364 // 365 // In this case we may want to trim the size of dead store to avoid 366 // generating stores to addresses which will definitely be overwritten killing 367 // store. 368 if (!EnablePartialOverwriteTracking && 369 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 370 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 371 return OW_End; 372 373 // Finally, we also need to check if the killing store overwrites the 374 // beginning of the dead store. 375 // 376 // |--dead--| 377 // |-- killing --| 378 // 379 // In this case we may want to move the destination address and trim the size 380 // of dead store to avoid generating stores to addresses which will definitely 381 // be overwritten killing store. 382 if (!EnablePartialOverwriteTracking && 383 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 384 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 385 "Expect to be handled as OW_Complete"); 386 return OW_Begin; 387 } 388 // Otherwise, they don't completely overlap. 389 return OW_Unknown; 390 } 391 392 /// Returns true if the memory which is accessed by the second instruction is not 393 /// modified between the first and the second instruction. 394 /// Precondition: Second instruction must be dominated by the first 395 /// instruction. 396 static bool 397 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 398 BatchAAResults &AA, const DataLayout &DL, 399 DominatorTree *DT) { 400 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 401 // instructions which can modify the memory location accessed by SecondI. 402 // 403 // While doing the walk keep track of the address to check. It might be 404 // different in different basic blocks due to PHI translation. 405 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 406 SmallVector<BlockAddressPair, 16> WorkList; 407 // Keep track of the address we visited each block with. Bail out if we 408 // visit a block with different addresses. 409 DenseMap<BasicBlock *, Value *> Visited; 410 411 BasicBlock::iterator FirstBBI(FirstI); 412 ++FirstBBI; 413 BasicBlock::iterator SecondBBI(SecondI); 414 BasicBlock *FirstBB = FirstI->getParent(); 415 BasicBlock *SecondBB = SecondI->getParent(); 416 MemoryLocation MemLoc; 417 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 418 MemLoc = MemoryLocation::getForDest(MemSet); 419 else 420 MemLoc = MemoryLocation::get(SecondI); 421 422 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 423 424 // Start checking the SecondBB. 425 WorkList.push_back( 426 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 427 bool isFirstBlock = true; 428 429 // Check all blocks going backward until we reach the FirstBB. 430 while (!WorkList.empty()) { 431 BlockAddressPair Current = WorkList.pop_back_val(); 432 BasicBlock *B = Current.first; 433 PHITransAddr &Addr = Current.second; 434 Value *Ptr = Addr.getAddr(); 435 436 // Ignore instructions before FirstI if this is the FirstBB. 437 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 438 439 BasicBlock::iterator EI; 440 if (isFirstBlock) { 441 // Ignore instructions after SecondI if this is the first visit of SecondBB. 442 assert(B == SecondBB && "first block is not the store block"); 443 EI = SecondBBI; 444 isFirstBlock = false; 445 } else { 446 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 447 // In this case we also have to look at instructions after SecondI. 448 EI = B->end(); 449 } 450 for (; BI != EI; ++BI) { 451 Instruction *I = &*BI; 452 if (I->mayWriteToMemory() && I != SecondI) 453 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 454 return false; 455 } 456 if (B != FirstBB) { 457 assert(B != &FirstBB->getParent()->getEntryBlock() && 458 "Should not hit the entry block because SI must be dominated by LI"); 459 for (BasicBlock *Pred : predecessors(B)) { 460 PHITransAddr PredAddr = Addr; 461 if (PredAddr.needsPHITranslationFromBlock(B)) { 462 if (!PredAddr.isPotentiallyPHITranslatable()) 463 return false; 464 if (!PredAddr.translateValue(B, Pred, DT, false)) 465 return false; 466 } 467 Value *TranslatedPtr = PredAddr.getAddr(); 468 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 469 if (!Inserted.second) { 470 // We already visited this block before. If it was with a different 471 // address - bail out! 472 if (TranslatedPtr != Inserted.first->second) 473 return false; 474 // ... otherwise just skip it. 475 continue; 476 } 477 WorkList.push_back(std::make_pair(Pred, PredAddr)); 478 } 479 } 480 } 481 return true; 482 } 483 484 static void shortenAssignment(Instruction *Inst, Value *OriginalDest, 485 uint64_t OldOffsetInBits, uint64_t OldSizeInBits, 486 uint64_t NewSizeInBits, bool IsOverwriteEnd) { 487 const DataLayout &DL = Inst->getModule()->getDataLayout(); 488 uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits; 489 uint64_t DeadSliceOffsetInBits = 490 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0); 491 auto SetDeadFragExpr = [](auto *Assign, 492 DIExpression::FragmentInfo DeadFragment) { 493 // createFragmentExpression expects an offset relative to the existing 494 // fragment offset if there is one. 495 uint64_t RelativeOffset = DeadFragment.OffsetInBits - 496 Assign->getExpression() 497 ->getFragmentInfo() 498 .value_or(DIExpression::FragmentInfo(0, 0)) 499 .OffsetInBits; 500 if (auto NewExpr = DIExpression::createFragmentExpression( 501 Assign->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) { 502 Assign->setExpression(*NewExpr); 503 return; 504 } 505 // Failed to create a fragment expression for this so discard the value, 506 // making this a kill location. 507 auto *Expr = *DIExpression::createFragmentExpression( 508 DIExpression::get(Assign->getContext(), std::nullopt), 509 DeadFragment.OffsetInBits, DeadFragment.SizeInBits); 510 Assign->setExpression(Expr); 511 Assign->setKillLocation(); 512 }; 513 514 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not 515 // link to any instructions. Created in the loop below (once). 516 DIAssignID *LinkToNothing = nullptr; 517 LLVMContext &Ctx = Inst->getContext(); 518 auto GetDeadLink = [&Ctx, &LinkToNothing]() { 519 if (!LinkToNothing) 520 LinkToNothing = DIAssignID::getDistinct(Ctx); 521 return LinkToNothing; 522 }; 523 524 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each 525 // overlapping dbg.assign intrinsic. The loop invalidates the iterators 526 // returned by getAssignmentMarkers so save a copy of the markers to iterate 527 // over. 528 auto LinkedRange = at::getAssignmentMarkers(Inst); 529 SmallVector<DPValue *> LinkedDPVAssigns = at::getDPVAssignmentMarkers(Inst); 530 SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(), 531 LinkedRange.end()); 532 auto InsertAssignForOverlap = [&](auto *Assign) { 533 std::optional<DIExpression::FragmentInfo> NewFragment; 534 if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits, 535 DeadSliceSizeInBits, Assign, 536 NewFragment) || 537 !NewFragment) { 538 // We couldn't calculate the intersecting fragment for some reason. Be 539 // cautious and unlink the whole assignment from the store. 540 Assign->setKillAddress(); 541 Assign->setAssignId(GetDeadLink()); 542 return; 543 } 544 // No intersect. 545 if (NewFragment->SizeInBits == 0) 546 return; 547 548 // Fragments overlap: insert a new dbg.assign for this dead part. 549 auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone()); 550 NewAssign->insertAfter(Assign); 551 NewAssign->setAssignId(GetDeadLink()); 552 if (NewFragment) 553 SetDeadFragExpr(NewAssign, *NewFragment); 554 NewAssign->setKillAddress(); 555 }; 556 for_each(Linked, InsertAssignForOverlap); 557 for_each(LinkedDPVAssigns, InsertAssignForOverlap); 558 } 559 560 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 561 uint64_t &DeadSize, int64_t KillingStart, 562 uint64_t KillingSize, bool IsOverwriteEnd) { 563 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 564 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 565 566 // We assume that memet/memcpy operates in chunks of the "largest" native 567 // type size and aligned on the same value. That means optimal start and size 568 // of memset/memcpy should be modulo of preferred alignment of that type. That 569 // is it there is no any sense in trying to reduce store size any further 570 // since any "extra" stores comes for free anyway. 571 // On the other hand, maximum alignment we can achieve is limited by alignment 572 // of initial store. 573 574 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 575 // "largest" native type. 576 // Note: What is the proper way to get that value? 577 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 578 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 579 580 int64_t ToRemoveStart = 0; 581 uint64_t ToRemoveSize = 0; 582 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 583 // maintained on the remaining store. 584 if (IsOverwriteEnd) { 585 // Calculate required adjustment for 'KillingStart' in order to keep 586 // remaining store size aligned on 'PerfAlign'. 587 uint64_t Off = 588 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 589 ToRemoveStart = KillingStart + Off; 590 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 591 return false; 592 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 593 } else { 594 ToRemoveStart = DeadStart; 595 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 596 "Not overlapping accesses?"); 597 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 598 // Calculate required adjustment for 'ToRemoveSize'in order to keep 599 // start of the remaining store aligned on 'PerfAlign'. 600 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 601 if (Off != 0) { 602 if (ToRemoveSize <= (PrefAlign.value() - Off)) 603 return false; 604 ToRemoveSize -= PrefAlign.value() - Off; 605 } 606 assert(isAligned(PrefAlign, ToRemoveSize) && 607 "Should preserve selected alignment"); 608 } 609 610 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 611 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 612 613 uint64_t NewSize = DeadSize - ToRemoveSize; 614 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 615 // When shortening an atomic memory intrinsic, the newly shortened 616 // length must remain an integer multiple of the element size. 617 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 618 if (0 != NewSize % ElementSize) 619 return false; 620 } 621 622 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 623 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 624 << "\n KILLER [" << ToRemoveStart << ", " 625 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 626 627 Value *DeadWriteLength = DeadIntrinsic->getLength(); 628 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 629 DeadIntrinsic->setLength(TrimmedLength); 630 DeadIntrinsic->setDestAlignment(PrefAlign); 631 632 Value *OrigDest = DeadIntrinsic->getRawDest(); 633 if (!IsOverwriteEnd) { 634 Value *Indices[1] = { 635 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 636 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 637 Type::getInt8Ty(DeadIntrinsic->getContext()), OrigDest, Indices, "", DeadI); 638 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 639 DeadIntrinsic->setDest(NewDestGEP); 640 } 641 642 // Update attached dbg.assign intrinsics. Assume 8-bit byte. 643 shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8, 644 IsOverwriteEnd); 645 646 // Finally update start and size of dead access. 647 if (!IsOverwriteEnd) 648 DeadStart += ToRemoveSize; 649 DeadSize = NewSize; 650 651 return true; 652 } 653 654 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 655 int64_t &DeadStart, uint64_t &DeadSize) { 656 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 657 return false; 658 659 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 660 int64_t KillingStart = OII->second; 661 uint64_t KillingSize = OII->first - KillingStart; 662 663 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 664 665 if (KillingStart > DeadStart && 666 // Note: "KillingStart - KillingStart" is known to be positive due to 667 // preceding check. 668 (uint64_t)(KillingStart - DeadStart) < DeadSize && 669 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 670 // be non negative due to preceding checks. 671 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 672 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 673 true)) { 674 IntervalMap.erase(OII); 675 return true; 676 } 677 } 678 return false; 679 } 680 681 static bool tryToShortenBegin(Instruction *DeadI, 682 OverlapIntervalsTy &IntervalMap, 683 int64_t &DeadStart, uint64_t &DeadSize) { 684 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 685 return false; 686 687 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 688 int64_t KillingStart = OII->second; 689 uint64_t KillingSize = OII->first - KillingStart; 690 691 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 692 693 if (KillingStart <= DeadStart && 694 // Note: "DeadStart - KillingStart" is known to be non negative due to 695 // preceding check. 696 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 697 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 698 // be positive due to preceding checks. 699 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 700 "Should have been handled as OW_Complete"); 701 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 702 false)) { 703 IntervalMap.erase(OII); 704 return true; 705 } 706 } 707 return false; 708 } 709 710 static Constant * 711 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 712 int64_t KillingOffset, int64_t DeadOffset, 713 const DataLayout &DL, BatchAAResults &AA, 714 DominatorTree *DT) { 715 716 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 717 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 718 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 719 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 720 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 721 // If the store we find is: 722 // a) partially overwritten by the store to 'Loc' 723 // b) the killing store is fully contained in the dead one and 724 // c) they both have a constant value 725 // d) none of the two stores need padding 726 // Merge the two stores, replacing the dead store's value with a 727 // merge of both values. 728 // TODO: Deal with other constant types (vectors, etc), and probably 729 // some mem intrinsics (if needed) 730 731 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 732 APInt KillingValue = 733 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 734 unsigned KillingBits = KillingValue.getBitWidth(); 735 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 736 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 737 738 // Offset of the smaller store inside the larger store 739 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 740 unsigned LShiftAmount = 741 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 742 : BitOffsetDiff; 743 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 744 LShiftAmount + KillingBits); 745 // Clear the bits we'll be replacing, then OR with the smaller 746 // store, shifted appropriately. 747 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 748 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 749 << "\n Killing: " << *KillingI 750 << "\n Merged Value: " << Merged << '\n'); 751 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 752 } 753 return nullptr; 754 } 755 756 namespace { 757 // Returns true if \p I is an intrinsic that does not read or write memory. 758 bool isNoopIntrinsic(Instruction *I) { 759 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 760 switch (II->getIntrinsicID()) { 761 case Intrinsic::lifetime_start: 762 case Intrinsic::lifetime_end: 763 case Intrinsic::invariant_end: 764 case Intrinsic::launder_invariant_group: 765 case Intrinsic::assume: 766 return true; 767 case Intrinsic::dbg_declare: 768 case Intrinsic::dbg_label: 769 case Intrinsic::dbg_value: 770 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 771 default: 772 return false; 773 } 774 } 775 return false; 776 } 777 778 // Check if we can ignore \p D for DSE. 779 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) { 780 Instruction *DI = D->getMemoryInst(); 781 // Calls that only access inaccessible memory cannot read or write any memory 782 // locations we consider for elimination. 783 if (auto *CB = dyn_cast<CallBase>(DI)) 784 if (CB->onlyAccessesInaccessibleMemory()) 785 return true; 786 787 // We can eliminate stores to locations not visible to the caller across 788 // throwing instructions. 789 if (DI->mayThrow() && !DefVisibleToCaller) 790 return true; 791 792 // We can remove the dead stores, irrespective of the fence and its ordering 793 // (release/acquire/seq_cst). Fences only constraints the ordering of 794 // already visible stores, it does not make a store visible to other 795 // threads. So, skipping over a fence does not change a store from being 796 // dead. 797 if (isa<FenceInst>(DI)) 798 return true; 799 800 // Skip intrinsics that do not really read or modify memory. 801 if (isNoopIntrinsic(DI)) 802 return true; 803 804 return false; 805 } 806 807 struct DSEState { 808 Function &F; 809 AliasAnalysis &AA; 810 EarliestEscapeInfo EI; 811 812 /// The single BatchAA instance that is used to cache AA queries. It will 813 /// not be invalidated over the whole run. This is safe, because: 814 /// 1. Only memory writes are removed, so the alias cache for memory 815 /// locations remains valid. 816 /// 2. No new instructions are added (only instructions removed), so cached 817 /// information for a deleted value cannot be accessed by a re-used new 818 /// value pointer. 819 BatchAAResults BatchAA; 820 821 MemorySSA &MSSA; 822 DominatorTree &DT; 823 PostDominatorTree &PDT; 824 const TargetLibraryInfo &TLI; 825 const DataLayout &DL; 826 const LoopInfo &LI; 827 828 // Whether the function contains any irreducible control flow, useful for 829 // being accurately able to detect loops. 830 bool ContainsIrreducibleLoops; 831 832 // All MemoryDefs that potentially could kill other MemDefs. 833 SmallVector<MemoryDef *, 64> MemDefs; 834 // Any that should be skipped as they are already deleted 835 SmallPtrSet<MemoryAccess *, 4> SkipStores; 836 // Keep track whether a given object is captured before return or not. 837 DenseMap<const Value *, bool> CapturedBeforeReturn; 838 // Keep track of all of the objects that are invisible to the caller after 839 // the function returns. 840 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 841 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 842 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 843 // Post-order numbers for each basic block. Used to figure out if memory 844 // accesses are executed before another access. 845 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 846 847 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 848 /// basic block. 849 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs; 850 // Check if there are root nodes that are terminated by UnreachableInst. 851 // Those roots pessimize post-dominance queries. If there are such roots, 852 // fall back to CFG scan starting from all non-unreachable roots. 853 bool AnyUnreachableExit; 854 855 // Whether or not we should iterate on removing dead stores at the end of the 856 // function due to removing a store causing a previously captured pointer to 857 // no longer be captured. 858 bool ShouldIterateEndOfFunctionDSE; 859 860 /// Dead instructions to be removed at the end of DSE. 861 SmallVector<Instruction *> ToRemove; 862 863 // Class contains self-reference, make sure it's not copied/moved. 864 DSEState(const DSEState &) = delete; 865 DSEState &operator=(const DSEState &) = delete; 866 867 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 868 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 869 const LoopInfo &LI) 870 : F(F), AA(AA), EI(DT, &LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT), 871 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 872 // Collect blocks with throwing instructions not modeled in MemorySSA and 873 // alloc-like objects. 874 unsigned PO = 0; 875 for (BasicBlock *BB : post_order(&F)) { 876 PostOrderNumbers[BB] = PO++; 877 for (Instruction &I : *BB) { 878 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 879 if (I.mayThrow() && !MA) 880 ThrowingBlocks.insert(I.getParent()); 881 882 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 883 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 884 (getLocForWrite(&I) || isMemTerminatorInst(&I))) 885 MemDefs.push_back(MD); 886 } 887 } 888 889 // Treat byval or inalloca arguments the same as Allocas, stores to them are 890 // dead at the end of the function. 891 for (Argument &AI : F.args()) 892 if (AI.hasPassPointeeByValueCopyAttr()) 893 InvisibleToCallerAfterRet.insert({&AI, true}); 894 895 // Collect whether there is any irreducible control flow in the function. 896 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 897 898 AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) { 899 return isa<UnreachableInst>(E->getTerminator()); 900 }); 901 } 902 903 LocationSize strengthenLocationSize(const Instruction *I, 904 LocationSize Size) const { 905 if (auto *CB = dyn_cast<CallBase>(I)) { 906 LibFunc F; 907 if (TLI.getLibFunc(*CB, F) && TLI.has(F) && 908 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) { 909 // Use the precise location size specified by the 3rd argument 910 // for determining KillingI overwrites DeadLoc if it is a memset_chk 911 // instruction. memset_chk will write either the amount specified as 3rd 912 // argument or the function will immediately abort and exit the program. 913 // NOTE: AA may determine NoAlias if it can prove that the access size 914 // is larger than the allocation size due to that being UB. To avoid 915 // returning potentially invalid NoAlias results by AA, limit the use of 916 // the precise location size to isOverwrite. 917 if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2))) 918 return LocationSize::precise(Len->getZExtValue()); 919 } 920 } 921 return Size; 922 } 923 924 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 925 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 926 /// location (by \p DeadI instruction). 927 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 928 /// \p DeadI, but they both write to the same underlying object. In that 929 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 930 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the 931 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 932 OverwriteResult isOverwrite(const Instruction *KillingI, 933 const Instruction *DeadI, 934 const MemoryLocation &KillingLoc, 935 const MemoryLocation &DeadLoc, 936 int64_t &KillingOff, int64_t &DeadOff) { 937 // AliasAnalysis does not always account for loops. Limit overwrite checks 938 // to dependencies for which we can guarantee they are independent of any 939 // loops they are in. 940 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 941 return OW_Unknown; 942 943 LocationSize KillingLocSize = 944 strengthenLocationSize(KillingI, KillingLoc.Size); 945 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 946 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 947 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 948 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 949 950 // Check whether the killing store overwrites the whole object, in which 951 // case the size/offset of the dead store does not matter. 952 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() && 953 isIdentifiedObject(KillingUndObj)) { 954 std::optional<TypeSize> KillingUndObjSize = 955 getPointerSize(KillingUndObj, DL, TLI, &F); 956 if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue()) 957 return OW_Complete; 958 } 959 960 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 961 // get imprecise values here, though (except for unknown sizes). 962 if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) { 963 // In case no constant size is known, try to an IR values for the number 964 // of bytes written and check if they match. 965 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 966 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 967 if (KillingMemI && DeadMemI) { 968 const Value *KillingV = KillingMemI->getLength(); 969 const Value *DeadV = DeadMemI->getLength(); 970 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 971 return OW_Complete; 972 } 973 974 // Masked stores have imprecise locations, but we can reason about them 975 // to some extent. 976 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 977 } 978 979 const TypeSize KillingSize = KillingLocSize.getValue(); 980 const TypeSize DeadSize = DeadLoc.Size.getValue(); 981 // Bail on doing Size comparison which depends on AA for now 982 // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors 983 const bool AnyScalable = 984 DeadSize.isScalable() || KillingLocSize.isScalable(); 985 986 if (AnyScalable) 987 return OW_Unknown; 988 // Query the alias information 989 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 990 991 // If the start pointers are the same, we just have to compare sizes to see if 992 // the killing store was larger than the dead store. 993 if (AAR == AliasResult::MustAlias) { 994 // Make sure that the KillingSize size is >= the DeadSize size. 995 if (KillingSize >= DeadSize) 996 return OW_Complete; 997 } 998 999 // If we hit a partial alias we may have a full overwrite 1000 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 1001 int32_t Off = AAR.getOffset(); 1002 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 1003 return OW_Complete; 1004 } 1005 1006 // If we can't resolve the same pointers to the same object, then we can't 1007 // analyze them at all. 1008 if (DeadUndObj != KillingUndObj) { 1009 // Non aliasing stores to different objects don't overlap. Note that 1010 // if the killing store is known to overwrite whole object (out of 1011 // bounds access overwrites whole object as well) then it is assumed to 1012 // completely overwrite any store to the same object even if they don't 1013 // actually alias (see next check). 1014 if (AAR == AliasResult::NoAlias) 1015 return OW_None; 1016 return OW_Unknown; 1017 } 1018 1019 // Okay, we have stores to two completely different pointers. Try to 1020 // decompose the pointer into a "base + constant_offset" form. If the base 1021 // pointers are equal, then we can reason about the two stores. 1022 DeadOff = 0; 1023 KillingOff = 0; 1024 const Value *DeadBasePtr = 1025 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 1026 const Value *KillingBasePtr = 1027 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 1028 1029 // If the base pointers still differ, we have two completely different 1030 // stores. 1031 if (DeadBasePtr != KillingBasePtr) 1032 return OW_Unknown; 1033 1034 // The killing access completely overlaps the dead store if and only if 1035 // both start and end of the dead one is "inside" the killing one: 1036 // |<->|--dead--|<->| 1037 // |-----killing------| 1038 // Accesses may overlap if and only if start of one of them is "inside" 1039 // another one: 1040 // |<->|--dead--|<-------->| 1041 // |-------killing--------| 1042 // OR 1043 // |-------dead-------| 1044 // |<->|---killing---|<----->| 1045 // 1046 // We have to be careful here as *Off is signed while *.Size is unsigned. 1047 1048 // Check if the dead access starts "not before" the killing one. 1049 if (DeadOff >= KillingOff) { 1050 // If the dead access ends "not after" the killing access then the 1051 // dead one is completely overwritten by the killing one. 1052 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 1053 return OW_Complete; 1054 // If start of the dead access is "before" end of the killing access 1055 // then accesses overlap. 1056 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 1057 return OW_MaybePartial; 1058 } 1059 // If start of the killing access is "before" end of the dead access then 1060 // accesses overlap. 1061 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 1062 return OW_MaybePartial; 1063 } 1064 1065 // Can reach here only if accesses are known not to overlap. 1066 return OW_None; 1067 } 1068 1069 bool isInvisibleToCallerAfterRet(const Value *V) { 1070 if (isa<AllocaInst>(V)) 1071 return true; 1072 auto I = InvisibleToCallerAfterRet.insert({V, false}); 1073 if (I.second) { 1074 if (!isInvisibleToCallerOnUnwind(V)) { 1075 I.first->second = false; 1076 } else if (isNoAliasCall(V)) { 1077 I.first->second = !PointerMayBeCaptured(V, true, false); 1078 } 1079 } 1080 return I.first->second; 1081 } 1082 1083 bool isInvisibleToCallerOnUnwind(const Value *V) { 1084 bool RequiresNoCaptureBeforeUnwind; 1085 if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind)) 1086 return false; 1087 if (!RequiresNoCaptureBeforeUnwind) 1088 return true; 1089 1090 auto I = CapturedBeforeReturn.insert({V, true}); 1091 if (I.second) 1092 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1093 // with the killing MemoryDef. But we refrain from doing so for now to 1094 // limit compile-time and this does not cause any changes to the number 1095 // of stores removed on a large test set in practice. 1096 I.first->second = PointerMayBeCaptured(V, false, true); 1097 return !I.first->second; 1098 } 1099 1100 std::optional<MemoryLocation> getLocForWrite(Instruction *I) const { 1101 if (!I->mayWriteToMemory()) 1102 return std::nullopt; 1103 1104 if (auto *CB = dyn_cast<CallBase>(I)) 1105 return MemoryLocation::getForDest(CB, TLI); 1106 1107 return MemoryLocation::getOrNone(I); 1108 } 1109 1110 /// Assuming this instruction has a dead analyzable write, can we delete 1111 /// this instruction? 1112 bool isRemovable(Instruction *I) { 1113 assert(getLocForWrite(I) && "Must have analyzable write"); 1114 1115 // Don't remove volatile/atomic stores. 1116 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1117 return SI->isUnordered(); 1118 1119 if (auto *CB = dyn_cast<CallBase>(I)) { 1120 // Don't remove volatile memory intrinsics. 1121 if (auto *MI = dyn_cast<MemIntrinsic>(CB)) 1122 return !MI->isVolatile(); 1123 1124 // Never remove dead lifetime intrinsics, e.g. because they are followed 1125 // by a free. 1126 if (CB->isLifetimeStartOrEnd()) 1127 return false; 1128 1129 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() && 1130 !CB->isTerminator(); 1131 } 1132 1133 return false; 1134 } 1135 1136 /// Returns true if \p UseInst completely overwrites \p DefLoc 1137 /// (stored by \p DefInst). 1138 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1139 Instruction *UseInst) { 1140 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1141 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1142 // MemoryDef. 1143 if (!UseInst->mayWriteToMemory()) 1144 return false; 1145 1146 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1147 if (CB->onlyAccessesInaccessibleMemory()) 1148 return false; 1149 1150 int64_t InstWriteOffset, DepWriteOffset; 1151 if (auto CC = getLocForWrite(UseInst)) 1152 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1153 DepWriteOffset) == OW_Complete; 1154 return false; 1155 } 1156 1157 /// Returns true if \p Def is not read before returning from the function. 1158 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1159 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1160 << *Def->getMemoryInst() 1161 << ") is at the end the function \n"); 1162 1163 auto MaybeLoc = getLocForWrite(Def->getMemoryInst()); 1164 if (!MaybeLoc) { 1165 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1166 return false; 1167 } 1168 1169 SmallVector<MemoryAccess *, 4> WorkList; 1170 SmallPtrSet<MemoryAccess *, 8> Visited; 1171 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1172 if (!Visited.insert(Acc).second) 1173 return; 1174 for (Use &U : Acc->uses()) 1175 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1176 }; 1177 PushMemUses(Def); 1178 for (unsigned I = 0; I < WorkList.size(); I++) { 1179 if (WorkList.size() >= MemorySSAScanLimit) { 1180 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1181 return false; 1182 } 1183 1184 MemoryAccess *UseAccess = WorkList[I]; 1185 if (isa<MemoryPhi>(UseAccess)) { 1186 // AliasAnalysis does not account for loops. Limit elimination to 1187 // candidates for which we can guarantee they always store to the same 1188 // memory location. 1189 if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr)) 1190 return false; 1191 1192 PushMemUses(cast<MemoryPhi>(UseAccess)); 1193 continue; 1194 } 1195 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1196 // of times this is called and/or caching it. 1197 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1198 if (isReadClobber(*MaybeLoc, UseInst)) { 1199 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1200 return false; 1201 } 1202 1203 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1204 PushMemUses(UseDef); 1205 } 1206 return true; 1207 } 1208 1209 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1210 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1211 /// indicating whether \p I is a free-like call. 1212 std::optional<std::pair<MemoryLocation, bool>> 1213 getLocForTerminator(Instruction *I) const { 1214 uint64_t Len; 1215 Value *Ptr; 1216 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1217 m_Value(Ptr)))) 1218 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1219 1220 if (auto *CB = dyn_cast<CallBase>(I)) { 1221 if (Value *FreedOp = getFreedOperand(CB, &TLI)) 1222 return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)}; 1223 } 1224 1225 return std::nullopt; 1226 } 1227 1228 /// Returns true if \p I is a memory terminator instruction like 1229 /// llvm.lifetime.end or free. 1230 bool isMemTerminatorInst(Instruction *I) const { 1231 auto *CB = dyn_cast<CallBase>(I); 1232 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end || 1233 getFreedOperand(CB, &TLI) != nullptr); 1234 } 1235 1236 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1237 /// instruction \p AccessI. 1238 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1239 Instruction *MaybeTerm) { 1240 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1241 getLocForTerminator(MaybeTerm); 1242 1243 if (!MaybeTermLoc) 1244 return false; 1245 1246 // If the terminator is a free-like call, all accesses to the underlying 1247 // object can be considered terminated. 1248 if (getUnderlyingObject(Loc.Ptr) != 1249 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1250 return false; 1251 1252 auto TermLoc = MaybeTermLoc->first; 1253 if (MaybeTermLoc->second) { 1254 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1255 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1256 } 1257 int64_t InstWriteOffset = 0; 1258 int64_t DepWriteOffset = 0; 1259 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1260 DepWriteOffset) == OW_Complete; 1261 } 1262 1263 // Returns true if \p Use may read from \p DefLoc. 1264 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1265 if (isNoopIntrinsic(UseInst)) 1266 return false; 1267 1268 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1269 // treated as read clobber. 1270 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1271 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1272 1273 if (!UseInst->mayReadFromMemory()) 1274 return false; 1275 1276 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1277 if (CB->onlyAccessesInaccessibleMemory()) 1278 return false; 1279 1280 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1281 } 1282 1283 /// Returns true if a dependency between \p Current and \p KillingDef is 1284 /// guaranteed to be loop invariant for the loops that they are in. Either 1285 /// because they are known to be in the same block, in the same loop level or 1286 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1287 /// during execution of the containing function. 1288 bool isGuaranteedLoopIndependent(const Instruction *Current, 1289 const Instruction *KillingDef, 1290 const MemoryLocation &CurrentLoc) { 1291 // If the dependency is within the same block or loop level (being careful 1292 // of irreducible loops), we know that AA will return a valid result for the 1293 // memory dependency. (Both at the function level, outside of any loop, 1294 // would also be valid but we currently disable that to limit compile time). 1295 if (Current->getParent() == KillingDef->getParent()) 1296 return true; 1297 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1298 if (!ContainsIrreducibleLoops && CurrentLI && 1299 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1300 return true; 1301 // Otherwise check the memory location is invariant to any loops. 1302 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1303 } 1304 1305 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1306 /// loop. In particular, this guarantees that it only references a single 1307 /// MemoryLocation during execution of the containing function. 1308 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1309 Ptr = Ptr->stripPointerCasts(); 1310 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) 1311 if (GEP->hasAllConstantIndices()) 1312 Ptr = GEP->getPointerOperand()->stripPointerCasts(); 1313 1314 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1315 return I->getParent()->isEntryBlock() || 1316 (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent())); 1317 } 1318 return true; 1319 } 1320 1321 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1322 // with no read access between them or on any other path to a function exit 1323 // block if \p KillingLoc is not accessible after the function returns. If 1324 // there is no such MemoryDef, return std::nullopt. The returned value may not 1325 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1326 // encounter an aliasing MemoryUse (read). 1327 std::optional<MemoryAccess *> 1328 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1329 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1330 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1331 bool IsMemTerm, unsigned &PartialLimit) { 1332 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1333 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1334 return std::nullopt; 1335 } 1336 1337 MemoryAccess *Current = StartAccess; 1338 Instruction *KillingI = KillingDef->getMemoryInst(); 1339 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1340 1341 // Only optimize defining access of KillingDef when directly starting at its 1342 // defining access. The defining access also must only access KillingLoc. At 1343 // the moment we only support instructions with a single write location, so 1344 // it should be sufficient to disable optimizations for instructions that 1345 // also read from memory. 1346 bool CanOptimize = OptimizeMemorySSA && 1347 KillingDef->getDefiningAccess() == StartAccess && 1348 !KillingI->mayReadFromMemory(); 1349 1350 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1351 std::optional<MemoryLocation> CurrentLoc; 1352 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1353 LLVM_DEBUG({ 1354 dbgs() << " visiting " << *Current; 1355 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1356 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1357 << ")"; 1358 dbgs() << "\n"; 1359 }); 1360 1361 // Reached TOP. 1362 if (MSSA.isLiveOnEntryDef(Current)) { 1363 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1364 if (CanOptimize && Current != KillingDef->getDefiningAccess()) 1365 // The first clobbering def is... none. 1366 KillingDef->setOptimized(Current); 1367 return std::nullopt; 1368 } 1369 1370 // Cost of a step. Accesses in the same block are more likely to be valid 1371 // candidates for elimination, hence consider them cheaper. 1372 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1373 ? MemorySSASameBBStepCost 1374 : MemorySSAOtherBBStepCost; 1375 if (WalkerStepLimit <= StepCost) { 1376 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1377 return std::nullopt; 1378 } 1379 WalkerStepLimit -= StepCost; 1380 1381 // Return for MemoryPhis. They cannot be eliminated directly and the 1382 // caller is responsible for traversing them. 1383 if (isa<MemoryPhi>(Current)) { 1384 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1385 return Current; 1386 } 1387 1388 // Below, check if CurrentDef is a valid candidate to be eliminated by 1389 // KillingDef. If it is not, check the next candidate. 1390 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1391 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1392 1393 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) { 1394 CanOptimize = false; 1395 continue; 1396 } 1397 1398 // Before we try to remove anything, check for any extra throwing 1399 // instructions that block us from DSEing 1400 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1401 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1402 return std::nullopt; 1403 } 1404 1405 // Check for anything that looks like it will be a barrier to further 1406 // removal 1407 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1408 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1409 return std::nullopt; 1410 } 1411 1412 // If Current is known to be on path that reads DefLoc or is a read 1413 // clobber, bail out, as the path is not profitable. We skip this check 1414 // for intrinsic calls, because the code knows how to handle memcpy 1415 // intrinsics. 1416 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1417 return std::nullopt; 1418 1419 // Quick check if there are direct uses that are read-clobbers. 1420 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1421 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1422 return !MSSA.dominates(StartAccess, UseOrDef) && 1423 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1424 return false; 1425 })) { 1426 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1427 return std::nullopt; 1428 } 1429 1430 // If Current does not have an analyzable write location or is not 1431 // removable, skip it. 1432 CurrentLoc = getLocForWrite(CurrentI); 1433 if (!CurrentLoc || !isRemovable(CurrentI)) { 1434 CanOptimize = false; 1435 continue; 1436 } 1437 1438 // AliasAnalysis does not account for loops. Limit elimination to 1439 // candidates for which we can guarantee they always store to the same 1440 // memory location and not located in different loops. 1441 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1442 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1443 CanOptimize = false; 1444 continue; 1445 } 1446 1447 if (IsMemTerm) { 1448 // If the killing def is a memory terminator (e.g. lifetime.end), check 1449 // the next candidate if the current Current does not write the same 1450 // underlying object as the terminator. 1451 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 1452 CanOptimize = false; 1453 continue; 1454 } 1455 } else { 1456 int64_t KillingOffset = 0; 1457 int64_t DeadOffset = 0; 1458 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1459 KillingOffset, DeadOffset); 1460 if (CanOptimize) { 1461 // CurrentDef is the earliest write clobber of KillingDef. Use it as 1462 // optimized access. Do not optimize if CurrentDef is already the 1463 // defining access of KillingDef. 1464 if (CurrentDef != KillingDef->getDefiningAccess() && 1465 (OR == OW_Complete || OR == OW_MaybePartial)) 1466 KillingDef->setOptimized(CurrentDef); 1467 1468 // Once a may-aliasing def is encountered do not set an optimized 1469 // access. 1470 if (OR != OW_None) 1471 CanOptimize = false; 1472 } 1473 1474 // If Current does not write to the same object as KillingDef, check 1475 // the next candidate. 1476 if (OR == OW_Unknown || OR == OW_None) 1477 continue; 1478 else if (OR == OW_MaybePartial) { 1479 // If KillingDef only partially overwrites Current, check the next 1480 // candidate if the partial step limit is exceeded. This aggressively 1481 // limits the number of candidates for partial store elimination, 1482 // which are less likely to be removable in the end. 1483 if (PartialLimit <= 1) { 1484 WalkerStepLimit -= 1; 1485 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n"); 1486 continue; 1487 } 1488 PartialLimit -= 1; 1489 } 1490 } 1491 break; 1492 }; 1493 1494 // Accesses to objects accessible after the function returns can only be 1495 // eliminated if the access is dead along all paths to the exit. Collect 1496 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1497 // they cover all paths from MaybeDeadAccess to any function exit. 1498 SmallPtrSet<Instruction *, 16> KillingDefs; 1499 KillingDefs.insert(KillingDef->getMemoryInst()); 1500 MemoryAccess *MaybeDeadAccess = Current; 1501 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1502 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1503 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1504 << *MaybeDeadI << ")\n"); 1505 1506 SmallSetVector<MemoryAccess *, 32> WorkList; 1507 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1508 for (Use &U : Acc->uses()) 1509 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1510 }; 1511 PushMemUses(MaybeDeadAccess); 1512 1513 // Check if DeadDef may be read. 1514 for (unsigned I = 0; I < WorkList.size(); I++) { 1515 MemoryAccess *UseAccess = WorkList[I]; 1516 1517 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1518 // Bail out if the number of accesses to check exceeds the scan limit. 1519 if (ScanLimit < (WorkList.size() - I)) { 1520 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1521 return std::nullopt; 1522 } 1523 --ScanLimit; 1524 NumDomMemDefChecks++; 1525 1526 if (isa<MemoryPhi>(UseAccess)) { 1527 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1528 return DT.properlyDominates(KI->getParent(), 1529 UseAccess->getBlock()); 1530 })) { 1531 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1532 continue; 1533 } 1534 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1535 PushMemUses(UseAccess); 1536 continue; 1537 } 1538 1539 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1540 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1541 1542 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1543 return DT.dominates(KI, UseInst); 1544 })) { 1545 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1546 continue; 1547 } 1548 1549 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1550 // MemoryAccesses. We do not have to check it's users. 1551 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1552 LLVM_DEBUG( 1553 dbgs() 1554 << " ... skipping, memterminator invalidates following accesses\n"); 1555 continue; 1556 } 1557 1558 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1559 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1560 PushMemUses(UseAccess); 1561 continue; 1562 } 1563 1564 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) { 1565 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1566 return std::nullopt; 1567 } 1568 1569 // Uses which may read the original MemoryDef mean we cannot eliminate the 1570 // original MD. Stop walk. 1571 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1572 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1573 return std::nullopt; 1574 } 1575 1576 // If this worklist walks back to the original memory access (and the 1577 // pointer is not guarenteed loop invariant) then we cannot assume that a 1578 // store kills itself. 1579 if (MaybeDeadAccess == UseAccess && 1580 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1581 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1582 return std::nullopt; 1583 } 1584 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1585 // if it reads the memory location. 1586 // TODO: It would probably be better to check for self-reads before 1587 // calling the function. 1588 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1589 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1590 continue; 1591 } 1592 1593 // Check all uses for MemoryDefs, except for defs completely overwriting 1594 // the original location. Otherwise we have to check uses of *all* 1595 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1596 // miss cases like the following 1597 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1598 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1599 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1600 // (The Use points to the *first* Def it may alias) 1601 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1602 // stores [0,1] 1603 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1604 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1605 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1606 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1607 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1608 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1609 LLVM_DEBUG(dbgs() 1610 << " ... found killing def " << *UseInst << "\n"); 1611 KillingDefs.insert(UseInst); 1612 } 1613 } else { 1614 LLVM_DEBUG(dbgs() 1615 << " ... found preceeding def " << *UseInst << "\n"); 1616 return std::nullopt; 1617 } 1618 } else 1619 PushMemUses(UseDef); 1620 } 1621 } 1622 1623 // For accesses to locations visible after the function returns, make sure 1624 // that the location is dead (=overwritten) along all paths from 1625 // MaybeDeadAccess to the exit. 1626 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1627 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1628 for (Instruction *KD : KillingDefs) 1629 KillingBlocks.insert(KD->getParent()); 1630 assert(!KillingBlocks.empty() && 1631 "Expected at least a single killing block"); 1632 1633 // Find the common post-dominator of all killing blocks. 1634 BasicBlock *CommonPred = *KillingBlocks.begin(); 1635 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1636 if (!CommonPred) 1637 break; 1638 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1639 } 1640 1641 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1642 // there is a path from MaybeDeadAccess to an exit not going through a 1643 // killing block. 1644 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1645 if (!AnyUnreachableExit) 1646 return std::nullopt; 1647 1648 // Fall back to CFG scan starting at all non-unreachable roots if not 1649 // all paths to the exit go through CommonPred. 1650 CommonPred = nullptr; 1651 } 1652 1653 // If CommonPred itself is in the set of killing blocks, we're done. 1654 if (KillingBlocks.count(CommonPred)) 1655 return {MaybeDeadAccess}; 1656 1657 SetVector<BasicBlock *> WorkList; 1658 // If CommonPred is null, there are multiple exits from the function. 1659 // They all have to be added to the worklist. 1660 if (CommonPred) 1661 WorkList.insert(CommonPred); 1662 else 1663 for (BasicBlock *R : PDT.roots()) { 1664 if (!isa<UnreachableInst>(R->getTerminator())) 1665 WorkList.insert(R); 1666 } 1667 1668 NumCFGTries++; 1669 // Check if all paths starting from an exit node go through one of the 1670 // killing blocks before reaching MaybeDeadAccess. 1671 for (unsigned I = 0; I < WorkList.size(); I++) { 1672 NumCFGChecks++; 1673 BasicBlock *Current = WorkList[I]; 1674 if (KillingBlocks.count(Current)) 1675 continue; 1676 if (Current == MaybeDeadAccess->getBlock()) 1677 return std::nullopt; 1678 1679 // MaybeDeadAccess is reachable from the entry, so we don't have to 1680 // explore unreachable blocks further. 1681 if (!DT.isReachableFromEntry(Current)) 1682 continue; 1683 1684 for (BasicBlock *Pred : predecessors(Current)) 1685 WorkList.insert(Pred); 1686 1687 if (WorkList.size() >= MemorySSAPathCheckLimit) 1688 return std::nullopt; 1689 } 1690 NumCFGSuccess++; 1691 } 1692 1693 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1694 // potentially dead. 1695 return {MaybeDeadAccess}; 1696 } 1697 1698 /// Delete dead memory defs and recursively add their operands to ToRemove if 1699 /// they became dead. 1700 void deleteDeadInstruction(Instruction *SI) { 1701 MemorySSAUpdater Updater(&MSSA); 1702 SmallVector<Instruction *, 32> NowDeadInsts; 1703 NowDeadInsts.push_back(SI); 1704 --NumFastOther; 1705 1706 while (!NowDeadInsts.empty()) { 1707 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1708 ++NumFastOther; 1709 1710 // Try to preserve debug information attached to the dead instruction. 1711 salvageDebugInfo(*DeadInst); 1712 salvageKnowledge(DeadInst); 1713 1714 // Remove the Instruction from MSSA. 1715 MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst); 1716 bool IsMemDef = MA && isa<MemoryDef>(MA); 1717 if (MA) { 1718 if (IsMemDef) { 1719 auto *MD = cast<MemoryDef>(MA); 1720 SkipStores.insert(MD); 1721 if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) { 1722 if (SI->getValueOperand()->getType()->isPointerTy()) { 1723 const Value *UO = getUnderlyingObject(SI->getValueOperand()); 1724 if (CapturedBeforeReturn.erase(UO)) 1725 ShouldIterateEndOfFunctionDSE = true; 1726 InvisibleToCallerAfterRet.erase(UO); 1727 } 1728 } 1729 } 1730 1731 Updater.removeMemoryAccess(MA); 1732 } 1733 1734 auto I = IOLs.find(DeadInst->getParent()); 1735 if (I != IOLs.end()) 1736 I->second.erase(DeadInst); 1737 // Remove its operands 1738 for (Use &O : DeadInst->operands()) 1739 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1740 O.set(PoisonValue::get(O->getType())); 1741 if (isInstructionTriviallyDead(OpI, &TLI)) 1742 NowDeadInsts.push_back(OpI); 1743 } 1744 1745 EI.removeInstruction(DeadInst); 1746 // Remove memory defs directly if they don't produce results, but only 1747 // queue other dead instructions for later removal. They may have been 1748 // used as memory locations that have been cached by BatchAA. Removing 1749 // them here may lead to newly created instructions to be allocated at the 1750 // same address, yielding stale cache entries. 1751 if (IsMemDef && DeadInst->getType()->isVoidTy()) 1752 DeadInst->eraseFromParent(); 1753 else 1754 ToRemove.push_back(DeadInst); 1755 } 1756 } 1757 1758 // Check for any extra throws between \p KillingI and \p DeadI that block 1759 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1760 // MemoryDef that may throw are handled during the walk from one def to the 1761 // next. 1762 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1763 const Value *KillingUndObj) { 1764 // First see if we can ignore it by using the fact that KillingI is an 1765 // alloca/alloca like object that is not visible to the caller during 1766 // execution of the function. 1767 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj)) 1768 return false; 1769 1770 if (KillingI->getParent() == DeadI->getParent()) 1771 return ThrowingBlocks.count(KillingI->getParent()); 1772 return !ThrowingBlocks.empty(); 1773 } 1774 1775 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1776 // instructions act as barriers: 1777 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1778 // object. 1779 // * Atomic stores stronger that monotonic. 1780 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1781 // If DeadI may throw it acts as a barrier, unless we are to an 1782 // alloca/alloca like object that does not escape. 1783 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) 1784 return true; 1785 1786 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1787 // eliminate/reorder it. 1788 if (DeadI->isAtomic()) { 1789 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1790 return isStrongerThanMonotonic(LI->getOrdering()); 1791 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1792 return isStrongerThanMonotonic(SI->getOrdering()); 1793 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1794 return isStrongerThanMonotonic(ARMW->getOrdering()); 1795 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1796 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1797 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1798 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1799 } 1800 return false; 1801 } 1802 1803 /// Eliminate writes to objects that are not visible in the caller and are not 1804 /// accessed before returning from the function. 1805 bool eliminateDeadWritesAtEndOfFunction() { 1806 bool MadeChange = false; 1807 LLVM_DEBUG( 1808 dbgs() 1809 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1810 do { 1811 ShouldIterateEndOfFunctionDSE = false; 1812 for (MemoryDef *Def : llvm::reverse(MemDefs)) { 1813 if (SkipStores.contains(Def)) 1814 continue; 1815 1816 Instruction *DefI = Def->getMemoryInst(); 1817 auto DefLoc = getLocForWrite(DefI); 1818 if (!DefLoc || !isRemovable(DefI)) 1819 continue; 1820 1821 // NOTE: Currently eliminating writes at the end of a function is 1822 // limited to MemoryDefs with a single underlying object, to save 1823 // compile-time. In practice it appears the case with multiple 1824 // underlying objects is very uncommon. If it turns out to be important, 1825 // we can use getUnderlyingObjects here instead. 1826 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1827 if (!isInvisibleToCallerAfterRet(UO)) 1828 continue; 1829 1830 if (isWriteAtEndOfFunction(Def)) { 1831 // See through pointer-to-pointer bitcasts 1832 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1833 "of the function\n"); 1834 deleteDeadInstruction(DefI); 1835 ++NumFastStores; 1836 MadeChange = true; 1837 } 1838 } 1839 } while (ShouldIterateEndOfFunctionDSE); 1840 return MadeChange; 1841 } 1842 1843 /// If we have a zero initializing memset following a call to malloc, 1844 /// try folding it into a call to calloc. 1845 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) { 1846 Instruction *DefI = Def->getMemoryInst(); 1847 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1848 if (!MemSet) 1849 // TODO: Could handle zero store to small allocation as well. 1850 return false; 1851 Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1852 if (!StoredConstant || !StoredConstant->isNullValue()) 1853 return false; 1854 1855 if (!isRemovable(DefI)) 1856 // The memset might be volatile.. 1857 return false; 1858 1859 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1860 F.hasFnAttribute(Attribute::SanitizeAddress) || 1861 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1862 F.getName() == "calloc") 1863 return false; 1864 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO)); 1865 if (!Malloc) 1866 return false; 1867 auto *InnerCallee = Malloc->getCalledFunction(); 1868 if (!InnerCallee) 1869 return false; 1870 LibFunc Func; 1871 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1872 Func != LibFunc_malloc) 1873 return false; 1874 // Gracefully handle malloc with unexpected memory attributes. 1875 auto *MallocDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(Malloc)); 1876 if (!MallocDef) 1877 return false; 1878 1879 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1880 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1881 // of malloc block 1882 auto *MallocBB = Malloc->getParent(), 1883 *MemsetBB = Memset->getParent(); 1884 if (MallocBB == MemsetBB) 1885 return true; 1886 auto *Ptr = Memset->getArgOperand(0); 1887 auto *TI = MallocBB->getTerminator(); 1888 ICmpInst::Predicate Pred; 1889 BasicBlock *TrueBB, *FalseBB; 1890 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB, 1891 FalseBB))) 1892 return false; 1893 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB) 1894 return false; 1895 return true; 1896 }; 1897 1898 if (Malloc->getOperand(0) != MemSet->getLength()) 1899 return false; 1900 if (!shouldCreateCalloc(Malloc, MemSet) || 1901 !DT.dominates(Malloc, MemSet) || 1902 !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) 1903 return false; 1904 IRBuilder<> IRB(Malloc); 1905 Type *SizeTTy = Malloc->getArgOperand(0)->getType(); 1906 auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1), 1907 Malloc->getArgOperand(0), IRB, TLI); 1908 if (!Calloc) 1909 return false; 1910 1911 MemorySSAUpdater Updater(&MSSA); 1912 auto *NewAccess = 1913 Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), nullptr, 1914 MallocDef); 1915 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1916 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1917 Malloc->replaceAllUsesWith(Calloc); 1918 deleteDeadInstruction(Malloc); 1919 return true; 1920 } 1921 1922 /// \returns true if \p Def is a no-op store, either because it 1923 /// directly stores back a loaded value or stores zero to a calloced object. 1924 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1925 Instruction *DefI = Def->getMemoryInst(); 1926 StoreInst *Store = dyn_cast<StoreInst>(DefI); 1927 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1928 Constant *StoredConstant = nullptr; 1929 if (Store) 1930 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1931 else if (MemSet) 1932 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1933 else 1934 return false; 1935 1936 if (!isRemovable(DefI)) 1937 return false; 1938 1939 if (StoredConstant) { 1940 Constant *InitC = 1941 getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType()); 1942 // If the clobbering access is LiveOnEntry, no instructions between them 1943 // can modify the memory location. 1944 if (InitC && InitC == StoredConstant) 1945 return MSSA.isLiveOnEntryDef( 1946 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA)); 1947 } 1948 1949 if (!Store) 1950 return false; 1951 1952 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1953 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1954 // Get the defining access for the load. 1955 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1956 // Fast path: the defining accesses are the same. 1957 if (LoadAccess == Def->getDefiningAccess()) 1958 return true; 1959 1960 // Look through phi accesses. Recursively scan all phi accesses by 1961 // adding them to a worklist. Bail when we run into a memory def that 1962 // does not match LoadAccess. 1963 SetVector<MemoryAccess *> ToCheck; 1964 MemoryAccess *Current = 1965 MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA); 1966 // We don't want to bail when we run into the store memory def. But, 1967 // the phi access may point to it. So, pretend like we've already 1968 // checked it. 1969 ToCheck.insert(Def); 1970 ToCheck.insert(Current); 1971 // Start at current (1) to simulate already having checked Def. 1972 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1973 Current = ToCheck[I]; 1974 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1975 // Check all the operands. 1976 for (auto &Use : PhiAccess->incoming_values()) 1977 ToCheck.insert(cast<MemoryAccess>(&Use)); 1978 continue; 1979 } 1980 1981 // If we found a memory def, bail. This happens when we have an 1982 // unrelated write in between an otherwise noop store. 1983 assert(isa<MemoryDef>(Current) && 1984 "Only MemoryDefs should reach here."); 1985 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1986 // We are searching for the definition of the store's destination. 1987 // So, if that is the same definition as the load, then this is a 1988 // noop. Otherwise, fail. 1989 if (LoadAccess != Current) 1990 return false; 1991 } 1992 return true; 1993 } 1994 } 1995 1996 return false; 1997 } 1998 1999 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 2000 bool Changed = false; 2001 for (auto OI : IOL) { 2002 Instruction *DeadI = OI.first; 2003 MemoryLocation Loc = *getLocForWrite(DeadI); 2004 assert(isRemovable(DeadI) && "Expect only removable instruction"); 2005 2006 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 2007 int64_t DeadStart = 0; 2008 uint64_t DeadSize = Loc.Size.getValue(); 2009 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 2010 OverlapIntervalsTy &IntervalMap = OI.second; 2011 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 2012 if (IntervalMap.empty()) 2013 continue; 2014 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 2015 } 2016 return Changed; 2017 } 2018 2019 /// Eliminates writes to locations where the value that is being written 2020 /// is already stored at the same location. 2021 bool eliminateRedundantStoresOfExistingValues() { 2022 bool MadeChange = false; 2023 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 2024 "already existing value\n"); 2025 for (auto *Def : MemDefs) { 2026 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def)) 2027 continue; 2028 2029 Instruction *DefInst = Def->getMemoryInst(); 2030 auto MaybeDefLoc = getLocForWrite(DefInst); 2031 if (!MaybeDefLoc || !isRemovable(DefInst)) 2032 continue; 2033 2034 MemoryDef *UpperDef; 2035 // To conserve compile-time, we avoid walking to the next clobbering def. 2036 // Instead, we just try to get the optimized access, if it exists. DSE 2037 // will try to optimize defs during the earlier traversal. 2038 if (Def->isOptimized()) 2039 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized()); 2040 else 2041 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 2042 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 2043 continue; 2044 2045 Instruction *UpperInst = UpperDef->getMemoryInst(); 2046 auto IsRedundantStore = [&]() { 2047 if (DefInst->isIdenticalTo(UpperInst)) 2048 return true; 2049 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 2050 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 2051 // MemSetInst must have a write location. 2052 MemoryLocation UpperLoc = *getLocForWrite(UpperInst); 2053 int64_t InstWriteOffset = 0; 2054 int64_t DepWriteOffset = 0; 2055 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc, 2056 InstWriteOffset, DepWriteOffset); 2057 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 2058 return StoredByte && StoredByte == MemSetI->getOperand(1) && 2059 OR == OW_Complete; 2060 } 2061 } 2062 return false; 2063 }; 2064 2065 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst)) 2066 continue; 2067 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 2068 << '\n'); 2069 deleteDeadInstruction(DefInst); 2070 NumRedundantStores++; 2071 MadeChange = true; 2072 } 2073 return MadeChange; 2074 } 2075 }; 2076 2077 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 2078 DominatorTree &DT, PostDominatorTree &PDT, 2079 const TargetLibraryInfo &TLI, 2080 const LoopInfo &LI) { 2081 bool MadeChange = false; 2082 2083 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 2084 // For each store: 2085 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 2086 MemoryDef *KillingDef = State.MemDefs[I]; 2087 if (State.SkipStores.count(KillingDef)) 2088 continue; 2089 Instruction *KillingI = KillingDef->getMemoryInst(); 2090 2091 std::optional<MemoryLocation> MaybeKillingLoc; 2092 if (State.isMemTerminatorInst(KillingI)) { 2093 if (auto KillingLoc = State.getLocForTerminator(KillingI)) 2094 MaybeKillingLoc = KillingLoc->first; 2095 } else { 2096 MaybeKillingLoc = State.getLocForWrite(KillingI); 2097 } 2098 2099 if (!MaybeKillingLoc) { 2100 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 2101 << *KillingI << "\n"); 2102 continue; 2103 } 2104 MemoryLocation KillingLoc = *MaybeKillingLoc; 2105 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 2106 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 2107 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 2108 << *KillingDef << " (" << *KillingI << ")\n"); 2109 2110 unsigned ScanLimit = MemorySSAScanLimit; 2111 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 2112 unsigned PartialLimit = MemorySSAPartialStoreLimit; 2113 // Worklist of MemoryAccesses that may be killed by KillingDef. 2114 SetVector<MemoryAccess *> ToCheck; 2115 ToCheck.insert(KillingDef->getDefiningAccess()); 2116 2117 bool Shortend = false; 2118 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 2119 // Check if MemoryAccesses in the worklist are killed by KillingDef. 2120 for (unsigned I = 0; I < ToCheck.size(); I++) { 2121 MemoryAccess *Current = ToCheck[I]; 2122 if (State.SkipStores.count(Current)) 2123 continue; 2124 2125 std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 2126 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 2127 WalkerStepLimit, IsMemTerm, PartialLimit); 2128 2129 if (!MaybeDeadAccess) { 2130 LLVM_DEBUG(dbgs() << " finished walk\n"); 2131 continue; 2132 } 2133 2134 MemoryAccess *DeadAccess = *MaybeDeadAccess; 2135 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 2136 if (isa<MemoryPhi>(DeadAccess)) { 2137 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 2138 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 2139 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2140 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2141 BasicBlock *PhiBlock = DeadAccess->getBlock(); 2142 2143 // We only consider incoming MemoryAccesses that come before the 2144 // MemoryPhi. Otherwise we could discover candidates that do not 2145 // strictly dominate our starting def. 2146 if (State.PostOrderNumbers[IncomingBlock] > 2147 State.PostOrderNumbers[PhiBlock]) 2148 ToCheck.insert(IncomingAccess); 2149 } 2150 continue; 2151 } 2152 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 2153 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 2154 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 2155 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 2156 NumGetDomMemoryDefPassed++; 2157 2158 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2159 continue; 2160 2161 MemoryLocation DeadLoc = *State.getLocForWrite(DeadI); 2162 2163 if (IsMemTerm) { 2164 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2165 if (KillingUndObj != DeadUndObj) 2166 continue; 2167 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2168 << "\n KILLER: " << *KillingI << '\n'); 2169 State.deleteDeadInstruction(DeadI); 2170 ++NumFastStores; 2171 MadeChange = true; 2172 } else { 2173 // Check if DeadI overwrites KillingI. 2174 int64_t KillingOffset = 0; 2175 int64_t DeadOffset = 0; 2176 OverwriteResult OR = State.isOverwrite( 2177 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2178 if (OR == OW_MaybePartial) { 2179 auto Iter = State.IOLs.insert( 2180 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2181 DeadI->getParent(), InstOverlapIntervalsTy())); 2182 auto &IOL = Iter.first->second; 2183 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2184 DeadOffset, DeadI, IOL); 2185 } 2186 2187 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2188 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2189 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2190 // We are re-using tryToMergePartialOverlappingStores, which requires 2191 // DeadSI to dominate KillingSI. 2192 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2193 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2194 if (Constant *Merged = tryToMergePartialOverlappingStores( 2195 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2196 State.BatchAA, &DT)) { 2197 2198 // Update stored value of earlier store to merged constant. 2199 DeadSI->setOperand(0, Merged); 2200 ++NumModifiedStores; 2201 MadeChange = true; 2202 2203 Shortend = true; 2204 // Remove killing store and remove any outstanding overlap 2205 // intervals for the updated store. 2206 State.deleteDeadInstruction(KillingSI); 2207 auto I = State.IOLs.find(DeadSI->getParent()); 2208 if (I != State.IOLs.end()) 2209 I->second.erase(DeadSI); 2210 break; 2211 } 2212 } 2213 } 2214 2215 if (OR == OW_Complete) { 2216 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2217 << "\n KILLER: " << *KillingI << '\n'); 2218 State.deleteDeadInstruction(DeadI); 2219 ++NumFastStores; 2220 MadeChange = true; 2221 } 2222 } 2223 } 2224 2225 // Check if the store is a no-op. 2226 if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) { 2227 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2228 << '\n'); 2229 State.deleteDeadInstruction(KillingI); 2230 NumRedundantStores++; 2231 MadeChange = true; 2232 continue; 2233 } 2234 2235 // Can we form a calloc from a memset/malloc pair? 2236 if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) { 2237 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n" 2238 << " DEAD: " << *KillingI << '\n'); 2239 State.deleteDeadInstruction(KillingI); 2240 MadeChange = true; 2241 continue; 2242 } 2243 } 2244 2245 if (EnablePartialOverwriteTracking) 2246 for (auto &KV : State.IOLs) 2247 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2248 2249 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2250 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2251 2252 while (!State.ToRemove.empty()) { 2253 Instruction *DeadInst = State.ToRemove.pop_back_val(); 2254 DeadInst->eraseFromParent(); 2255 } 2256 2257 return MadeChange; 2258 } 2259 } // end anonymous namespace 2260 2261 //===----------------------------------------------------------------------===// 2262 // DSE Pass 2263 //===----------------------------------------------------------------------===// 2264 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2265 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2266 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2267 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2268 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2269 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2270 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2271 2272 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2273 2274 #ifdef LLVM_ENABLE_STATS 2275 if (AreStatisticsEnabled()) 2276 for (auto &I : instructions(F)) 2277 NumRemainingStores += isa<StoreInst>(&I); 2278 #endif 2279 2280 if (!Changed) 2281 return PreservedAnalyses::all(); 2282 2283 PreservedAnalyses PA; 2284 PA.preserveSet<CFGAnalyses>(); 2285 PA.preserve<MemorySSAAnalysis>(); 2286 PA.preserve<LoopAnalysis>(); 2287 return PA; 2288 } 2289