xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 //    upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 //    checking all uses starting at MaybeDeadAccess and walking until we see
20 //    StartDef.
21 // 3. For each found CurrentDef, check that:
22 //   1. There are no barrier instructions between CurrentDef and StartDef (like
23 //       throws or stores with ordering constraints).
24 //   2. StartDef is executed whenever CurrentDef is executed.
25 //   3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/CaptureTracking.h"
43 #include "llvm/Analysis/CodeMetrics.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/LoopInfo.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/MemorySSA.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/MustExecute.h"
51 #include "llvm/Analysis/PostDominators.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Argument.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Constant.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/IRBuilder.h"
63 #include "llvm/IR/InstIterator.h"
64 #include "llvm/IR/InstrTypes.h"
65 #include "llvm/IR/Instruction.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/DebugCounter.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
79 #include "llvm/Transforms/Utils/BuildLibCalls.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <optional>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace PatternMatch;
91 
92 #define DEBUG_TYPE "dse"
93 
94 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
95 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
96 STATISTIC(NumFastStores, "Number of stores deleted");
97 STATISTIC(NumFastOther, "Number of other instrs removed");
98 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
99 STATISTIC(NumModifiedStores, "Number of stores modified");
100 STATISTIC(NumCFGChecks, "Number of stores modified");
101 STATISTIC(NumCFGTries, "Number of stores modified");
102 STATISTIC(NumCFGSuccess, "Number of stores modified");
103 STATISTIC(NumGetDomMemoryDefPassed,
104           "Number of times a valid candidate is returned from getDomMemoryDef");
105 STATISTIC(NumDomMemDefChecks,
106           "Number iterations check for reads in getDomMemoryDef");
107 
108 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
109               "Controls which MemoryDefs are eliminated.");
110 
111 static cl::opt<bool>
112 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
113   cl::init(true), cl::Hidden,
114   cl::desc("Enable partial-overwrite tracking in DSE"));
115 
116 static cl::opt<bool>
117 EnablePartialStoreMerging("enable-dse-partial-store-merging",
118   cl::init(true), cl::Hidden,
119   cl::desc("Enable partial store merging in DSE"));
120 
121 static cl::opt<unsigned>
122     MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
123                        cl::desc("The number of memory instructions to scan for "
124                                 "dead store elimination (default = 150)"));
125 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
126     "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
127     cl::desc("The maximum number of steps while walking upwards to find "
128              "MemoryDefs that may be killed (default = 90)"));
129 
130 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
131     "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
132     cl::desc("The maximum number candidates that only partially overwrite the "
133              "killing MemoryDef to consider"
134              " (default = 5)"));
135 
136 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
137     "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
138     cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
139              "other stores per basic block (default = 5000)"));
140 
141 static cl::opt<unsigned> MemorySSASameBBStepCost(
142     "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
143     cl::desc(
144         "The cost of a step in the same basic block as the killing MemoryDef"
145         "(default = 1)"));
146 
147 static cl::opt<unsigned>
148     MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
149                              cl::Hidden,
150                              cl::desc("The cost of a step in a different basic "
151                                       "block than the killing MemoryDef"
152                                       "(default = 5)"));
153 
154 static cl::opt<unsigned> MemorySSAPathCheckLimit(
155     "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
156     cl::desc("The maximum number of blocks to check when trying to prove that "
157              "all paths to an exit go through a killing block (default = 50)"));
158 
159 // This flags allows or disallows DSE to optimize MemorySSA during its
160 // traversal. Note that DSE optimizing MemorySSA may impact other passes
161 // downstream of the DSE invocation and can lead to issues not being
162 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
163 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
164 // impact follow-up passes.
165 static cl::opt<bool>
166     OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
167                       cl::desc("Allow DSE to optimize memory accesses."));
168 
169 //===----------------------------------------------------------------------===//
170 // Helper functions
171 //===----------------------------------------------------------------------===//
172 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
173 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
174 
175 /// Returns true if the end of this instruction can be safely shortened in
176 /// length.
177 static bool isShortenableAtTheEnd(Instruction *I) {
178   // Don't shorten stores for now
179   if (isa<StoreInst>(I))
180     return false;
181 
182   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
183     switch (II->getIntrinsicID()) {
184       default: return false;
185       case Intrinsic::memset:
186       case Intrinsic::memcpy:
187       case Intrinsic::memcpy_element_unordered_atomic:
188       case Intrinsic::memset_element_unordered_atomic:
189         // Do shorten memory intrinsics.
190         // FIXME: Add memmove if it's also safe to transform.
191         return true;
192     }
193   }
194 
195   // Don't shorten libcalls calls for now.
196 
197   return false;
198 }
199 
200 /// Returns true if the beginning of this instruction can be safely shortened
201 /// in length.
202 static bool isShortenableAtTheBeginning(Instruction *I) {
203   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
204   // easily done by offsetting the source address.
205   return isa<AnyMemSetInst>(I);
206 }
207 
208 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
209                                const TargetLibraryInfo &TLI,
210                                const Function *F) {
211   uint64_t Size;
212   ObjectSizeOpts Opts;
213   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
214 
215   if (getObjectSize(V, Size, DL, &TLI, Opts))
216     return Size;
217   return MemoryLocation::UnknownSize;
218 }
219 
220 namespace {
221 
222 enum OverwriteResult {
223   OW_Begin,
224   OW_Complete,
225   OW_End,
226   OW_PartialEarlierWithFullLater,
227   OW_MaybePartial,
228   OW_None,
229   OW_Unknown
230 };
231 
232 } // end anonymous namespace
233 
234 /// Check if two instruction are masked stores that completely
235 /// overwrite one another. More specifically, \p KillingI has to
236 /// overwrite \p DeadI.
237 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
238                                               const Instruction *DeadI,
239                                               BatchAAResults &AA) {
240   const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
241   const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
242   if (KillingII == nullptr || DeadII == nullptr)
243     return OW_Unknown;
244   if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
245     return OW_Unknown;
246   if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
247     // Type size.
248     VectorType *KillingTy =
249         cast<VectorType>(KillingII->getArgOperand(0)->getType());
250     VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType());
251     if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
252       return OW_Unknown;
253     // Element count.
254     if (KillingTy->getElementCount() != DeadTy->getElementCount())
255       return OW_Unknown;
256     // Pointers.
257     Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
258     Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
259     if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
260       return OW_Unknown;
261     // Masks.
262     // TODO: check that KillingII's mask is a superset of the DeadII's mask.
263     if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
264       return OW_Unknown;
265     return OW_Complete;
266   }
267   return OW_Unknown;
268 }
269 
270 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
271 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
272 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
273 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
274 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
275 /// overwritten by a killing (smaller) store which doesn't write outside the big
276 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
277 /// NOTE: This function must only be called if both \p KillingLoc and \p
278 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
279 /// \p DeadOff.
280 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
281                                           const MemoryLocation &DeadLoc,
282                                           int64_t KillingOff, int64_t DeadOff,
283                                           Instruction *DeadI,
284                                           InstOverlapIntervalsTy &IOL) {
285   const uint64_t KillingSize = KillingLoc.Size.getValue();
286   const uint64_t DeadSize = DeadLoc.Size.getValue();
287   // We may now overlap, although the overlap is not complete. There might also
288   // be other incomplete overlaps, and together, they might cover the complete
289   // dead store.
290   // Note: The correctness of this logic depends on the fact that this function
291   // is not even called providing DepWrite when there are any intervening reads.
292   if (EnablePartialOverwriteTracking &&
293       KillingOff < int64_t(DeadOff + DeadSize) &&
294       int64_t(KillingOff + KillingSize) >= DeadOff) {
295 
296     // Insert our part of the overlap into the map.
297     auto &IM = IOL[DeadI];
298     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
299                       << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
300                       << KillingOff << ", " << int64_t(KillingOff + KillingSize)
301                       << ")\n");
302 
303     // Make sure that we only insert non-overlapping intervals and combine
304     // adjacent intervals. The intervals are stored in the map with the ending
305     // offset as the key (in the half-open sense) and the starting offset as
306     // the value.
307     int64_t KillingIntStart = KillingOff;
308     int64_t KillingIntEnd = KillingOff + KillingSize;
309 
310     // Find any intervals ending at, or after, KillingIntStart which start
311     // before KillingIntEnd.
312     auto ILI = IM.lower_bound(KillingIntStart);
313     if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
314       // This existing interval is overlapped with the current store somewhere
315       // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
316       // intervals and adjusting our start and end.
317       KillingIntStart = std::min(KillingIntStart, ILI->second);
318       KillingIntEnd = std::max(KillingIntEnd, ILI->first);
319       ILI = IM.erase(ILI);
320 
321       // Continue erasing and adjusting our end in case other previous
322       // intervals are also overlapped with the current store.
323       //
324       // |--- dead 1 ---|  |--- dead 2 ---|
325       //     |------- killing---------|
326       //
327       while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
328         assert(ILI->second > KillingIntStart && "Unexpected interval");
329         KillingIntEnd = std::max(KillingIntEnd, ILI->first);
330         ILI = IM.erase(ILI);
331       }
332     }
333 
334     IM[KillingIntEnd] = KillingIntStart;
335 
336     ILI = IM.begin();
337     if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
338       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
339                         << DeadOff << ", " << int64_t(DeadOff + DeadSize)
340                         << ") Composite KillingLoc [" << ILI->second << ", "
341                         << ILI->first << ")\n");
342       ++NumCompletePartials;
343       return OW_Complete;
344     }
345   }
346 
347   // Check for a dead store which writes to all the memory locations that
348   // the killing store writes to.
349   if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
350       int64_t(DeadOff + DeadSize) > KillingOff &&
351       uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
352     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
353                       << ", " << int64_t(DeadOff + DeadSize)
354                       << ") by a killing store [" << KillingOff << ", "
355                       << int64_t(KillingOff + KillingSize) << ")\n");
356     // TODO: Maybe come up with a better name?
357     return OW_PartialEarlierWithFullLater;
358   }
359 
360   // Another interesting case is if the killing store overwrites the end of the
361   // dead store.
362   //
363   //      |--dead--|
364   //                |--   killing   --|
365   //
366   // In this case we may want to trim the size of dead store to avoid
367   // generating stores to addresses which will definitely be overwritten killing
368   // store.
369   if (!EnablePartialOverwriteTracking &&
370       (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
371        int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
372     return OW_End;
373 
374   // Finally, we also need to check if the killing store overwrites the
375   // beginning of the dead store.
376   //
377   //                |--dead--|
378   //      |--  killing  --|
379   //
380   // In this case we may want to move the destination address and trim the size
381   // of dead store to avoid generating stores to addresses which will definitely
382   // be overwritten killing store.
383   if (!EnablePartialOverwriteTracking &&
384       (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
385     assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
386            "Expect to be handled as OW_Complete");
387     return OW_Begin;
388   }
389   // Otherwise, they don't completely overlap.
390   return OW_Unknown;
391 }
392 
393 /// Returns true if the memory which is accessed by the second instruction is not
394 /// modified between the first and the second instruction.
395 /// Precondition: Second instruction must be dominated by the first
396 /// instruction.
397 static bool
398 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
399                            BatchAAResults &AA, const DataLayout &DL,
400                            DominatorTree *DT) {
401   // Do a backwards scan through the CFG from SecondI to FirstI. Look for
402   // instructions which can modify the memory location accessed by SecondI.
403   //
404   // While doing the walk keep track of the address to check. It might be
405   // different in different basic blocks due to PHI translation.
406   using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
407   SmallVector<BlockAddressPair, 16> WorkList;
408   // Keep track of the address we visited each block with. Bail out if we
409   // visit a block with different addresses.
410   DenseMap<BasicBlock *, Value *> Visited;
411 
412   BasicBlock::iterator FirstBBI(FirstI);
413   ++FirstBBI;
414   BasicBlock::iterator SecondBBI(SecondI);
415   BasicBlock *FirstBB = FirstI->getParent();
416   BasicBlock *SecondBB = SecondI->getParent();
417   MemoryLocation MemLoc;
418   if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
419     MemLoc = MemoryLocation::getForDest(MemSet);
420   else
421     MemLoc = MemoryLocation::get(SecondI);
422 
423   auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
424 
425   // Start checking the SecondBB.
426   WorkList.push_back(
427       std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
428   bool isFirstBlock = true;
429 
430   // Check all blocks going backward until we reach the FirstBB.
431   while (!WorkList.empty()) {
432     BlockAddressPair Current = WorkList.pop_back_val();
433     BasicBlock *B = Current.first;
434     PHITransAddr &Addr = Current.second;
435     Value *Ptr = Addr.getAddr();
436 
437     // Ignore instructions before FirstI if this is the FirstBB.
438     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
439 
440     BasicBlock::iterator EI;
441     if (isFirstBlock) {
442       // Ignore instructions after SecondI if this is the first visit of SecondBB.
443       assert(B == SecondBB && "first block is not the store block");
444       EI = SecondBBI;
445       isFirstBlock = false;
446     } else {
447       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
448       // In this case we also have to look at instructions after SecondI.
449       EI = B->end();
450     }
451     for (; BI != EI; ++BI) {
452       Instruction *I = &*BI;
453       if (I->mayWriteToMemory() && I != SecondI)
454         if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
455           return false;
456     }
457     if (B != FirstBB) {
458       assert(B != &FirstBB->getParent()->getEntryBlock() &&
459           "Should not hit the entry block because SI must be dominated by LI");
460       for (BasicBlock *Pred : predecessors(B)) {
461         PHITransAddr PredAddr = Addr;
462         if (PredAddr.needsPHITranslationFromBlock(B)) {
463           if (!PredAddr.isPotentiallyPHITranslatable())
464             return false;
465           if (!PredAddr.translateValue(B, Pred, DT, false))
466             return false;
467         }
468         Value *TranslatedPtr = PredAddr.getAddr();
469         auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
470         if (!Inserted.second) {
471           // We already visited this block before. If it was with a different
472           // address - bail out!
473           if (TranslatedPtr != Inserted.first->second)
474             return false;
475           // ... otherwise just skip it.
476           continue;
477         }
478         WorkList.push_back(std::make_pair(Pred, PredAddr));
479       }
480     }
481   }
482   return true;
483 }
484 
485 static void shortenAssignment(Instruction *Inst, Value *OriginalDest,
486                               uint64_t OldOffsetInBits, uint64_t OldSizeInBits,
487                               uint64_t NewSizeInBits, bool IsOverwriteEnd) {
488   const DataLayout &DL = Inst->getModule()->getDataLayout();
489   uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
490   uint64_t DeadSliceOffsetInBits =
491       OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
492   auto SetDeadFragExpr = [](DbgAssignIntrinsic *DAI,
493                             DIExpression::FragmentInfo DeadFragment) {
494     // createFragmentExpression expects an offset relative to the existing
495     // fragment offset if there is one.
496     uint64_t RelativeOffset = DeadFragment.OffsetInBits -
497                               DAI->getExpression()
498                                   ->getFragmentInfo()
499                                   .value_or(DIExpression::FragmentInfo(0, 0))
500                                   .OffsetInBits;
501     if (auto NewExpr = DIExpression::createFragmentExpression(
502             DAI->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) {
503       DAI->setExpression(*NewExpr);
504       return;
505     }
506     // Failed to create a fragment expression for this so discard the value,
507     // making this a kill location.
508     auto *Expr = *DIExpression::createFragmentExpression(
509         DIExpression::get(DAI->getContext(), std::nullopt),
510         DeadFragment.OffsetInBits, DeadFragment.SizeInBits);
511     DAI->setExpression(Expr);
512     DAI->setKillLocation();
513   };
514 
515   // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
516   // link to any instructions. Created in the loop below (once).
517   DIAssignID *LinkToNothing = nullptr;
518   LLVMContext &Ctx = Inst->getContext();
519   auto GetDeadLink = [&Ctx, &LinkToNothing]() {
520     if (!LinkToNothing)
521       LinkToNothing = DIAssignID::getDistinct(Ctx);
522     return LinkToNothing;
523   };
524 
525   // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
526   // overlapping dbg.assign intrinsic. The loop invalidates the iterators
527   // returned by getAssignmentMarkers so save a copy of the markers to iterate
528   // over.
529   auto LinkedRange = at::getAssignmentMarkers(Inst);
530   SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(),
531                                            LinkedRange.end());
532   for (auto *DAI : Linked) {
533     std::optional<DIExpression::FragmentInfo> NewFragment;
534     if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits,
535                                         DeadSliceSizeInBits, DAI,
536                                         NewFragment) ||
537         !NewFragment) {
538       // We couldn't calculate the intersecting fragment for some reason. Be
539       // cautious and unlink the whole assignment from the store.
540       DAI->setKillAddress();
541       DAI->setAssignId(GetDeadLink());
542       continue;
543     }
544     // No intersect.
545     if (NewFragment->SizeInBits == 0)
546       continue;
547 
548     // Fragments overlap: insert a new dbg.assign for this dead part.
549     auto *NewAssign = cast<DbgAssignIntrinsic>(DAI->clone());
550     NewAssign->insertAfter(DAI);
551     NewAssign->setAssignId(GetDeadLink());
552     if (NewFragment)
553       SetDeadFragExpr(NewAssign, *NewFragment);
554     NewAssign->setKillAddress();
555   }
556 }
557 
558 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
559                          uint64_t &DeadSize, int64_t KillingStart,
560                          uint64_t KillingSize, bool IsOverwriteEnd) {
561   auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
562   Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
563 
564   // We assume that memet/memcpy operates in chunks of the "largest" native
565   // type size and aligned on the same value. That means optimal start and size
566   // of memset/memcpy should be modulo of preferred alignment of that type. That
567   // is it there is no any sense in trying to reduce store size any further
568   // since any "extra" stores comes for free anyway.
569   // On the other hand, maximum alignment we can achieve is limited by alignment
570   // of initial store.
571 
572   // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
573   // "largest" native type.
574   // Note: What is the proper way to get that value?
575   // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
576   // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
577 
578   int64_t ToRemoveStart = 0;
579   uint64_t ToRemoveSize = 0;
580   // Compute start and size of the region to remove. Make sure 'PrefAlign' is
581   // maintained on the remaining store.
582   if (IsOverwriteEnd) {
583     // Calculate required adjustment for 'KillingStart' in order to keep
584     // remaining store size aligned on 'PerfAlign'.
585     uint64_t Off =
586         offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
587     ToRemoveStart = KillingStart + Off;
588     if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
589       return false;
590     ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
591   } else {
592     ToRemoveStart = DeadStart;
593     assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
594            "Not overlapping accesses?");
595     ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
596     // Calculate required adjustment for 'ToRemoveSize'in order to keep
597     // start of the remaining store aligned on 'PerfAlign'.
598     uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
599     if (Off != 0) {
600       if (ToRemoveSize <= (PrefAlign.value() - Off))
601         return false;
602       ToRemoveSize -= PrefAlign.value() - Off;
603     }
604     assert(isAligned(PrefAlign, ToRemoveSize) &&
605            "Should preserve selected alignment");
606   }
607 
608   assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
609   assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
610 
611   uint64_t NewSize = DeadSize - ToRemoveSize;
612   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
613     // When shortening an atomic memory intrinsic, the newly shortened
614     // length must remain an integer multiple of the element size.
615     const uint32_t ElementSize = AMI->getElementSizeInBytes();
616     if (0 != NewSize % ElementSize)
617       return false;
618   }
619 
620   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
621                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
622                     << "\n  KILLER [" << ToRemoveStart << ", "
623                     << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
624 
625   Value *DeadWriteLength = DeadIntrinsic->getLength();
626   Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
627   DeadIntrinsic->setLength(TrimmedLength);
628   DeadIntrinsic->setDestAlignment(PrefAlign);
629 
630   Value *OrigDest = DeadIntrinsic->getRawDest();
631   if (!IsOverwriteEnd) {
632     Type *Int8PtrTy =
633         Type::getInt8PtrTy(DeadIntrinsic->getContext(),
634                            OrigDest->getType()->getPointerAddressSpace());
635     Value *Dest = OrigDest;
636     if (OrigDest->getType() != Int8PtrTy)
637       Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
638     Value *Indices[1] = {
639         ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
640     Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
641         Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
642     NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
643     if (NewDestGEP->getType() != OrigDest->getType())
644       NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
645                                                "", DeadI);
646     DeadIntrinsic->setDest(NewDestGEP);
647   }
648 
649   // Update attached dbg.assign intrinsics. Assume 8-bit byte.
650   shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8,
651                     IsOverwriteEnd);
652 
653   // Finally update start and size of dead access.
654   if (!IsOverwriteEnd)
655     DeadStart += ToRemoveSize;
656   DeadSize = NewSize;
657 
658   return true;
659 }
660 
661 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
662                             int64_t &DeadStart, uint64_t &DeadSize) {
663   if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
664     return false;
665 
666   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
667   int64_t KillingStart = OII->second;
668   uint64_t KillingSize = OII->first - KillingStart;
669 
670   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
671 
672   if (KillingStart > DeadStart &&
673       // Note: "KillingStart - KillingStart" is known to be positive due to
674       // preceding check.
675       (uint64_t)(KillingStart - DeadStart) < DeadSize &&
676       // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
677       // be non negative due to preceding checks.
678       KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
679     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
680                      true)) {
681       IntervalMap.erase(OII);
682       return true;
683     }
684   }
685   return false;
686 }
687 
688 static bool tryToShortenBegin(Instruction *DeadI,
689                               OverlapIntervalsTy &IntervalMap,
690                               int64_t &DeadStart, uint64_t &DeadSize) {
691   if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
692     return false;
693 
694   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
695   int64_t KillingStart = OII->second;
696   uint64_t KillingSize = OII->first - KillingStart;
697 
698   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
699 
700   if (KillingStart <= DeadStart &&
701       // Note: "DeadStart - KillingStart" is known to be non negative due to
702       // preceding check.
703       KillingSize > (uint64_t)(DeadStart - KillingStart)) {
704     // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
705     // be positive due to preceding checks.
706     assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
707            "Should have been handled as OW_Complete");
708     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
709                      false)) {
710       IntervalMap.erase(OII);
711       return true;
712     }
713   }
714   return false;
715 }
716 
717 static Constant *
718 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
719                                    int64_t KillingOffset, int64_t DeadOffset,
720                                    const DataLayout &DL, BatchAAResults &AA,
721                                    DominatorTree *DT) {
722 
723   if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
724       DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
725       KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
726       DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
727       memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
728     // If the store we find is:
729     //   a) partially overwritten by the store to 'Loc'
730     //   b) the killing store is fully contained in the dead one and
731     //   c) they both have a constant value
732     //   d) none of the two stores need padding
733     // Merge the two stores, replacing the dead store's value with a
734     // merge of both values.
735     // TODO: Deal with other constant types (vectors, etc), and probably
736     // some mem intrinsics (if needed)
737 
738     APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
739     APInt KillingValue =
740         cast<ConstantInt>(KillingI->getValueOperand())->getValue();
741     unsigned KillingBits = KillingValue.getBitWidth();
742     assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
743     KillingValue = KillingValue.zext(DeadValue.getBitWidth());
744 
745     // Offset of the smaller store inside the larger store
746     unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
747     unsigned LShiftAmount =
748         DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
749                          : BitOffsetDiff;
750     APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
751                                    LShiftAmount + KillingBits);
752     // Clear the bits we'll be replacing, then OR with the smaller
753     // store, shifted appropriately.
754     APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
755     LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
756                       << "\n  Killing: " << *KillingI
757                       << "\n  Merged Value: " << Merged << '\n');
758     return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
759   }
760   return nullptr;
761 }
762 
763 namespace {
764 // Returns true if \p I is an intrinsic that does not read or write memory.
765 bool isNoopIntrinsic(Instruction *I) {
766   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
767     switch (II->getIntrinsicID()) {
768     case Intrinsic::lifetime_start:
769     case Intrinsic::lifetime_end:
770     case Intrinsic::invariant_end:
771     case Intrinsic::launder_invariant_group:
772     case Intrinsic::assume:
773       return true;
774     case Intrinsic::dbg_declare:
775     case Intrinsic::dbg_label:
776     case Intrinsic::dbg_value:
777       llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
778     default:
779       return false;
780     }
781   }
782   return false;
783 }
784 
785 // Check if we can ignore \p D for DSE.
786 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
787   Instruction *DI = D->getMemoryInst();
788   // Calls that only access inaccessible memory cannot read or write any memory
789   // locations we consider for elimination.
790   if (auto *CB = dyn_cast<CallBase>(DI))
791     if (CB->onlyAccessesInaccessibleMemory())
792       return true;
793 
794   // We can eliminate stores to locations not visible to the caller across
795   // throwing instructions.
796   if (DI->mayThrow() && !DefVisibleToCaller)
797     return true;
798 
799   // We can remove the dead stores, irrespective of the fence and its ordering
800   // (release/acquire/seq_cst). Fences only constraints the ordering of
801   // already visible stores, it does not make a store visible to other
802   // threads. So, skipping over a fence does not change a store from being
803   // dead.
804   if (isa<FenceInst>(DI))
805     return true;
806 
807   // Skip intrinsics that do not really read or modify memory.
808   if (isNoopIntrinsic(DI))
809     return true;
810 
811   return false;
812 }
813 
814 struct DSEState {
815   Function &F;
816   AliasAnalysis &AA;
817   EarliestEscapeInfo EI;
818 
819   /// The single BatchAA instance that is used to cache AA queries. It will
820   /// not be invalidated over the whole run. This is safe, because:
821   /// 1. Only memory writes are removed, so the alias cache for memory
822   ///    locations remains valid.
823   /// 2. No new instructions are added (only instructions removed), so cached
824   ///    information for a deleted value cannot be accessed by a re-used new
825   ///    value pointer.
826   BatchAAResults BatchAA;
827 
828   MemorySSA &MSSA;
829   DominatorTree &DT;
830   PostDominatorTree &PDT;
831   const TargetLibraryInfo &TLI;
832   const DataLayout &DL;
833   const LoopInfo &LI;
834 
835   // Whether the function contains any irreducible control flow, useful for
836   // being accurately able to detect loops.
837   bool ContainsIrreducibleLoops;
838 
839   // All MemoryDefs that potentially could kill other MemDefs.
840   SmallVector<MemoryDef *, 64> MemDefs;
841   // Any that should be skipped as they are already deleted
842   SmallPtrSet<MemoryAccess *, 4> SkipStores;
843   // Keep track whether a given object is captured before return or not.
844   DenseMap<const Value *, bool> CapturedBeforeReturn;
845   // Keep track of all of the objects that are invisible to the caller after
846   // the function returns.
847   DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
848   // Keep track of blocks with throwing instructions not modeled in MemorySSA.
849   SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
850   // Post-order numbers for each basic block. Used to figure out if memory
851   // accesses are executed before another access.
852   DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
853   // Values that are only used with assumes. Used to refine pointer escape
854   // analysis.
855   SmallPtrSet<const Value *, 32> EphValues;
856 
857   /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
858   /// basic block.
859   MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
860   // Check if there are root nodes that are terminated by UnreachableInst.
861   // Those roots pessimize post-dominance queries. If there are such roots,
862   // fall back to CFG scan starting from all non-unreachable roots.
863   bool AnyUnreachableExit;
864 
865   // Whether or not we should iterate on removing dead stores at the end of the
866   // function due to removing a store causing a previously captured pointer to
867   // no longer be captured.
868   bool ShouldIterateEndOfFunctionDSE;
869 
870   // Class contains self-reference, make sure it's not copied/moved.
871   DSEState(const DSEState &) = delete;
872   DSEState &operator=(const DSEState &) = delete;
873 
874   DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
875            PostDominatorTree &PDT, AssumptionCache &AC,
876            const TargetLibraryInfo &TLI, const LoopInfo &LI)
877       : F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA),
878         DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
879     // Collect blocks with throwing instructions not modeled in MemorySSA and
880     // alloc-like objects.
881     unsigned PO = 0;
882     for (BasicBlock *BB : post_order(&F)) {
883       PostOrderNumbers[BB] = PO++;
884       for (Instruction &I : *BB) {
885         MemoryAccess *MA = MSSA.getMemoryAccess(&I);
886         if (I.mayThrow() && !MA)
887           ThrowingBlocks.insert(I.getParent());
888 
889         auto *MD = dyn_cast_or_null<MemoryDef>(MA);
890         if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
891             (getLocForWrite(&I) || isMemTerminatorInst(&I)))
892           MemDefs.push_back(MD);
893       }
894     }
895 
896     // Treat byval or inalloca arguments the same as Allocas, stores to them are
897     // dead at the end of the function.
898     for (Argument &AI : F.args())
899       if (AI.hasPassPointeeByValueCopyAttr())
900         InvisibleToCallerAfterRet.insert({&AI, true});
901 
902     // Collect whether there is any irreducible control flow in the function.
903     ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
904 
905     AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) {
906       return isa<UnreachableInst>(E->getTerminator());
907     });
908 
909     CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
910   }
911 
912   LocationSize strengthenLocationSize(const Instruction *I,
913                                       LocationSize Size) const {
914     if (auto *CB = dyn_cast<CallBase>(I)) {
915       LibFunc F;
916       if (TLI.getLibFunc(*CB, F) && TLI.has(F) &&
917           (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
918         // Use the precise location size specified by the 3rd argument
919         // for determining KillingI overwrites DeadLoc if it is a memset_chk
920         // instruction. memset_chk will write either the amount specified as 3rd
921         // argument or the function will immediately abort and exit the program.
922         // NOTE: AA may determine NoAlias if it can prove that the access size
923         // is larger than the allocation size due to that being UB. To avoid
924         // returning potentially invalid NoAlias results by AA, limit the use of
925         // the precise location size to isOverwrite.
926         if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2)))
927           return LocationSize::precise(Len->getZExtValue());
928       }
929     }
930     return Size;
931   }
932 
933   /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
934   /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
935   /// location (by \p DeadI instruction).
936   /// Return OW_MaybePartial if \p KillingI does not completely overwrite
937   /// \p DeadI, but they both write to the same underlying object. In that
938   /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
939   /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
940   /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
941   OverwriteResult isOverwrite(const Instruction *KillingI,
942                               const Instruction *DeadI,
943                               const MemoryLocation &KillingLoc,
944                               const MemoryLocation &DeadLoc,
945                               int64_t &KillingOff, int64_t &DeadOff) {
946     // AliasAnalysis does not always account for loops. Limit overwrite checks
947     // to dependencies for which we can guarantee they are independent of any
948     // loops they are in.
949     if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
950       return OW_Unknown;
951 
952     LocationSize KillingLocSize =
953         strengthenLocationSize(KillingI, KillingLoc.Size);
954     const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
955     const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
956     const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
957     const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
958 
959     // Check whether the killing store overwrites the whole object, in which
960     // case the size/offset of the dead store does not matter.
961     if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise()) {
962       uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
963       if (KillingUndObjSize != MemoryLocation::UnknownSize &&
964           KillingUndObjSize == KillingLocSize.getValue())
965         return OW_Complete;
966     }
967 
968     // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
969     // get imprecise values here, though (except for unknown sizes).
970     if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
971       // In case no constant size is known, try to an IR values for the number
972       // of bytes written and check if they match.
973       const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
974       const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
975       if (KillingMemI && DeadMemI) {
976         const Value *KillingV = KillingMemI->getLength();
977         const Value *DeadV = DeadMemI->getLength();
978         if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
979           return OW_Complete;
980       }
981 
982       // Masked stores have imprecise locations, but we can reason about them
983       // to some extent.
984       return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
985     }
986 
987     const uint64_t KillingSize = KillingLocSize.getValue();
988     const uint64_t DeadSize = DeadLoc.Size.getValue();
989 
990     // Query the alias information
991     AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
992 
993     // If the start pointers are the same, we just have to compare sizes to see if
994     // the killing store was larger than the dead store.
995     if (AAR == AliasResult::MustAlias) {
996       // Make sure that the KillingSize size is >= the DeadSize size.
997       if (KillingSize >= DeadSize)
998         return OW_Complete;
999     }
1000 
1001     // If we hit a partial alias we may have a full overwrite
1002     if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
1003       int32_t Off = AAR.getOffset();
1004       if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1005         return OW_Complete;
1006     }
1007 
1008     // If we can't resolve the same pointers to the same object, then we can't
1009     // analyze them at all.
1010     if (DeadUndObj != KillingUndObj) {
1011       // Non aliasing stores to different objects don't overlap. Note that
1012       // if the killing store is known to overwrite whole object (out of
1013       // bounds access overwrites whole object as well) then it is assumed to
1014       // completely overwrite any store to the same object even if they don't
1015       // actually alias (see next check).
1016       if (AAR == AliasResult::NoAlias)
1017         return OW_None;
1018       return OW_Unknown;
1019     }
1020 
1021     // Okay, we have stores to two completely different pointers.  Try to
1022     // decompose the pointer into a "base + constant_offset" form.  If the base
1023     // pointers are equal, then we can reason about the two stores.
1024     DeadOff = 0;
1025     KillingOff = 0;
1026     const Value *DeadBasePtr =
1027         GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
1028     const Value *KillingBasePtr =
1029         GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
1030 
1031     // If the base pointers still differ, we have two completely different
1032     // stores.
1033     if (DeadBasePtr != KillingBasePtr)
1034       return OW_Unknown;
1035 
1036     // The killing access completely overlaps the dead store if and only if
1037     // both start and end of the dead one is "inside" the killing one:
1038     //    |<->|--dead--|<->|
1039     //    |-----killing------|
1040     // Accesses may overlap if and only if start of one of them is "inside"
1041     // another one:
1042     //    |<->|--dead--|<-------->|
1043     //    |-------killing--------|
1044     //           OR
1045     //    |-------dead-------|
1046     //    |<->|---killing---|<----->|
1047     //
1048     // We have to be careful here as *Off is signed while *.Size is unsigned.
1049 
1050     // Check if the dead access starts "not before" the killing one.
1051     if (DeadOff >= KillingOff) {
1052       // If the dead access ends "not after" the killing access then the
1053       // dead one is completely overwritten by the killing one.
1054       if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1055         return OW_Complete;
1056       // If start of the dead access is "before" end of the killing access
1057       // then accesses overlap.
1058       else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1059         return OW_MaybePartial;
1060     }
1061     // If start of the killing access is "before" end of the dead access then
1062     // accesses overlap.
1063     else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1064       return OW_MaybePartial;
1065     }
1066 
1067     // Can reach here only if accesses are known not to overlap.
1068     return OW_None;
1069   }
1070 
1071   bool isInvisibleToCallerAfterRet(const Value *V) {
1072     if (isa<AllocaInst>(V))
1073       return true;
1074     auto I = InvisibleToCallerAfterRet.insert({V, false});
1075     if (I.second) {
1076       if (!isInvisibleToCallerOnUnwind(V)) {
1077         I.first->second = false;
1078       } else if (isNoAliasCall(V)) {
1079         I.first->second = !PointerMayBeCaptured(V, true, false, EphValues);
1080       }
1081     }
1082     return I.first->second;
1083   }
1084 
1085   bool isInvisibleToCallerOnUnwind(const Value *V) {
1086     bool RequiresNoCaptureBeforeUnwind;
1087     if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind))
1088       return false;
1089     if (!RequiresNoCaptureBeforeUnwind)
1090       return true;
1091 
1092     auto I = CapturedBeforeReturn.insert({V, true});
1093     if (I.second)
1094       // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1095       // with the killing MemoryDef. But we refrain from doing so for now to
1096       // limit compile-time and this does not cause any changes to the number
1097       // of stores removed on a large test set in practice.
1098       I.first->second = PointerMayBeCaptured(V, false, true, EphValues);
1099     return !I.first->second;
1100   }
1101 
1102   std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1103     if (!I->mayWriteToMemory())
1104       return std::nullopt;
1105 
1106     if (auto *CB = dyn_cast<CallBase>(I))
1107       return MemoryLocation::getForDest(CB, TLI);
1108 
1109     return MemoryLocation::getOrNone(I);
1110   }
1111 
1112   /// Assuming this instruction has a dead analyzable write, can we delete
1113   /// this instruction?
1114   bool isRemovable(Instruction *I) {
1115     assert(getLocForWrite(I) && "Must have analyzable write");
1116 
1117     // Don't remove volatile/atomic stores.
1118     if (StoreInst *SI = dyn_cast<StoreInst>(I))
1119       return SI->isUnordered();
1120 
1121     if (auto *CB = dyn_cast<CallBase>(I)) {
1122       // Don't remove volatile memory intrinsics.
1123       if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1124         return !MI->isVolatile();
1125 
1126       // Never remove dead lifetime intrinsics, e.g. because they are followed
1127       // by a free.
1128       if (CB->isLifetimeStartOrEnd())
1129         return false;
1130 
1131       return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1132              !CB->isTerminator();
1133     }
1134 
1135     return false;
1136   }
1137 
1138   /// Returns true if \p UseInst completely overwrites \p DefLoc
1139   /// (stored by \p DefInst).
1140   bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1141                            Instruction *UseInst) {
1142     // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1143     // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1144     // MemoryDef.
1145     if (!UseInst->mayWriteToMemory())
1146       return false;
1147 
1148     if (auto *CB = dyn_cast<CallBase>(UseInst))
1149       if (CB->onlyAccessesInaccessibleMemory())
1150         return false;
1151 
1152     int64_t InstWriteOffset, DepWriteOffset;
1153     if (auto CC = getLocForWrite(UseInst))
1154       return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1155                          DepWriteOffset) == OW_Complete;
1156     return false;
1157   }
1158 
1159   /// Returns true if \p Def is not read before returning from the function.
1160   bool isWriteAtEndOfFunction(MemoryDef *Def) {
1161     LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1162                       << *Def->getMemoryInst()
1163                       << ") is at the end the function \n");
1164 
1165     auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1166     if (!MaybeLoc) {
1167       LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1168       return false;
1169     }
1170 
1171     SmallVector<MemoryAccess *, 4> WorkList;
1172     SmallPtrSet<MemoryAccess *, 8> Visited;
1173     auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1174       if (!Visited.insert(Acc).second)
1175         return;
1176       for (Use &U : Acc->uses())
1177         WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1178     };
1179     PushMemUses(Def);
1180     for (unsigned I = 0; I < WorkList.size(); I++) {
1181       if (WorkList.size() >= MemorySSAScanLimit) {
1182         LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1183         return false;
1184       }
1185 
1186       MemoryAccess *UseAccess = WorkList[I];
1187       if (isa<MemoryPhi>(UseAccess)) {
1188         // AliasAnalysis does not account for loops. Limit elimination to
1189         // candidates for which we can guarantee they always store to the same
1190         // memory location.
1191         if (!isGuaranteedLoopInvariant(MaybeLoc->Ptr))
1192           return false;
1193 
1194         PushMemUses(cast<MemoryPhi>(UseAccess));
1195         continue;
1196       }
1197       // TODO: Checking for aliasing is expensive. Consider reducing the amount
1198       // of times this is called and/or caching it.
1199       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1200       if (isReadClobber(*MaybeLoc, UseInst)) {
1201         LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1202         return false;
1203       }
1204 
1205       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1206         PushMemUses(UseDef);
1207     }
1208     return true;
1209   }
1210 
1211   /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1212   /// pair with the MemoryLocation terminated by \p I and a boolean flag
1213   /// indicating whether \p I is a free-like call.
1214   std::optional<std::pair<MemoryLocation, bool>>
1215   getLocForTerminator(Instruction *I) const {
1216     uint64_t Len;
1217     Value *Ptr;
1218     if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1219                                                       m_Value(Ptr))))
1220       return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1221 
1222     if (auto *CB = dyn_cast<CallBase>(I)) {
1223       if (Value *FreedOp = getFreedOperand(CB, &TLI))
1224         return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)};
1225     }
1226 
1227     return std::nullopt;
1228   }
1229 
1230   /// Returns true if \p I is a memory terminator instruction like
1231   /// llvm.lifetime.end or free.
1232   bool isMemTerminatorInst(Instruction *I) const {
1233     auto *CB = dyn_cast<CallBase>(I);
1234     return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1235                   getFreedOperand(CB, &TLI) != nullptr);
1236   }
1237 
1238   /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1239   /// instruction \p AccessI.
1240   bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1241                        Instruction *MaybeTerm) {
1242     std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1243         getLocForTerminator(MaybeTerm);
1244 
1245     if (!MaybeTermLoc)
1246       return false;
1247 
1248     // If the terminator is a free-like call, all accesses to the underlying
1249     // object can be considered terminated.
1250     if (getUnderlyingObject(Loc.Ptr) !=
1251         getUnderlyingObject(MaybeTermLoc->first.Ptr))
1252       return false;
1253 
1254     auto TermLoc = MaybeTermLoc->first;
1255     if (MaybeTermLoc->second) {
1256       const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1257       return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1258     }
1259     int64_t InstWriteOffset = 0;
1260     int64_t DepWriteOffset = 0;
1261     return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1262                        DepWriteOffset) == OW_Complete;
1263   }
1264 
1265   // Returns true if \p Use may read from \p DefLoc.
1266   bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1267     if (isNoopIntrinsic(UseInst))
1268       return false;
1269 
1270     // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1271     // treated as read clobber.
1272     if (auto SI = dyn_cast<StoreInst>(UseInst))
1273       return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1274 
1275     if (!UseInst->mayReadFromMemory())
1276       return false;
1277 
1278     if (auto *CB = dyn_cast<CallBase>(UseInst))
1279       if (CB->onlyAccessesInaccessibleMemory())
1280         return false;
1281 
1282     return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1283   }
1284 
1285   /// Returns true if a dependency between \p Current and \p KillingDef is
1286   /// guaranteed to be loop invariant for the loops that they are in. Either
1287   /// because they are known to be in the same block, in the same loop level or
1288   /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1289   /// during execution of the containing function.
1290   bool isGuaranteedLoopIndependent(const Instruction *Current,
1291                                    const Instruction *KillingDef,
1292                                    const MemoryLocation &CurrentLoc) {
1293     // If the dependency is within the same block or loop level (being careful
1294     // of irreducible loops), we know that AA will return a valid result for the
1295     // memory dependency. (Both at the function level, outside of any loop,
1296     // would also be valid but we currently disable that to limit compile time).
1297     if (Current->getParent() == KillingDef->getParent())
1298       return true;
1299     const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1300     if (!ContainsIrreducibleLoops && CurrentLI &&
1301         CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1302       return true;
1303     // Otherwise check the memory location is invariant to any loops.
1304     return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1305   }
1306 
1307   /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1308   /// loop. In particular, this guarantees that it only references a single
1309   /// MemoryLocation during execution of the containing function.
1310   bool isGuaranteedLoopInvariant(const Value *Ptr) {
1311     Ptr = Ptr->stripPointerCasts();
1312     if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1313       if (GEP->hasAllConstantIndices())
1314         Ptr = GEP->getPointerOperand()->stripPointerCasts();
1315 
1316     if (auto *I = dyn_cast<Instruction>(Ptr)) {
1317       return I->getParent()->isEntryBlock() ||
1318              (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent()));
1319     }
1320     return true;
1321   }
1322 
1323   // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1324   // with no read access between them or on any other path to a function exit
1325   // block if \p KillingLoc is not accessible after the function returns. If
1326   // there is no such MemoryDef, return std::nullopt. The returned value may not
1327   // (completely) overwrite \p KillingLoc. Currently we bail out when we
1328   // encounter an aliasing MemoryUse (read).
1329   std::optional<MemoryAccess *>
1330   getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1331                   const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1332                   unsigned &ScanLimit, unsigned &WalkerStepLimit,
1333                   bool IsMemTerm, unsigned &PartialLimit) {
1334     if (ScanLimit == 0 || WalkerStepLimit == 0) {
1335       LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1336       return std::nullopt;
1337     }
1338 
1339     MemoryAccess *Current = StartAccess;
1340     Instruction *KillingI = KillingDef->getMemoryInst();
1341     LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1342 
1343     // Only optimize defining access of KillingDef when directly starting at its
1344     // defining access. The defining access also must only access KillingLoc. At
1345     // the moment we only support instructions with a single write location, so
1346     // it should be sufficient to disable optimizations for instructions that
1347     // also read from memory.
1348     bool CanOptimize = OptimizeMemorySSA &&
1349                        KillingDef->getDefiningAccess() == StartAccess &&
1350                        !KillingI->mayReadFromMemory();
1351 
1352     // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1353     std::optional<MemoryLocation> CurrentLoc;
1354     for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1355       LLVM_DEBUG({
1356         dbgs() << "   visiting " << *Current;
1357         if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1358           dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1359                  << ")";
1360         dbgs() << "\n";
1361       });
1362 
1363       // Reached TOP.
1364       if (MSSA.isLiveOnEntryDef(Current)) {
1365         LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1366         if (CanOptimize && Current != KillingDef->getDefiningAccess())
1367           // The first clobbering def is... none.
1368           KillingDef->setOptimized(Current);
1369         return std::nullopt;
1370       }
1371 
1372       // Cost of a step. Accesses in the same block are more likely to be valid
1373       // candidates for elimination, hence consider them cheaper.
1374       unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1375                               ? MemorySSASameBBStepCost
1376                               : MemorySSAOtherBBStepCost;
1377       if (WalkerStepLimit <= StepCost) {
1378         LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1379         return std::nullopt;
1380       }
1381       WalkerStepLimit -= StepCost;
1382 
1383       // Return for MemoryPhis. They cannot be eliminated directly and the
1384       // caller is responsible for traversing them.
1385       if (isa<MemoryPhi>(Current)) {
1386         LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1387         return Current;
1388       }
1389 
1390       // Below, check if CurrentDef is a valid candidate to be eliminated by
1391       // KillingDef. If it is not, check the next candidate.
1392       MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1393       Instruction *CurrentI = CurrentDef->getMemoryInst();
1394 
1395       if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) {
1396         CanOptimize = false;
1397         continue;
1398       }
1399 
1400       // Before we try to remove anything, check for any extra throwing
1401       // instructions that block us from DSEing
1402       if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1403         LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1404         return std::nullopt;
1405       }
1406 
1407       // Check for anything that looks like it will be a barrier to further
1408       // removal
1409       if (isDSEBarrier(KillingUndObj, CurrentI)) {
1410         LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1411         return std::nullopt;
1412       }
1413 
1414       // If Current is known to be on path that reads DefLoc or is a read
1415       // clobber, bail out, as the path is not profitable. We skip this check
1416       // for intrinsic calls, because the code knows how to handle memcpy
1417       // intrinsics.
1418       if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1419         return std::nullopt;
1420 
1421       // Quick check if there are direct uses that are read-clobbers.
1422       if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1423             if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1424               return !MSSA.dominates(StartAccess, UseOrDef) &&
1425                      isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1426             return false;
1427           })) {
1428         LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1429         return std::nullopt;
1430       }
1431 
1432       // If Current does not have an analyzable write location or is not
1433       // removable, skip it.
1434       CurrentLoc = getLocForWrite(CurrentI);
1435       if (!CurrentLoc || !isRemovable(CurrentI)) {
1436         CanOptimize = false;
1437         continue;
1438       }
1439 
1440       // AliasAnalysis does not account for loops. Limit elimination to
1441       // candidates for which we can guarantee they always store to the same
1442       // memory location and not located in different loops.
1443       if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1444         LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1445         CanOptimize = false;
1446         continue;
1447       }
1448 
1449       if (IsMemTerm) {
1450         // If the killing def is a memory terminator (e.g. lifetime.end), check
1451         // the next candidate if the current Current does not write the same
1452         // underlying object as the terminator.
1453         if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1454           CanOptimize = false;
1455           continue;
1456         }
1457       } else {
1458         int64_t KillingOffset = 0;
1459         int64_t DeadOffset = 0;
1460         auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1461                               KillingOffset, DeadOffset);
1462         if (CanOptimize) {
1463           // CurrentDef is the earliest write clobber of KillingDef. Use it as
1464           // optimized access. Do not optimize if CurrentDef is already the
1465           // defining access of KillingDef.
1466           if (CurrentDef != KillingDef->getDefiningAccess() &&
1467               (OR == OW_Complete || OR == OW_MaybePartial))
1468             KillingDef->setOptimized(CurrentDef);
1469 
1470           // Once a may-aliasing def is encountered do not set an optimized
1471           // access.
1472           if (OR != OW_None)
1473             CanOptimize = false;
1474         }
1475 
1476         // If Current does not write to the same object as KillingDef, check
1477         // the next candidate.
1478         if (OR == OW_Unknown || OR == OW_None)
1479           continue;
1480         else if (OR == OW_MaybePartial) {
1481           // If KillingDef only partially overwrites Current, check the next
1482           // candidate if the partial step limit is exceeded. This aggressively
1483           // limits the number of candidates for partial store elimination,
1484           // which are less likely to be removable in the end.
1485           if (PartialLimit <= 1) {
1486             WalkerStepLimit -= 1;
1487             LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1488             continue;
1489           }
1490           PartialLimit -= 1;
1491         }
1492       }
1493       break;
1494     };
1495 
1496     // Accesses to objects accessible after the function returns can only be
1497     // eliminated if the access is dead along all paths to the exit. Collect
1498     // the blocks with killing (=completely overwriting MemoryDefs) and check if
1499     // they cover all paths from MaybeDeadAccess to any function exit.
1500     SmallPtrSet<Instruction *, 16> KillingDefs;
1501     KillingDefs.insert(KillingDef->getMemoryInst());
1502     MemoryAccess *MaybeDeadAccess = Current;
1503     MemoryLocation MaybeDeadLoc = *CurrentLoc;
1504     Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1505     LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1506                       << *MaybeDeadI << ")\n");
1507 
1508     SmallSetVector<MemoryAccess *, 32> WorkList;
1509     auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1510       for (Use &U : Acc->uses())
1511         WorkList.insert(cast<MemoryAccess>(U.getUser()));
1512     };
1513     PushMemUses(MaybeDeadAccess);
1514 
1515     // Check if DeadDef may be read.
1516     for (unsigned I = 0; I < WorkList.size(); I++) {
1517       MemoryAccess *UseAccess = WorkList[I];
1518 
1519       LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1520       // Bail out if the number of accesses to check exceeds the scan limit.
1521       if (ScanLimit < (WorkList.size() - I)) {
1522         LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1523         return std::nullopt;
1524       }
1525       --ScanLimit;
1526       NumDomMemDefChecks++;
1527 
1528       if (isa<MemoryPhi>(UseAccess)) {
1529         if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1530               return DT.properlyDominates(KI->getParent(),
1531                                           UseAccess->getBlock());
1532             })) {
1533           LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1534           continue;
1535         }
1536         LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1537         PushMemUses(UseAccess);
1538         continue;
1539       }
1540 
1541       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1542       LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1543 
1544       if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1545             return DT.dominates(KI, UseInst);
1546           })) {
1547         LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1548         continue;
1549       }
1550 
1551       // A memory terminator kills all preceeding MemoryDefs and all succeeding
1552       // MemoryAccesses. We do not have to check it's users.
1553       if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1554         LLVM_DEBUG(
1555             dbgs()
1556             << " ... skipping, memterminator invalidates following accesses\n");
1557         continue;
1558       }
1559 
1560       if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1561         LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1562         PushMemUses(UseAccess);
1563         continue;
1564       }
1565 
1566       if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) {
1567         LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1568         return std::nullopt;
1569       }
1570 
1571       // Uses which may read the original MemoryDef mean we cannot eliminate the
1572       // original MD. Stop walk.
1573       if (isReadClobber(MaybeDeadLoc, UseInst)) {
1574         LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1575         return std::nullopt;
1576       }
1577 
1578       // If this worklist walks back to the original memory access (and the
1579       // pointer is not guarenteed loop invariant) then we cannot assume that a
1580       // store kills itself.
1581       if (MaybeDeadAccess == UseAccess &&
1582           !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1583         LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1584         return std::nullopt;
1585       }
1586       // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1587       // if it reads the memory location.
1588       // TODO: It would probably be better to check for self-reads before
1589       // calling the function.
1590       if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1591         LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1592         continue;
1593       }
1594 
1595       // Check all uses for MemoryDefs, except for defs completely overwriting
1596       // the original location. Otherwise we have to check uses of *all*
1597       // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1598       // miss cases like the following
1599       //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1600       //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1601       //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1602       //                  (The Use points to the *first* Def it may alias)
1603       //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1604       //                  stores [0,1]
1605       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1606         if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1607           BasicBlock *MaybeKillingBlock = UseInst->getParent();
1608           if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1609               PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1610             if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1611               LLVM_DEBUG(dbgs()
1612                          << "    ... found killing def " << *UseInst << "\n");
1613               KillingDefs.insert(UseInst);
1614             }
1615           } else {
1616             LLVM_DEBUG(dbgs()
1617                        << "    ... found preceeding def " << *UseInst << "\n");
1618             return std::nullopt;
1619           }
1620         } else
1621           PushMemUses(UseDef);
1622       }
1623     }
1624 
1625     // For accesses to locations visible after the function returns, make sure
1626     // that the location is dead (=overwritten) along all paths from
1627     // MaybeDeadAccess to the exit.
1628     if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1629       SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1630       for (Instruction *KD : KillingDefs)
1631         KillingBlocks.insert(KD->getParent());
1632       assert(!KillingBlocks.empty() &&
1633              "Expected at least a single killing block");
1634 
1635       // Find the common post-dominator of all killing blocks.
1636       BasicBlock *CommonPred = *KillingBlocks.begin();
1637       for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1638         if (!CommonPred)
1639           break;
1640         CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1641       }
1642 
1643       // If the common post-dominator does not post-dominate MaybeDeadAccess,
1644       // there is a path from MaybeDeadAccess to an exit not going through a
1645       // killing block.
1646       if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1647         if (!AnyUnreachableExit)
1648           return std::nullopt;
1649 
1650         // Fall back to CFG scan starting at all non-unreachable roots if not
1651         // all paths to the exit go through CommonPred.
1652         CommonPred = nullptr;
1653       }
1654 
1655       // If CommonPred itself is in the set of killing blocks, we're done.
1656       if (KillingBlocks.count(CommonPred))
1657         return {MaybeDeadAccess};
1658 
1659       SetVector<BasicBlock *> WorkList;
1660       // If CommonPred is null, there are multiple exits from the function.
1661       // They all have to be added to the worklist.
1662       if (CommonPred)
1663         WorkList.insert(CommonPred);
1664       else
1665         for (BasicBlock *R : PDT.roots()) {
1666           if (!isa<UnreachableInst>(R->getTerminator()))
1667             WorkList.insert(R);
1668         }
1669 
1670       NumCFGTries++;
1671       // Check if all paths starting from an exit node go through one of the
1672       // killing blocks before reaching MaybeDeadAccess.
1673       for (unsigned I = 0; I < WorkList.size(); I++) {
1674         NumCFGChecks++;
1675         BasicBlock *Current = WorkList[I];
1676         if (KillingBlocks.count(Current))
1677           continue;
1678         if (Current == MaybeDeadAccess->getBlock())
1679           return std::nullopt;
1680 
1681         // MaybeDeadAccess is reachable from the entry, so we don't have to
1682         // explore unreachable blocks further.
1683         if (!DT.isReachableFromEntry(Current))
1684           continue;
1685 
1686         for (BasicBlock *Pred : predecessors(Current))
1687           WorkList.insert(Pred);
1688 
1689         if (WorkList.size() >= MemorySSAPathCheckLimit)
1690           return std::nullopt;
1691       }
1692       NumCFGSuccess++;
1693     }
1694 
1695     // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1696     // potentially dead.
1697     return {MaybeDeadAccess};
1698   }
1699 
1700   // Delete dead memory defs
1701   void deleteDeadInstruction(Instruction *SI) {
1702     MemorySSAUpdater Updater(&MSSA);
1703     SmallVector<Instruction *, 32> NowDeadInsts;
1704     NowDeadInsts.push_back(SI);
1705     --NumFastOther;
1706 
1707     while (!NowDeadInsts.empty()) {
1708       Instruction *DeadInst = NowDeadInsts.pop_back_val();
1709       ++NumFastOther;
1710 
1711       // Try to preserve debug information attached to the dead instruction.
1712       salvageDebugInfo(*DeadInst);
1713       salvageKnowledge(DeadInst);
1714 
1715       // Remove the Instruction from MSSA.
1716       if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1717         if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1718           SkipStores.insert(MD);
1719           if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) {
1720             if (SI->getValueOperand()->getType()->isPointerTy()) {
1721               const Value *UO = getUnderlyingObject(SI->getValueOperand());
1722               if (CapturedBeforeReturn.erase(UO))
1723                 ShouldIterateEndOfFunctionDSE = true;
1724               InvisibleToCallerAfterRet.erase(UO);
1725             }
1726           }
1727         }
1728 
1729         Updater.removeMemoryAccess(MA);
1730       }
1731 
1732       auto I = IOLs.find(DeadInst->getParent());
1733       if (I != IOLs.end())
1734         I->second.erase(DeadInst);
1735       // Remove its operands
1736       for (Use &O : DeadInst->operands())
1737         if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1738           O = nullptr;
1739           if (isInstructionTriviallyDead(OpI, &TLI))
1740             NowDeadInsts.push_back(OpI);
1741         }
1742 
1743       EI.removeInstruction(DeadInst);
1744       DeadInst->eraseFromParent();
1745     }
1746   }
1747 
1748   // Check for any extra throws between \p KillingI and \p DeadI that block
1749   // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1750   // MemoryDef that may throw are handled during the walk from one def to the
1751   // next.
1752   bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1753                        const Value *KillingUndObj) {
1754     // First see if we can ignore it by using the fact that KillingI is an
1755     // alloca/alloca like object that is not visible to the caller during
1756     // execution of the function.
1757     if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj))
1758       return false;
1759 
1760     if (KillingI->getParent() == DeadI->getParent())
1761       return ThrowingBlocks.count(KillingI->getParent());
1762     return !ThrowingBlocks.empty();
1763   }
1764 
1765   // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1766   // instructions act as barriers:
1767   //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1768   //  object.
1769   //  * Atomic stores stronger that monotonic.
1770   bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1771     // If DeadI may throw it acts as a barrier, unless we are to an
1772     // alloca/alloca like object that does not escape.
1773     if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj))
1774       return true;
1775 
1776     // If DeadI is an atomic load/store stronger than monotonic, do not try to
1777     // eliminate/reorder it.
1778     if (DeadI->isAtomic()) {
1779       if (auto *LI = dyn_cast<LoadInst>(DeadI))
1780         return isStrongerThanMonotonic(LI->getOrdering());
1781       if (auto *SI = dyn_cast<StoreInst>(DeadI))
1782         return isStrongerThanMonotonic(SI->getOrdering());
1783       if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1784         return isStrongerThanMonotonic(ARMW->getOrdering());
1785       if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1786         return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1787                isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1788       llvm_unreachable("other instructions should be skipped in MemorySSA");
1789     }
1790     return false;
1791   }
1792 
1793   /// Eliminate writes to objects that are not visible in the caller and are not
1794   /// accessed before returning from the function.
1795   bool eliminateDeadWritesAtEndOfFunction() {
1796     bool MadeChange = false;
1797     LLVM_DEBUG(
1798         dbgs()
1799         << "Trying to eliminate MemoryDefs at the end of the function\n");
1800     do {
1801       ShouldIterateEndOfFunctionDSE = false;
1802       for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1803         if (SkipStores.contains(Def))
1804           continue;
1805 
1806         Instruction *DefI = Def->getMemoryInst();
1807         auto DefLoc = getLocForWrite(DefI);
1808         if (!DefLoc || !isRemovable(DefI))
1809           continue;
1810 
1811         // NOTE: Currently eliminating writes at the end of a function is
1812         // limited to MemoryDefs with a single underlying object, to save
1813         // compile-time. In practice it appears the case with multiple
1814         // underlying objects is very uncommon. If it turns out to be important,
1815         // we can use getUnderlyingObjects here instead.
1816         const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1817         if (!isInvisibleToCallerAfterRet(UO))
1818           continue;
1819 
1820         if (isWriteAtEndOfFunction(Def)) {
1821           // See through pointer-to-pointer bitcasts
1822           LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1823                                "of the function\n");
1824           deleteDeadInstruction(DefI);
1825           ++NumFastStores;
1826           MadeChange = true;
1827         }
1828       }
1829     } while (ShouldIterateEndOfFunctionDSE);
1830     return MadeChange;
1831   }
1832 
1833   /// If we have a zero initializing memset following a call to malloc,
1834   /// try folding it into a call to calloc.
1835   bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1836     Instruction *DefI = Def->getMemoryInst();
1837     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1838     if (!MemSet)
1839       // TODO: Could handle zero store to small allocation as well.
1840       return false;
1841     Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1842     if (!StoredConstant || !StoredConstant->isNullValue())
1843       return false;
1844 
1845     if (!isRemovable(DefI))
1846       // The memset might be volatile..
1847       return false;
1848 
1849     if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1850         F.hasFnAttribute(Attribute::SanitizeAddress) ||
1851         F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1852         F.getName() == "calloc")
1853       return false;
1854     auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1855     if (!Malloc)
1856       return false;
1857     auto *InnerCallee = Malloc->getCalledFunction();
1858     if (!InnerCallee)
1859       return false;
1860     LibFunc Func;
1861     if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1862         Func != LibFunc_malloc)
1863       return false;
1864 
1865     auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1866       // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1867       // of malloc block
1868       auto *MallocBB = Malloc->getParent(),
1869         *MemsetBB = Memset->getParent();
1870       if (MallocBB == MemsetBB)
1871         return true;
1872       auto *Ptr = Memset->getArgOperand(0);
1873       auto *TI = MallocBB->getTerminator();
1874       ICmpInst::Predicate Pred;
1875       BasicBlock *TrueBB, *FalseBB;
1876       if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1877                           FalseBB)))
1878         return false;
1879       if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1880         return false;
1881       return true;
1882     };
1883 
1884     if (Malloc->getOperand(0) != MemSet->getLength())
1885       return false;
1886     if (!shouldCreateCalloc(Malloc, MemSet) ||
1887         !DT.dominates(Malloc, MemSet) ||
1888         !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1889       return false;
1890     IRBuilder<> IRB(Malloc);
1891     Type *SizeTTy = Malloc->getArgOperand(0)->getType();
1892     auto *Calloc = emitCalloc(ConstantInt::get(SizeTTy, 1),
1893                               Malloc->getArgOperand(0), IRB, TLI);
1894     if (!Calloc)
1895       return false;
1896     MemorySSAUpdater Updater(&MSSA);
1897     auto *LastDef =
1898       cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
1899     auto *NewAccess =
1900       Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
1901                                       LastDef);
1902     auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1903     Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1904     Updater.removeMemoryAccess(Malloc);
1905     Malloc->replaceAllUsesWith(Calloc);
1906     Malloc->eraseFromParent();
1907     return true;
1908   }
1909 
1910   /// \returns true if \p Def is a no-op store, either because it
1911   /// directly stores back a loaded value or stores zero to a calloced object.
1912   bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1913     Instruction *DefI = Def->getMemoryInst();
1914     StoreInst *Store = dyn_cast<StoreInst>(DefI);
1915     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1916     Constant *StoredConstant = nullptr;
1917     if (Store)
1918       StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1919     else if (MemSet)
1920       StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1921     else
1922       return false;
1923 
1924     if (!isRemovable(DefI))
1925       return false;
1926 
1927     if (StoredConstant) {
1928       Constant *InitC =
1929           getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType());
1930       // If the clobbering access is LiveOnEntry, no instructions between them
1931       // can modify the memory location.
1932       if (InitC && InitC == StoredConstant)
1933         return MSSA.isLiveOnEntryDef(
1934             MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA));
1935     }
1936 
1937     if (!Store)
1938       return false;
1939 
1940     if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1941       if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1942         // Get the defining access for the load.
1943         auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1944         // Fast path: the defining accesses are the same.
1945         if (LoadAccess == Def->getDefiningAccess())
1946           return true;
1947 
1948         // Look through phi accesses. Recursively scan all phi accesses by
1949         // adding them to a worklist. Bail when we run into a memory def that
1950         // does not match LoadAccess.
1951         SetVector<MemoryAccess *> ToCheck;
1952         MemoryAccess *Current =
1953             MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA);
1954         // We don't want to bail when we run into the store memory def. But,
1955         // the phi access may point to it. So, pretend like we've already
1956         // checked it.
1957         ToCheck.insert(Def);
1958         ToCheck.insert(Current);
1959         // Start at current (1) to simulate already having checked Def.
1960         for (unsigned I = 1; I < ToCheck.size(); ++I) {
1961           Current = ToCheck[I];
1962           if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1963             // Check all the operands.
1964             for (auto &Use : PhiAccess->incoming_values())
1965               ToCheck.insert(cast<MemoryAccess>(&Use));
1966             continue;
1967           }
1968 
1969           // If we found a memory def, bail. This happens when we have an
1970           // unrelated write in between an otherwise noop store.
1971           assert(isa<MemoryDef>(Current) &&
1972                  "Only MemoryDefs should reach here.");
1973           // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1974           // We are searching for the definition of the store's destination.
1975           // So, if that is the same definition as the load, then this is a
1976           // noop. Otherwise, fail.
1977           if (LoadAccess != Current)
1978             return false;
1979         }
1980         return true;
1981       }
1982     }
1983 
1984     return false;
1985   }
1986 
1987   bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
1988     bool Changed = false;
1989     for (auto OI : IOL) {
1990       Instruction *DeadI = OI.first;
1991       MemoryLocation Loc = *getLocForWrite(DeadI);
1992       assert(isRemovable(DeadI) && "Expect only removable instruction");
1993 
1994       const Value *Ptr = Loc.Ptr->stripPointerCasts();
1995       int64_t DeadStart = 0;
1996       uint64_t DeadSize = Loc.Size.getValue();
1997       GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
1998       OverlapIntervalsTy &IntervalMap = OI.second;
1999       Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
2000       if (IntervalMap.empty())
2001         continue;
2002       Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
2003     }
2004     return Changed;
2005   }
2006 
2007   /// Eliminates writes to locations where the value that is being written
2008   /// is already stored at the same location.
2009   bool eliminateRedundantStoresOfExistingValues() {
2010     bool MadeChange = false;
2011     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2012                          "already existing value\n");
2013     for (auto *Def : MemDefs) {
2014       if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
2015         continue;
2016 
2017       Instruction *DefInst = Def->getMemoryInst();
2018       auto MaybeDefLoc = getLocForWrite(DefInst);
2019       if (!MaybeDefLoc || !isRemovable(DefInst))
2020         continue;
2021 
2022       MemoryDef *UpperDef;
2023       // To conserve compile-time, we avoid walking to the next clobbering def.
2024       // Instead, we just try to get the optimized access, if it exists. DSE
2025       // will try to optimize defs during the earlier traversal.
2026       if (Def->isOptimized())
2027         UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
2028       else
2029         UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
2030       if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
2031         continue;
2032 
2033       Instruction *UpperInst = UpperDef->getMemoryInst();
2034       auto IsRedundantStore = [&]() {
2035         if (DefInst->isIdenticalTo(UpperInst))
2036           return true;
2037         if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
2038           if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
2039             // MemSetInst must have a write location.
2040             MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
2041             int64_t InstWriteOffset = 0;
2042             int64_t DepWriteOffset = 0;
2043             auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
2044                                   InstWriteOffset, DepWriteOffset);
2045             Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
2046             return StoredByte && StoredByte == MemSetI->getOperand(1) &&
2047                    OR == OW_Complete;
2048           }
2049         }
2050         return false;
2051       };
2052 
2053       if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
2054         continue;
2055       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
2056                         << '\n');
2057       deleteDeadInstruction(DefInst);
2058       NumRedundantStores++;
2059       MadeChange = true;
2060     }
2061     return MadeChange;
2062   }
2063 };
2064 
2065 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2066                                 DominatorTree &DT, PostDominatorTree &PDT,
2067                                 AssumptionCache &AC,
2068                                 const TargetLibraryInfo &TLI,
2069                                 const LoopInfo &LI) {
2070   bool MadeChange = false;
2071 
2072   DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2073   // For each store:
2074   for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2075     MemoryDef *KillingDef = State.MemDefs[I];
2076     if (State.SkipStores.count(KillingDef))
2077       continue;
2078     Instruction *KillingI = KillingDef->getMemoryInst();
2079 
2080     std::optional<MemoryLocation> MaybeKillingLoc;
2081     if (State.isMemTerminatorInst(KillingI)) {
2082       if (auto KillingLoc = State.getLocForTerminator(KillingI))
2083         MaybeKillingLoc = KillingLoc->first;
2084     } else {
2085       MaybeKillingLoc = State.getLocForWrite(KillingI);
2086     }
2087 
2088     if (!MaybeKillingLoc) {
2089       LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2090                         << *KillingI << "\n");
2091       continue;
2092     }
2093     MemoryLocation KillingLoc = *MaybeKillingLoc;
2094     assert(KillingLoc.Ptr && "KillingLoc should not be null");
2095     const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
2096     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2097                       << *KillingDef << " (" << *KillingI << ")\n");
2098 
2099     unsigned ScanLimit = MemorySSAScanLimit;
2100     unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2101     unsigned PartialLimit = MemorySSAPartialStoreLimit;
2102     // Worklist of MemoryAccesses that may be killed by KillingDef.
2103     SetVector<MemoryAccess *> ToCheck;
2104     ToCheck.insert(KillingDef->getDefiningAccess());
2105 
2106     bool Shortend = false;
2107     bool IsMemTerm = State.isMemTerminatorInst(KillingI);
2108     // Check if MemoryAccesses in the worklist are killed by KillingDef.
2109     for (unsigned I = 0; I < ToCheck.size(); I++) {
2110       MemoryAccess *Current = ToCheck[I];
2111       if (State.SkipStores.count(Current))
2112         continue;
2113 
2114       std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2115           KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
2116           WalkerStepLimit, IsMemTerm, PartialLimit);
2117 
2118       if (!MaybeDeadAccess) {
2119         LLVM_DEBUG(dbgs() << "  finished walk\n");
2120         continue;
2121       }
2122 
2123       MemoryAccess *DeadAccess = *MaybeDeadAccess;
2124       LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2125       if (isa<MemoryPhi>(DeadAccess)) {
2126         LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
2127         for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
2128           MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
2129           BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2130           BasicBlock *PhiBlock = DeadAccess->getBlock();
2131 
2132           // We only consider incoming MemoryAccesses that come before the
2133           // MemoryPhi. Otherwise we could discover candidates that do not
2134           // strictly dominate our starting def.
2135           if (State.PostOrderNumbers[IncomingBlock] >
2136               State.PostOrderNumbers[PhiBlock])
2137             ToCheck.insert(IncomingAccess);
2138         }
2139         continue;
2140       }
2141       auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
2142       Instruction *DeadI = DeadDefAccess->getMemoryInst();
2143       LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2144       ToCheck.insert(DeadDefAccess->getDefiningAccess());
2145       NumGetDomMemoryDefPassed++;
2146 
2147       if (!DebugCounter::shouldExecute(MemorySSACounter))
2148         continue;
2149 
2150       MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2151 
2152       if (IsMemTerm) {
2153         const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2154         if (KillingUndObj != DeadUndObj)
2155           continue;
2156         LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2157                           << "\n  KILLER: " << *KillingI << '\n');
2158         State.deleteDeadInstruction(DeadI);
2159         ++NumFastStores;
2160         MadeChange = true;
2161       } else {
2162         // Check if DeadI overwrites KillingI.
2163         int64_t KillingOffset = 0;
2164         int64_t DeadOffset = 0;
2165         OverwriteResult OR = State.isOverwrite(
2166             KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2167         if (OR == OW_MaybePartial) {
2168           auto Iter = State.IOLs.insert(
2169               std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2170                   DeadI->getParent(), InstOverlapIntervalsTy()));
2171           auto &IOL = Iter.first->second;
2172           OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2173                                   DeadOffset, DeadI, IOL);
2174         }
2175 
2176         if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2177           auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2178           auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2179           // We are re-using tryToMergePartialOverlappingStores, which requires
2180           // DeadSI to dominate DeadSI.
2181           // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2182           if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2183             if (Constant *Merged = tryToMergePartialOverlappingStores(
2184                     KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2185                     State.BatchAA, &DT)) {
2186 
2187               // Update stored value of earlier store to merged constant.
2188               DeadSI->setOperand(0, Merged);
2189               ++NumModifiedStores;
2190               MadeChange = true;
2191 
2192               Shortend = true;
2193               // Remove killing store and remove any outstanding overlap
2194               // intervals for the updated store.
2195               State.deleteDeadInstruction(KillingSI);
2196               auto I = State.IOLs.find(DeadSI->getParent());
2197               if (I != State.IOLs.end())
2198                 I->second.erase(DeadSI);
2199               break;
2200             }
2201           }
2202         }
2203 
2204         if (OR == OW_Complete) {
2205           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2206                             << "\n  KILLER: " << *KillingI << '\n');
2207           State.deleteDeadInstruction(DeadI);
2208           ++NumFastStores;
2209           MadeChange = true;
2210         }
2211       }
2212     }
2213 
2214     // Check if the store is a no-op.
2215     if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2216       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2217                         << '\n');
2218       State.deleteDeadInstruction(KillingI);
2219       NumRedundantStores++;
2220       MadeChange = true;
2221       continue;
2222     }
2223 
2224     // Can we form a calloc from a memset/malloc pair?
2225     if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2226       LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2227                         << "  DEAD: " << *KillingI << '\n');
2228       State.deleteDeadInstruction(KillingI);
2229       MadeChange = true;
2230       continue;
2231     }
2232   }
2233 
2234   if (EnablePartialOverwriteTracking)
2235     for (auto &KV : State.IOLs)
2236       MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2237 
2238   MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2239   MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2240   return MadeChange;
2241 }
2242 } // end anonymous namespace
2243 
2244 //===----------------------------------------------------------------------===//
2245 // DSE Pass
2246 //===----------------------------------------------------------------------===//
2247 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2248   AliasAnalysis &AA = AM.getResult<AAManager>(F);
2249   const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2250   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2251   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2252   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2253   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
2254   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2255 
2256   bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI);
2257 
2258 #ifdef LLVM_ENABLE_STATS
2259   if (AreStatisticsEnabled())
2260     for (auto &I : instructions(F))
2261       NumRemainingStores += isa<StoreInst>(&I);
2262 #endif
2263 
2264   if (!Changed)
2265     return PreservedAnalyses::all();
2266 
2267   PreservedAnalyses PA;
2268   PA.preserveSet<CFGAnalyses>();
2269   PA.preserve<MemorySSAAnalysis>();
2270   PA.preserve<LoopAnalysis>();
2271   return PA;
2272 }
2273