1 //===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Transform each threading path to effectively jump thread the DFA. For 10 // example, the CFG below could be transformed as follows, where the cloned 11 // blocks unconditionally branch to the next correct case based on what is 12 // identified in the analysis. 13 // 14 // sw.bb sw.bb 15 // / | \ / | \ 16 // case1 case2 case3 case1 case2 case3 17 // \ | / | | | 18 // determinator det.2 det.3 det.1 19 // br sw.bb / | \ 20 // sw.bb.2 sw.bb.3 sw.bb.1 21 // br case2 br case3 br case1§ 22 // 23 // Definitions and Terminology: 24 // 25 // * Threading path: 26 // a list of basic blocks, the exit state, and the block that determines 27 // the next state, for which the following notation will be used: 28 // < path of BBs that form a cycle > [ state, determinator ] 29 // 30 // * Predictable switch: 31 // The switch variable is always a known constant so that all conditional 32 // jumps based on switch variable can be converted to unconditional jump. 33 // 34 // * Determinator: 35 // The basic block that determines the next state of the DFA. 36 // 37 // Representing the optimization in C-like pseudocode: the code pattern on the 38 // left could functionally be transformed to the right pattern if the switch 39 // condition is predictable. 40 // 41 // X = A goto A 42 // for (...) A: 43 // switch (X) ... 44 // case A goto B 45 // X = B B: 46 // case B ... 47 // X = C goto C 48 // 49 // The pass first checks that switch variable X is decided by the control flow 50 // path taken in the loop; for example, in case B, the next value of X is 51 // decided to be C. It then enumerates through all paths in the loop and labels 52 // the basic blocks where the next state is decided. 53 // 54 // Using this information it creates new paths that unconditionally branch to 55 // the next case. This involves cloning code, so it only gets triggered if the 56 // amount of code duplicated is below a threshold. 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Transforms/Scalar/DFAJumpThreading.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/DenseMap.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/Analysis/AssumptionCache.h" 66 #include "llvm/Analysis/CodeMetrics.h" 67 #include "llvm/Analysis/DomTreeUpdater.h" 68 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 69 #include "llvm/Analysis/TargetTransformInfo.h" 70 #include "llvm/IR/CFG.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/IntrinsicInst.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Transforms/Utils/Cloning.h" 76 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <deque> 80 81 #ifdef EXPENSIVE_CHECKS 82 #include "llvm/IR/Verifier.h" 83 #endif 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "dfa-jump-threading" 88 89 STATISTIC(NumTransforms, "Number of transformations done"); 90 STATISTIC(NumCloned, "Number of blocks cloned"); 91 STATISTIC(NumPaths, "Number of individual paths threaded"); 92 93 static cl::opt<bool> 94 ClViewCfgBefore("dfa-jump-view-cfg-before", 95 cl::desc("View the CFG before DFA Jump Threading"), 96 cl::Hidden, cl::init(false)); 97 98 static cl::opt<unsigned> MaxPathLength( 99 "dfa-max-path-length", 100 cl::desc("Max number of blocks searched to find a threading path"), 101 cl::Hidden, cl::init(20)); 102 103 static cl::opt<unsigned> MaxNumPaths( 104 "dfa-max-num-paths", 105 cl::desc("Max number of paths enumerated around a switch"), 106 cl::Hidden, cl::init(200)); 107 108 static cl::opt<unsigned> 109 CostThreshold("dfa-cost-threshold", 110 cl::desc("Maximum cost accepted for the transformation"), 111 cl::Hidden, cl::init(50)); 112 113 namespace { 114 115 class SelectInstToUnfold { 116 SelectInst *SI; 117 PHINode *SIUse; 118 119 public: 120 SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {} 121 122 SelectInst *getInst() { return SI; } 123 PHINode *getUse() { return SIUse; } 124 125 explicit operator bool() const { return SI && SIUse; } 126 }; 127 128 void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold, 129 std::vector<SelectInstToUnfold> *NewSIsToUnfold, 130 std::vector<BasicBlock *> *NewBBs); 131 132 class DFAJumpThreading { 133 public: 134 DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT, 135 TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE) 136 : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {} 137 138 bool run(Function &F); 139 140 private: 141 void 142 unfoldSelectInstrs(DominatorTree *DT, 143 const SmallVector<SelectInstToUnfold, 4> &SelectInsts) { 144 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 145 SmallVector<SelectInstToUnfold, 4> Stack; 146 for (SelectInstToUnfold SIToUnfold : SelectInsts) 147 Stack.push_back(SIToUnfold); 148 149 while (!Stack.empty()) { 150 SelectInstToUnfold SIToUnfold = Stack.pop_back_val(); 151 152 std::vector<SelectInstToUnfold> NewSIsToUnfold; 153 std::vector<BasicBlock *> NewBBs; 154 unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs); 155 156 // Put newly discovered select instructions into the work list. 157 for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold) 158 Stack.push_back(NewSIToUnfold); 159 } 160 } 161 162 AssumptionCache *AC; 163 DominatorTree *DT; 164 TargetTransformInfo *TTI; 165 OptimizationRemarkEmitter *ORE; 166 }; 167 168 } // end anonymous namespace 169 170 namespace { 171 172 /// Create a new basic block and sink \p SIToSink into it. 173 void createBasicBlockAndSinkSelectInst( 174 DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink, 175 BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock, 176 BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold, 177 std::vector<BasicBlock *> *NewBBs) { 178 assert(SIToSink->hasOneUse()); 179 assert(NewBlock); 180 assert(NewBranch); 181 *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName, 182 EndBlock->getParent(), EndBlock); 183 NewBBs->push_back(*NewBlock); 184 *NewBranch = BranchInst::Create(EndBlock, *NewBlock); 185 SIToSink->moveBefore(*NewBranch); 186 NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse)); 187 DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}}); 188 } 189 190 /// Unfold the select instruction held in \p SIToUnfold by replacing it with 191 /// control flow. 192 /// 193 /// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly 194 /// created basic blocks into \p NewBBs. 195 /// 196 /// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible. 197 void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold, 198 std::vector<SelectInstToUnfold> *NewSIsToUnfold, 199 std::vector<BasicBlock *> *NewBBs) { 200 SelectInst *SI = SIToUnfold.getInst(); 201 PHINode *SIUse = SIToUnfold.getUse(); 202 BasicBlock *StartBlock = SI->getParent(); 203 BasicBlock *EndBlock = SIUse->getParent(); 204 BranchInst *StartBlockTerm = 205 dyn_cast<BranchInst>(StartBlock->getTerminator()); 206 207 assert(StartBlockTerm && StartBlockTerm->isUnconditional()); 208 assert(SI->hasOneUse()); 209 210 // These are the new basic blocks for the conditional branch. 211 // At least one will become an actual new basic block. 212 BasicBlock *TrueBlock = nullptr; 213 BasicBlock *FalseBlock = nullptr; 214 BranchInst *TrueBranch = nullptr; 215 BranchInst *FalseBranch = nullptr; 216 217 // Sink select instructions to be able to unfold them later. 218 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) { 219 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock, 220 "si.unfold.true", &TrueBlock, &TrueBranch, 221 NewSIsToUnfold, NewBBs); 222 } 223 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) { 224 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock, 225 "si.unfold.false", &FalseBlock, 226 &FalseBranch, NewSIsToUnfold, NewBBs); 227 } 228 229 // If there was nothing to sink, then arbitrarily choose the 'false' side 230 // for a new input value to the PHI. 231 if (!TrueBlock && !FalseBlock) { 232 FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false", 233 EndBlock->getParent(), EndBlock); 234 NewBBs->push_back(FalseBlock); 235 BranchInst::Create(EndBlock, FalseBlock); 236 DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}}); 237 } 238 239 // Insert the real conditional branch based on the original condition. 240 // If we did not create a new block for one of the 'true' or 'false' paths 241 // of the condition, it means that side of the branch goes to the end block 242 // directly and the path originates from the start block from the point of 243 // view of the new PHI. 244 BasicBlock *TT = EndBlock; 245 BasicBlock *FT = EndBlock; 246 if (TrueBlock && FalseBlock) { 247 // A diamond. 248 TT = TrueBlock; 249 FT = FalseBlock; 250 251 // Update the phi node of SI. 252 SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false); 253 SIUse->addIncoming(SI->getTrueValue(), TrueBlock); 254 SIUse->addIncoming(SI->getFalseValue(), FalseBlock); 255 256 // Update any other PHI nodes in EndBlock. 257 for (PHINode &Phi : EndBlock->phis()) { 258 if (&Phi != SIUse) { 259 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock); 260 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock); 261 } 262 } 263 } else { 264 BasicBlock *NewBlock = nullptr; 265 Value *SIOp1 = SI->getTrueValue(); 266 Value *SIOp2 = SI->getFalseValue(); 267 268 // A triangle pointing right. 269 if (!TrueBlock) { 270 NewBlock = FalseBlock; 271 FT = FalseBlock; 272 } 273 // A triangle pointing left. 274 else { 275 NewBlock = TrueBlock; 276 TT = TrueBlock; 277 std::swap(SIOp1, SIOp2); 278 } 279 280 // Update the phi node of SI. 281 for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) { 282 if (SIUse->getIncomingBlock(Idx) == StartBlock) 283 SIUse->setIncomingValue(Idx, SIOp1); 284 } 285 SIUse->addIncoming(SIOp2, NewBlock); 286 287 // Update any other PHI nodes in EndBlock. 288 for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II); 289 ++II) { 290 if (Phi != SIUse) 291 Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock); 292 } 293 } 294 StartBlockTerm->eraseFromParent(); 295 BranchInst::Create(TT, FT, SI->getCondition(), StartBlock); 296 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT}, 297 {DominatorTree::Insert, StartBlock, FT}}); 298 299 // The select is now dead. 300 SI->eraseFromParent(); 301 } 302 303 struct ClonedBlock { 304 BasicBlock *BB; 305 uint64_t State; ///< \p State corresponds to the next value of a switch stmnt. 306 }; 307 308 typedef std::deque<BasicBlock *> PathType; 309 typedef std::vector<PathType> PathsType; 310 typedef SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 311 typedef std::vector<ClonedBlock> CloneList; 312 313 // This data structure keeps track of all blocks that have been cloned. If two 314 // different ThreadingPaths clone the same block for a certain state it should 315 // be reused, and it can be looked up in this map. 316 typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap; 317 318 // This map keeps track of all the new definitions for an instruction. This 319 // information is needed when restoring SSA form after cloning blocks. 320 typedef MapVector<Instruction *, std::vector<Instruction *>> DefMap; 321 322 inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) { 323 OS << "< "; 324 for (const BasicBlock *BB : Path) { 325 std::string BBName; 326 if (BB->hasName()) 327 raw_string_ostream(BBName) << BB->getName(); 328 else 329 raw_string_ostream(BBName) << BB; 330 OS << BBName << " "; 331 } 332 OS << ">"; 333 return OS; 334 } 335 336 /// ThreadingPath is a path in the control flow of a loop that can be threaded 337 /// by cloning necessary basic blocks and replacing conditional branches with 338 /// unconditional ones. A threading path includes a list of basic blocks, the 339 /// exit state, and the block that determines the next state. 340 struct ThreadingPath { 341 /// Exit value is DFA's exit state for the given path. 342 uint64_t getExitValue() const { return ExitVal; } 343 void setExitValue(const ConstantInt *V) { 344 ExitVal = V->getZExtValue(); 345 IsExitValSet = true; 346 } 347 bool isExitValueSet() const { return IsExitValSet; } 348 349 /// Determinator is the basic block that determines the next state of the DFA. 350 const BasicBlock *getDeterminatorBB() const { return DBB; } 351 void setDeterminator(const BasicBlock *BB) { DBB = BB; } 352 353 /// Path is a list of basic blocks. 354 const PathType &getPath() const { return Path; } 355 void setPath(const PathType &NewPath) { Path = NewPath; } 356 357 void print(raw_ostream &OS) const { 358 OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]"; 359 } 360 361 private: 362 PathType Path; 363 uint64_t ExitVal; 364 const BasicBlock *DBB = nullptr; 365 bool IsExitValSet = false; 366 }; 367 368 #ifndef NDEBUG 369 inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) { 370 TPath.print(OS); 371 return OS; 372 } 373 #endif 374 375 struct MainSwitch { 376 MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) { 377 if (isCandidate(SI)) { 378 Instr = SI; 379 } else { 380 ORE->emit([&]() { 381 return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI) 382 << "Switch instruction is not predictable."; 383 }); 384 } 385 } 386 387 virtual ~MainSwitch() = default; 388 389 SwitchInst *getInstr() const { return Instr; } 390 const SmallVector<SelectInstToUnfold, 4> getSelectInsts() { 391 return SelectInsts; 392 } 393 394 private: 395 /// Do a use-def chain traversal starting from the switch condition to see if 396 /// \p SI is a potential condidate. 397 /// 398 /// Also, collect select instructions to unfold. 399 bool isCandidate(const SwitchInst *SI) { 400 std::deque<Value *> Q; 401 SmallSet<Value *, 16> SeenValues; 402 SelectInsts.clear(); 403 404 Value *SICond = SI->getCondition(); 405 LLVM_DEBUG(dbgs() << "\tSICond: " << *SICond << "\n"); 406 if (!isa<PHINode>(SICond)) 407 return false; 408 409 addToQueue(SICond, Q, SeenValues); 410 411 while (!Q.empty()) { 412 Value *Current = Q.front(); 413 Q.pop_front(); 414 415 if (auto *Phi = dyn_cast<PHINode>(Current)) { 416 for (Value *Incoming : Phi->incoming_values()) { 417 addToQueue(Incoming, Q, SeenValues); 418 } 419 LLVM_DEBUG(dbgs() << "\tphi: " << *Phi << "\n"); 420 } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) { 421 if (!isValidSelectInst(SelI)) 422 return false; 423 addToQueue(SelI->getTrueValue(), Q, SeenValues); 424 addToQueue(SelI->getFalseValue(), Q, SeenValues); 425 LLVM_DEBUG(dbgs() << "\tselect: " << *SelI << "\n"); 426 if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back())) 427 SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse)); 428 } else if (isa<Constant>(Current)) { 429 LLVM_DEBUG(dbgs() << "\tconst: " << *Current << "\n"); 430 continue; 431 } else { 432 LLVM_DEBUG(dbgs() << "\tother: " << *Current << "\n"); 433 // Allow unpredictable values. The hope is that those will be the 434 // initial switch values that can be ignored (they will hit the 435 // unthreaded switch) but this assumption will get checked later after 436 // paths have been enumerated (in function getStateDefMap). 437 continue; 438 } 439 } 440 441 return true; 442 } 443 444 void addToQueue(Value *Val, std::deque<Value *> &Q, 445 SmallSet<Value *, 16> &SeenValues) { 446 if (SeenValues.contains(Val)) 447 return; 448 Q.push_back(Val); 449 SeenValues.insert(Val); 450 } 451 452 bool isValidSelectInst(SelectInst *SI) { 453 if (!SI->hasOneUse()) 454 return false; 455 456 Instruction *SIUse = dyn_cast<Instruction>(SI->user_back()); 457 // The use of the select inst should be either a phi or another select. 458 if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse))) 459 return false; 460 461 BasicBlock *SIBB = SI->getParent(); 462 463 // Currently, we can only expand select instructions in basic blocks with 464 // one successor. 465 BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator()); 466 if (!SITerm || !SITerm->isUnconditional()) 467 return false; 468 469 if (isa<PHINode>(SIUse) && 470 SIBB->getSingleSuccessor() != cast<Instruction>(SIUse)->getParent()) 471 return false; 472 473 // If select will not be sunk during unfolding, and it is in the same basic 474 // block as another state defining select, then cannot unfold both. 475 for (SelectInstToUnfold SIToUnfold : SelectInsts) { 476 SelectInst *PrevSI = SIToUnfold.getInst(); 477 if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI && 478 PrevSI->getParent() == SI->getParent()) 479 return false; 480 } 481 482 return true; 483 } 484 485 SwitchInst *Instr = nullptr; 486 SmallVector<SelectInstToUnfold, 4> SelectInsts; 487 }; 488 489 struct AllSwitchPaths { 490 AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE) 491 : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()), 492 ORE(ORE) {} 493 494 std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; } 495 unsigned getNumThreadingPaths() { return TPaths.size(); } 496 SwitchInst *getSwitchInst() { return Switch; } 497 BasicBlock *getSwitchBlock() { return SwitchBlock; } 498 499 void run() { 500 VisitedBlocks Visited; 501 PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1); 502 StateDefMap StateDef = getStateDefMap(LoopPaths); 503 504 if (StateDef.empty()) { 505 ORE->emit([&]() { 506 return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", 507 Switch) 508 << "Switch instruction is not predictable."; 509 }); 510 return; 511 } 512 513 for (PathType Path : LoopPaths) { 514 ThreadingPath TPath; 515 516 const BasicBlock *PrevBB = Path.back(); 517 for (const BasicBlock *BB : Path) { 518 if (StateDef.count(BB) != 0) { 519 const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]); 520 assert(Phi && "Expected a state-defining instr to be a phi node."); 521 522 const Value *V = Phi->getIncomingValueForBlock(PrevBB); 523 if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) { 524 TPath.setExitValue(C); 525 TPath.setDeterminator(BB); 526 TPath.setPath(Path); 527 } 528 } 529 530 // Switch block is the determinator, this is the final exit value. 531 if (TPath.isExitValueSet() && BB == Path.front()) 532 break; 533 534 PrevBB = BB; 535 } 536 537 if (TPath.isExitValueSet() && isSupported(TPath)) 538 TPaths.push_back(TPath); 539 } 540 } 541 542 private: 543 // Value: an instruction that defines a switch state; 544 // Key: the parent basic block of that instruction. 545 typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap; 546 547 PathsType paths(BasicBlock *BB, VisitedBlocks &Visited, 548 unsigned PathDepth) const { 549 PathsType Res; 550 551 // Stop exploring paths after visiting MaxPathLength blocks 552 if (PathDepth > MaxPathLength) { 553 ORE->emit([&]() { 554 return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached", 555 Switch) 556 << "Exploration stopped after visiting MaxPathLength=" 557 << ore::NV("MaxPathLength", MaxPathLength) << " blocks."; 558 }); 559 return Res; 560 } 561 562 Visited.insert(BB); 563 564 // Some blocks have multiple edges to the same successor, and this set 565 // is used to prevent a duplicate path from being generated 566 SmallSet<BasicBlock *, 4> Successors; 567 for (BasicBlock *Succ : successors(BB)) { 568 if (!Successors.insert(Succ).second) 569 continue; 570 571 // Found a cycle through the SwitchBlock 572 if (Succ == SwitchBlock) { 573 Res.push_back({BB}); 574 continue; 575 } 576 577 // We have encountered a cycle, do not get caught in it 578 if (Visited.contains(Succ)) 579 continue; 580 581 PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1); 582 for (const PathType &Path : SuccPaths) { 583 PathType NewPath(Path); 584 NewPath.push_front(BB); 585 Res.push_back(NewPath); 586 if (Res.size() >= MaxNumPaths) { 587 return Res; 588 } 589 } 590 } 591 // This block could now be visited again from a different predecessor. Note 592 // that this will result in exponential runtime. Subpaths could possibly be 593 // cached but it takes a lot of memory to store them. 594 Visited.erase(BB); 595 return Res; 596 } 597 598 /// Walk the use-def chain and collect all the state-defining instructions. 599 /// 600 /// Return an empty map if unpredictable values encountered inside the basic 601 /// blocks of \p LoopPaths. 602 StateDefMap getStateDefMap(const PathsType &LoopPaths) const { 603 StateDefMap Res; 604 605 // Basic blocks belonging to any of the loops around the switch statement. 606 SmallPtrSet<BasicBlock *, 16> LoopBBs; 607 for (const PathType &Path : LoopPaths) { 608 for (BasicBlock *BB : Path) 609 LoopBBs.insert(BB); 610 } 611 612 Value *FirstDef = Switch->getOperand(0); 613 614 assert(isa<PHINode>(FirstDef) && "The first definition must be a phi."); 615 616 SmallVector<PHINode *, 8> Stack; 617 Stack.push_back(dyn_cast<PHINode>(FirstDef)); 618 SmallSet<Value *, 16> SeenValues; 619 620 while (!Stack.empty()) { 621 PHINode *CurPhi = Stack.pop_back_val(); 622 623 Res[CurPhi->getParent()] = CurPhi; 624 SeenValues.insert(CurPhi); 625 626 for (BasicBlock *IncomingBB : CurPhi->blocks()) { 627 Value *Incoming = CurPhi->getIncomingValueForBlock(IncomingBB); 628 bool IsOutsideLoops = LoopBBs.count(IncomingBB) == 0; 629 if (Incoming == FirstDef || isa<ConstantInt>(Incoming) || 630 SeenValues.contains(Incoming) || IsOutsideLoops) { 631 continue; 632 } 633 634 // Any unpredictable value inside the loops means we must bail out. 635 if (!isa<PHINode>(Incoming)) 636 return StateDefMap(); 637 638 Stack.push_back(cast<PHINode>(Incoming)); 639 } 640 } 641 642 return Res; 643 } 644 645 /// The determinator BB should precede the switch-defining BB. 646 /// 647 /// Otherwise, it is possible that the state defined in the determinator block 648 /// defines the state for the next iteration of the loop, rather than for the 649 /// current one. 650 /// 651 /// Currently supported paths: 652 /// \code 653 /// < switch bb1 determ def > [ 42, determ ] 654 /// < switch_and_def bb1 determ > [ 42, determ ] 655 /// < switch_and_def_and_determ bb1 > [ 42, switch_and_def_and_determ ] 656 /// \endcode 657 /// 658 /// Unsupported paths: 659 /// \code 660 /// < switch bb1 def determ > [ 43, determ ] 661 /// < switch_and_determ bb1 def > [ 43, switch_and_determ ] 662 /// \endcode 663 bool isSupported(const ThreadingPath &TPath) { 664 Instruction *SwitchCondI = dyn_cast<Instruction>(Switch->getCondition()); 665 assert(SwitchCondI); 666 if (!SwitchCondI) 667 return false; 668 669 const BasicBlock *SwitchCondDefBB = SwitchCondI->getParent(); 670 const BasicBlock *SwitchCondUseBB = Switch->getParent(); 671 const BasicBlock *DeterminatorBB = TPath.getDeterminatorBB(); 672 673 assert( 674 SwitchCondUseBB == TPath.getPath().front() && 675 "The first BB in a threading path should have the switch instruction"); 676 if (SwitchCondUseBB != TPath.getPath().front()) 677 return false; 678 679 // Make DeterminatorBB the first element in Path. 680 PathType Path = TPath.getPath(); 681 auto ItDet = llvm::find(Path, DeterminatorBB); 682 std::rotate(Path.begin(), ItDet, Path.end()); 683 684 bool IsDetBBSeen = false; 685 bool IsDefBBSeen = false; 686 bool IsUseBBSeen = false; 687 for (BasicBlock *BB : Path) { 688 if (BB == DeterminatorBB) 689 IsDetBBSeen = true; 690 if (BB == SwitchCondDefBB) 691 IsDefBBSeen = true; 692 if (BB == SwitchCondUseBB) 693 IsUseBBSeen = true; 694 if (IsDetBBSeen && IsUseBBSeen && !IsDefBBSeen) 695 return false; 696 } 697 698 return true; 699 } 700 701 SwitchInst *Switch; 702 BasicBlock *SwitchBlock; 703 OptimizationRemarkEmitter *ORE; 704 std::vector<ThreadingPath> TPaths; 705 }; 706 707 struct TransformDFA { 708 TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT, 709 AssumptionCache *AC, TargetTransformInfo *TTI, 710 OptimizationRemarkEmitter *ORE, 711 SmallPtrSet<const Value *, 32> EphValues) 712 : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE), 713 EphValues(EphValues) {} 714 715 void run() { 716 if (isLegalAndProfitableToTransform()) { 717 createAllExitPaths(); 718 NumTransforms++; 719 } 720 } 721 722 private: 723 /// This function performs both a legality check and profitability check at 724 /// the same time since it is convenient to do so. It iterates through all 725 /// blocks that will be cloned, and keeps track of the duplication cost. It 726 /// also returns false if it is illegal to clone some required block. 727 bool isLegalAndProfitableToTransform() { 728 CodeMetrics Metrics; 729 SwitchInst *Switch = SwitchPaths->getSwitchInst(); 730 731 // Note that DuplicateBlockMap is not being used as intended here. It is 732 // just being used to ensure (BB, State) pairs are only counted once. 733 DuplicateBlockMap DuplicateMap; 734 735 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { 736 PathType PathBBs = TPath.getPath(); 737 uint64_t NextState = TPath.getExitValue(); 738 const BasicBlock *Determinator = TPath.getDeterminatorBB(); 739 740 // Update Metrics for the Switch block, this is always cloned 741 BasicBlock *BB = SwitchPaths->getSwitchBlock(); 742 BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap); 743 if (!VisitedBB) { 744 Metrics.analyzeBasicBlock(BB, *TTI, EphValues); 745 DuplicateMap[BB].push_back({BB, NextState}); 746 } 747 748 // If the Switch block is the Determinator, then we can continue since 749 // this is the only block that is cloned and we already counted for it. 750 if (PathBBs.front() == Determinator) 751 continue; 752 753 // Otherwise update Metrics for all blocks that will be cloned. If any 754 // block is already cloned and would be reused, don't double count it. 755 auto DetIt = llvm::find(PathBBs, Determinator); 756 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) { 757 BB = *BBIt; 758 VisitedBB = getClonedBB(BB, NextState, DuplicateMap); 759 if (VisitedBB) 760 continue; 761 Metrics.analyzeBasicBlock(BB, *TTI, EphValues); 762 DuplicateMap[BB].push_back({BB, NextState}); 763 } 764 765 if (Metrics.notDuplicatable) { 766 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains " 767 << "non-duplicatable instructions.\n"); 768 ORE->emit([&]() { 769 return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst", 770 Switch) 771 << "Contains non-duplicatable instructions."; 772 }); 773 return false; 774 } 775 776 if (Metrics.convergent) { 777 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains " 778 << "convergent instructions.\n"); 779 ORE->emit([&]() { 780 return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch) 781 << "Contains convergent instructions."; 782 }); 783 return false; 784 } 785 786 if (!Metrics.NumInsts.isValid()) { 787 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains " 788 << "instructions with invalid cost.\n"); 789 ORE->emit([&]() { 790 return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch) 791 << "Contains instructions with invalid cost."; 792 }); 793 return false; 794 } 795 } 796 797 InstructionCost DuplicationCost = 0; 798 799 unsigned JumpTableSize = 0; 800 TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr, 801 nullptr); 802 if (JumpTableSize == 0) { 803 // Factor in the number of conditional branches reduced from jump 804 // threading. Assume that lowering the switch block is implemented by 805 // using binary search, hence the LogBase2(). 806 unsigned CondBranches = 807 APInt(32, Switch->getNumSuccessors()).ceilLogBase2(); 808 DuplicationCost = Metrics.NumInsts / CondBranches; 809 } else { 810 // Compared with jump tables, the DFA optimizer removes an indirect branch 811 // on each loop iteration, thus making branch prediction more precise. The 812 // more branch targets there are, the more likely it is for the branch 813 // predictor to make a mistake, and the more benefit there is in the DFA 814 // optimizer. Thus, the more branch targets there are, the lower is the 815 // cost of the DFA opt. 816 DuplicationCost = Metrics.NumInsts / JumpTableSize; 817 } 818 819 LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block " 820 << SwitchPaths->getSwitchBlock()->getName() 821 << " is: " << DuplicationCost << "\n\n"); 822 823 if (DuplicationCost > CostThreshold) { 824 LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the " 825 << "cost threshold.\n"); 826 ORE->emit([&]() { 827 return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch) 828 << "Duplication cost exceeds the cost threshold (cost=" 829 << ore::NV("Cost", DuplicationCost) 830 << ", threshold=" << ore::NV("Threshold", CostThreshold) << ")."; 831 }); 832 return false; 833 } 834 835 ORE->emit([&]() { 836 return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch) 837 << "Switch statement jump-threaded."; 838 }); 839 840 return true; 841 } 842 843 /// Transform each threading path to effectively jump thread the DFA. 844 void createAllExitPaths() { 845 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager); 846 847 // Move the switch block to the end of the path, since it will be duplicated 848 BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock(); 849 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { 850 LLVM_DEBUG(dbgs() << TPath << "\n"); 851 PathType NewPath(TPath.getPath()); 852 NewPath.push_back(SwitchBlock); 853 TPath.setPath(NewPath); 854 } 855 856 // Transform the ThreadingPaths and keep track of the cloned values 857 DuplicateBlockMap DuplicateMap; 858 DefMap NewDefs; 859 860 SmallSet<BasicBlock *, 16> BlocksToClean; 861 for (BasicBlock *BB : successors(SwitchBlock)) 862 BlocksToClean.insert(BB); 863 864 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { 865 createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU); 866 NumPaths++; 867 } 868 869 // After all paths are cloned, now update the last successor of the cloned 870 // path so it skips over the switch statement 871 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) 872 updateLastSuccessor(TPath, DuplicateMap, &DTU); 873 874 // For each instruction that was cloned and used outside, update its uses 875 updateSSA(NewDefs); 876 877 // Clean PHI Nodes for the newly created blocks 878 for (BasicBlock *BB : BlocksToClean) 879 cleanPhiNodes(BB); 880 } 881 882 /// For a specific ThreadingPath \p Path, create an exit path starting from 883 /// the determinator block. 884 /// 885 /// To remember the correct destination, we have to duplicate blocks 886 /// corresponding to each state. Also update the terminating instruction of 887 /// the predecessors, and phis in the successor blocks. 888 void createExitPath(DefMap &NewDefs, ThreadingPath &Path, 889 DuplicateBlockMap &DuplicateMap, 890 SmallSet<BasicBlock *, 16> &BlocksToClean, 891 DomTreeUpdater *DTU) { 892 uint64_t NextState = Path.getExitValue(); 893 const BasicBlock *Determinator = Path.getDeterminatorBB(); 894 PathType PathBBs = Path.getPath(); 895 896 // Don't select the placeholder block in front 897 if (PathBBs.front() == Determinator) 898 PathBBs.pop_front(); 899 900 auto DetIt = llvm::find(PathBBs, Determinator); 901 auto Prev = std::prev(DetIt); 902 BasicBlock *PrevBB = *Prev; 903 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) { 904 BasicBlock *BB = *BBIt; 905 BlocksToClean.insert(BB); 906 907 // We already cloned BB for this NextState, now just update the branch 908 // and continue. 909 BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap); 910 if (NextBB) { 911 updatePredecessor(PrevBB, BB, NextBB, DTU); 912 PrevBB = NextBB; 913 continue; 914 } 915 916 // Clone the BB and update the successor of Prev to jump to the new block 917 BasicBlock *NewBB = cloneBlockAndUpdatePredecessor( 918 BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU); 919 DuplicateMap[BB].push_back({NewBB, NextState}); 920 BlocksToClean.insert(NewBB); 921 PrevBB = NewBB; 922 } 923 } 924 925 /// Restore SSA form after cloning blocks. 926 /// 927 /// Each cloned block creates new defs for a variable, and the uses need to be 928 /// updated to reflect this. The uses may be replaced with a cloned value, or 929 /// some derived phi instruction. Note that all uses of a value defined in the 930 /// same block were already remapped when cloning the block. 931 void updateSSA(DefMap &NewDefs) { 932 SSAUpdaterBulk SSAUpdate; 933 SmallVector<Use *, 16> UsesToRename; 934 935 for (const auto &KV : NewDefs) { 936 Instruction *I = KV.first; 937 BasicBlock *BB = I->getParent(); 938 std::vector<Instruction *> Cloned = KV.second; 939 940 // Scan all uses of this instruction to see if it is used outside of its 941 // block, and if so, record them in UsesToRename. 942 for (Use &U : I->uses()) { 943 Instruction *User = cast<Instruction>(U.getUser()); 944 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 945 if (UserPN->getIncomingBlock(U) == BB) 946 continue; 947 } else if (User->getParent() == BB) { 948 continue; 949 } 950 951 UsesToRename.push_back(&U); 952 } 953 954 // If there are no uses outside the block, we're done with this 955 // instruction. 956 if (UsesToRename.empty()) 957 continue; 958 LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I 959 << "\n"); 960 961 // We found a use of I outside of BB. Rename all uses of I that are 962 // outside its block to be uses of the appropriate PHI node etc. See 963 // ValuesInBlocks with the values we know. 964 unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType()); 965 SSAUpdate.AddAvailableValue(VarNum, BB, I); 966 for (Instruction *New : Cloned) 967 SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New); 968 969 while (!UsesToRename.empty()) 970 SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val()); 971 972 LLVM_DEBUG(dbgs() << "\n"); 973 } 974 // SSAUpdater handles phi placement and renaming uses with the appropriate 975 // value. 976 SSAUpdate.RewriteAllUses(DT); 977 } 978 979 /// Clones a basic block, and adds it to the CFG. 980 /// 981 /// This function also includes updating phi nodes in the successors of the 982 /// BB, and remapping uses that were defined locally in the cloned BB. 983 BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB, 984 uint64_t NextState, 985 DuplicateBlockMap &DuplicateMap, 986 DefMap &NewDefs, 987 DomTreeUpdater *DTU) { 988 ValueToValueMapTy VMap; 989 BasicBlock *NewBB = CloneBasicBlock( 990 BB, VMap, ".jt" + std::to_string(NextState), BB->getParent()); 991 NewBB->moveAfter(BB); 992 NumCloned++; 993 994 for (Instruction &I : *NewBB) { 995 // Do not remap operands of PHINode in case a definition in BB is an 996 // incoming value to a phi in the same block. This incoming value will 997 // be renamed later while restoring SSA. 998 if (isa<PHINode>(&I)) 999 continue; 1000 RemapInstruction(&I, VMap, 1001 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); 1002 if (AssumeInst *II = dyn_cast<AssumeInst>(&I)) 1003 AC->registerAssumption(II); 1004 } 1005 1006 updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap); 1007 updatePredecessor(PrevBB, BB, NewBB, DTU); 1008 updateDefMap(NewDefs, VMap); 1009 1010 // Add all successors to the DominatorTree 1011 SmallPtrSet<BasicBlock *, 4> SuccSet; 1012 for (auto *SuccBB : successors(NewBB)) { 1013 if (SuccSet.insert(SuccBB).second) 1014 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}}); 1015 } 1016 SuccSet.clear(); 1017 return NewBB; 1018 } 1019 1020 /// Update the phi nodes in BB's successors. 1021 /// 1022 /// This means creating a new incoming value from NewBB with the new 1023 /// instruction wherever there is an incoming value from BB. 1024 void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB, 1025 uint64_t NextState, ValueToValueMapTy &VMap, 1026 DuplicateBlockMap &DuplicateMap) { 1027 std::vector<BasicBlock *> BlocksToUpdate; 1028 1029 // If BB is the last block in the path, we can simply update the one case 1030 // successor that will be reached. 1031 if (BB == SwitchPaths->getSwitchBlock()) { 1032 SwitchInst *Switch = SwitchPaths->getSwitchInst(); 1033 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState); 1034 BlocksToUpdate.push_back(NextCase); 1035 BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap); 1036 if (ClonedSucc) 1037 BlocksToUpdate.push_back(ClonedSucc); 1038 } 1039 // Otherwise update phis in all successors. 1040 else { 1041 for (BasicBlock *Succ : successors(BB)) { 1042 BlocksToUpdate.push_back(Succ); 1043 1044 // Check if a successor has already been cloned for the particular exit 1045 // value. In this case if a successor was already cloned, the phi nodes 1046 // in the cloned block should be updated directly. 1047 BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap); 1048 if (ClonedSucc) 1049 BlocksToUpdate.push_back(ClonedSucc); 1050 } 1051 } 1052 1053 // If there is a phi with an incoming value from BB, create a new incoming 1054 // value for the new predecessor ClonedBB. The value will either be the same 1055 // value from BB or a cloned value. 1056 for (BasicBlock *Succ : BlocksToUpdate) { 1057 for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II); 1058 ++II) { 1059 Value *Incoming = Phi->getIncomingValueForBlock(BB); 1060 if (Incoming) { 1061 if (isa<Constant>(Incoming)) { 1062 Phi->addIncoming(Incoming, ClonedBB); 1063 continue; 1064 } 1065 Value *ClonedVal = VMap[Incoming]; 1066 if (ClonedVal) 1067 Phi->addIncoming(ClonedVal, ClonedBB); 1068 else 1069 Phi->addIncoming(Incoming, ClonedBB); 1070 } 1071 } 1072 } 1073 } 1074 1075 /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all 1076 /// other successors are kept as well. 1077 void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB, 1078 BasicBlock *NewBB, DomTreeUpdater *DTU) { 1079 // When a path is reused, there is a chance that predecessors were already 1080 // updated before. Check if the predecessor needs to be updated first. 1081 if (!isPredecessor(OldBB, PrevBB)) 1082 return; 1083 1084 Instruction *PrevTerm = PrevBB->getTerminator(); 1085 for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) { 1086 if (PrevTerm->getSuccessor(Idx) == OldBB) { 1087 OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true); 1088 PrevTerm->setSuccessor(Idx, NewBB); 1089 } 1090 } 1091 DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB}, 1092 {DominatorTree::Insert, PrevBB, NewBB}}); 1093 } 1094 1095 /// Add new value mappings to the DefMap to keep track of all new definitions 1096 /// for a particular instruction. These will be used while updating SSA form. 1097 void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) { 1098 SmallVector<std::pair<Instruction *, Instruction *>> NewDefsVector; 1099 NewDefsVector.reserve(VMap.size()); 1100 1101 for (auto Entry : VMap) { 1102 Instruction *Inst = 1103 dyn_cast<Instruction>(const_cast<Value *>(Entry.first)); 1104 if (!Inst || !Entry.second || isa<BranchInst>(Inst) || 1105 isa<SwitchInst>(Inst)) { 1106 continue; 1107 } 1108 1109 Instruction *Cloned = dyn_cast<Instruction>(Entry.second); 1110 if (!Cloned) 1111 continue; 1112 1113 NewDefsVector.push_back({Inst, Cloned}); 1114 } 1115 1116 // Sort the defs to get deterministic insertion order into NewDefs. 1117 sort(NewDefsVector, [](const auto &LHS, const auto &RHS) { 1118 if (LHS.first == RHS.first) 1119 return LHS.second->comesBefore(RHS.second); 1120 return LHS.first->comesBefore(RHS.first); 1121 }); 1122 1123 for (const auto &KV : NewDefsVector) 1124 NewDefs[KV.first].push_back(KV.second); 1125 } 1126 1127 /// Update the last branch of a particular cloned path to point to the correct 1128 /// case successor. 1129 /// 1130 /// Note that this is an optional step and would have been done in later 1131 /// optimizations, but it makes the CFG significantly easier to work with. 1132 void updateLastSuccessor(ThreadingPath &TPath, 1133 DuplicateBlockMap &DuplicateMap, 1134 DomTreeUpdater *DTU) { 1135 uint64_t NextState = TPath.getExitValue(); 1136 BasicBlock *BB = TPath.getPath().back(); 1137 BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap); 1138 1139 // Note multiple paths can end at the same block so check that it is not 1140 // updated yet 1141 if (!isa<SwitchInst>(LastBlock->getTerminator())) 1142 return; 1143 SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator()); 1144 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState); 1145 1146 std::vector<DominatorTree::UpdateType> DTUpdates; 1147 SmallPtrSet<BasicBlock *, 4> SuccSet; 1148 for (BasicBlock *Succ : successors(LastBlock)) { 1149 if (Succ != NextCase && SuccSet.insert(Succ).second) 1150 DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ}); 1151 } 1152 1153 Switch->eraseFromParent(); 1154 BranchInst::Create(NextCase, LastBlock); 1155 1156 DTU->applyUpdates(DTUpdates); 1157 } 1158 1159 /// After cloning blocks, some of the phi nodes have extra incoming values 1160 /// that are no longer used. This function removes them. 1161 void cleanPhiNodes(BasicBlock *BB) { 1162 // If BB is no longer reachable, remove any remaining phi nodes 1163 if (pred_empty(BB)) { 1164 std::vector<PHINode *> PhiToRemove; 1165 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) { 1166 PhiToRemove.push_back(Phi); 1167 } 1168 for (PHINode *PN : PhiToRemove) { 1169 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 1170 PN->eraseFromParent(); 1171 } 1172 return; 1173 } 1174 1175 // Remove any incoming values that come from an invalid predecessor 1176 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) { 1177 std::vector<BasicBlock *> BlocksToRemove; 1178 for (BasicBlock *IncomingBB : Phi->blocks()) { 1179 if (!isPredecessor(BB, IncomingBB)) 1180 BlocksToRemove.push_back(IncomingBB); 1181 } 1182 for (BasicBlock *BB : BlocksToRemove) 1183 Phi->removeIncomingValue(BB); 1184 } 1185 } 1186 1187 /// Checks if BB was already cloned for a particular next state value. If it 1188 /// was then it returns this cloned block, and otherwise null. 1189 BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState, 1190 DuplicateBlockMap &DuplicateMap) { 1191 CloneList ClonedBBs = DuplicateMap[BB]; 1192 1193 // Find an entry in the CloneList with this NextState. If it exists then 1194 // return the corresponding BB 1195 auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) { 1196 return C.State == NextState; 1197 }); 1198 return It != ClonedBBs.end() ? (*It).BB : nullptr; 1199 } 1200 1201 /// Helper to get the successor corresponding to a particular case value for 1202 /// a switch statement. 1203 BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) { 1204 BasicBlock *NextCase = nullptr; 1205 for (auto Case : Switch->cases()) { 1206 if (Case.getCaseValue()->getZExtValue() == NextState) { 1207 NextCase = Case.getCaseSuccessor(); 1208 break; 1209 } 1210 } 1211 if (!NextCase) 1212 NextCase = Switch->getDefaultDest(); 1213 return NextCase; 1214 } 1215 1216 /// Returns true if IncomingBB is a predecessor of BB. 1217 bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) { 1218 return llvm::is_contained(predecessors(BB), IncomingBB); 1219 } 1220 1221 AllSwitchPaths *SwitchPaths; 1222 DominatorTree *DT; 1223 AssumptionCache *AC; 1224 TargetTransformInfo *TTI; 1225 OptimizationRemarkEmitter *ORE; 1226 SmallPtrSet<const Value *, 32> EphValues; 1227 std::vector<ThreadingPath> TPaths; 1228 }; 1229 1230 bool DFAJumpThreading::run(Function &F) { 1231 LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n"); 1232 1233 if (F.hasOptSize()) { 1234 LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n"); 1235 return false; 1236 } 1237 1238 if (ClViewCfgBefore) 1239 F.viewCFG(); 1240 1241 SmallVector<AllSwitchPaths, 2> ThreadableLoops; 1242 bool MadeChanges = false; 1243 1244 for (BasicBlock &BB : F) { 1245 auto *SI = dyn_cast<SwitchInst>(BB.getTerminator()); 1246 if (!SI) 1247 continue; 1248 1249 LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName() 1250 << " is a candidate\n"); 1251 MainSwitch Switch(SI, ORE); 1252 1253 if (!Switch.getInstr()) 1254 continue; 1255 1256 LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a " 1257 << "candidate for jump threading\n"); 1258 LLVM_DEBUG(SI->dump()); 1259 1260 unfoldSelectInstrs(DT, Switch.getSelectInsts()); 1261 if (!Switch.getSelectInsts().empty()) 1262 MadeChanges = true; 1263 1264 AllSwitchPaths SwitchPaths(&Switch, ORE); 1265 SwitchPaths.run(); 1266 1267 if (SwitchPaths.getNumThreadingPaths() > 0) { 1268 ThreadableLoops.push_back(SwitchPaths); 1269 1270 // For the time being limit this optimization to occurring once in a 1271 // function since it can change the CFG significantly. This is not a 1272 // strict requirement but it can cause buggy behavior if there is an 1273 // overlap of blocks in different opportunities. There is a lot of room to 1274 // experiment with catching more opportunities here. 1275 break; 1276 } 1277 } 1278 1279 SmallPtrSet<const Value *, 32> EphValues; 1280 if (ThreadableLoops.size() > 0) 1281 CodeMetrics::collectEphemeralValues(&F, AC, EphValues); 1282 1283 for (AllSwitchPaths SwitchPaths : ThreadableLoops) { 1284 TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues); 1285 Transform.run(); 1286 MadeChanges = true; 1287 } 1288 1289 #ifdef EXPENSIVE_CHECKS 1290 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 1291 verifyFunction(F, &dbgs()); 1292 #endif 1293 1294 return MadeChanges; 1295 } 1296 1297 } // end anonymous namespace 1298 1299 /// Integrate with the new Pass Manager 1300 PreservedAnalyses DFAJumpThreadingPass::run(Function &F, 1301 FunctionAnalysisManager &AM) { 1302 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 1303 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1304 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 1305 OptimizationRemarkEmitter ORE(&F); 1306 1307 if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F)) 1308 return PreservedAnalyses::all(); 1309 1310 PreservedAnalyses PA; 1311 PA.preserve<DominatorTreeAnalysis>(); 1312 return PA; 1313 } 1314