1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <optional> 42 #include <string> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "constraint-elimination" 48 49 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 51 "Controls which conditions are eliminated"); 52 53 static cl::opt<unsigned> 54 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 55 cl::desc("Maximum number of rows to keep in constraint system")); 56 57 static cl::opt<bool> DumpReproducers( 58 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 59 cl::desc("Dump IR to reproduce successful transformations.")); 60 61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 63 64 // A helper to multiply 2 signed integers where overflowing is allowed. 65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 66 int64_t Result; 67 MulOverflow(A, B, Result); 68 return Result; 69 } 70 71 // A helper to add 2 signed integers where overflowing is allowed. 72 static int64_t addWithOverflow(int64_t A, int64_t B) { 73 int64_t Result; 74 AddOverflow(A, B, Result); 75 return Result; 76 } 77 78 static Instruction *getContextInstForUse(Use &U) { 79 Instruction *UserI = cast<Instruction>(U.getUser()); 80 if (auto *Phi = dyn_cast<PHINode>(UserI)) 81 UserI = Phi->getIncomingBlock(U)->getTerminator(); 82 return UserI; 83 } 84 85 namespace { 86 /// Represents either 87 /// * a condition that holds on entry to a block (=conditional fact) 88 /// * an assume (=assume fact) 89 /// * a use of a compare instruction to simplify. 90 /// It also tracks the Dominator DFS in and out numbers for each entry. 91 struct FactOrCheck { 92 union { 93 Instruction *Inst; 94 Use *U; 95 }; 96 unsigned NumIn; 97 unsigned NumOut; 98 bool HasInst; 99 bool Not; 100 101 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not) 102 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 103 HasInst(true), Not(Not) {} 104 105 FactOrCheck(DomTreeNode *DTN, Use *U) 106 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 107 HasInst(false), Not(false) {} 108 109 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 110 bool Not = false) { 111 return FactOrCheck(DTN, Inst, Not); 112 } 113 114 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 115 return FactOrCheck(DTN, U); 116 } 117 118 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 119 return FactOrCheck(DTN, CI, false); 120 } 121 122 bool isCheck() const { 123 return !HasInst || 124 match(Inst, m_Intrinsic<Intrinsic::ssub_with_overflow>()); 125 } 126 127 Instruction *getContextInst() const { 128 if (HasInst) 129 return Inst; 130 return getContextInstForUse(*U); 131 } 132 Instruction *getInstructionToSimplify() const { 133 assert(isCheck()); 134 if (HasInst) 135 return Inst; 136 // The use may have been simplified to a constant already. 137 return dyn_cast<Instruction>(*U); 138 } 139 bool isConditionFact() const { return !isCheck() && isa<CmpInst>(Inst); } 140 }; 141 142 /// Keep state required to build worklist. 143 struct State { 144 DominatorTree &DT; 145 SmallVector<FactOrCheck, 64> WorkList; 146 147 State(DominatorTree &DT) : DT(DT) {} 148 149 /// Process block \p BB and add known facts to work-list. 150 void addInfoFor(BasicBlock &BB); 151 152 /// Returns true if we can add a known condition from BB to its successor 153 /// block Succ. 154 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 155 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 156 } 157 }; 158 159 class ConstraintInfo; 160 161 struct StackEntry { 162 unsigned NumIn; 163 unsigned NumOut; 164 bool IsSigned = false; 165 /// Variables that can be removed from the system once the stack entry gets 166 /// removed. 167 SmallVector<Value *, 2> ValuesToRelease; 168 169 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 170 SmallVector<Value *, 2> ValuesToRelease) 171 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 172 ValuesToRelease(ValuesToRelease) {} 173 }; 174 175 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 176 struct PreconditionTy { 177 CmpInst::Predicate Pred; 178 Value *Op0; 179 Value *Op1; 180 181 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 182 : Pred(Pred), Op0(Op0), Op1(Op1) {} 183 }; 184 185 struct ConstraintTy { 186 SmallVector<int64_t, 8> Coefficients; 187 SmallVector<PreconditionTy, 2> Preconditions; 188 189 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 190 191 bool IsSigned = false; 192 193 ConstraintTy() = default; 194 195 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 196 bool IsNe) 197 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 198 } 199 200 unsigned size() const { return Coefficients.size(); } 201 202 unsigned empty() const { return Coefficients.empty(); } 203 204 /// Returns true if all preconditions for this list of constraints are 205 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 206 bool isValid(const ConstraintInfo &Info) const; 207 208 bool isEq() const { return IsEq; } 209 210 bool isNe() const { return IsNe; } 211 212 /// Check if the current constraint is implied by the given ConstraintSystem. 213 /// 214 /// \return true or false if the constraint is proven to be respectively true, 215 /// or false. When the constraint cannot be proven to be either true or false, 216 /// std::nullopt is returned. 217 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 218 219 private: 220 bool IsEq = false; 221 bool IsNe = false; 222 }; 223 224 /// Wrapper encapsulating separate constraint systems and corresponding value 225 /// mappings for both unsigned and signed information. Facts are added to and 226 /// conditions are checked against the corresponding system depending on the 227 /// signed-ness of their predicates. While the information is kept separate 228 /// based on signed-ness, certain conditions can be transferred between the two 229 /// systems. 230 class ConstraintInfo { 231 232 ConstraintSystem UnsignedCS; 233 ConstraintSystem SignedCS; 234 235 const DataLayout &DL; 236 237 public: 238 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 239 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 240 241 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 242 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 243 } 244 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 245 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 246 } 247 248 ConstraintSystem &getCS(bool Signed) { 249 return Signed ? SignedCS : UnsignedCS; 250 } 251 const ConstraintSystem &getCS(bool Signed) const { 252 return Signed ? SignedCS : UnsignedCS; 253 } 254 255 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 256 void popLastNVariables(bool Signed, unsigned N) { 257 getCS(Signed).popLastNVariables(N); 258 } 259 260 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 261 262 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 263 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 264 265 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 266 /// constraints, using indices from the corresponding constraint system. 267 /// New variables that need to be added to the system are collected in 268 /// \p NewVariables. 269 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 270 SmallVectorImpl<Value *> &NewVariables) const; 271 272 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 273 /// constraints using getConstraint. Returns an empty constraint if the result 274 /// cannot be used to query the existing constraint system, e.g. because it 275 /// would require adding new variables. Also tries to convert signed 276 /// predicates to unsigned ones if possible to allow using the unsigned system 277 /// which increases the effectiveness of the signed <-> unsigned transfer 278 /// logic. 279 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 280 Value *Op1) const; 281 282 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 283 /// system if \p Pred is signed/unsigned. 284 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 285 unsigned NumIn, unsigned NumOut, 286 SmallVectorImpl<StackEntry> &DFSInStack); 287 }; 288 289 /// Represents a (Coefficient * Variable) entry after IR decomposition. 290 struct DecompEntry { 291 int64_t Coefficient; 292 Value *Variable; 293 /// True if the variable is known positive in the current constraint. 294 bool IsKnownNonNegative; 295 296 DecompEntry(int64_t Coefficient, Value *Variable, 297 bool IsKnownNonNegative = false) 298 : Coefficient(Coefficient), Variable(Variable), 299 IsKnownNonNegative(IsKnownNonNegative) {} 300 }; 301 302 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 303 struct Decomposition { 304 int64_t Offset = 0; 305 SmallVector<DecompEntry, 3> Vars; 306 307 Decomposition(int64_t Offset) : Offset(Offset) {} 308 Decomposition(Value *V, bool IsKnownNonNegative = false) { 309 Vars.emplace_back(1, V, IsKnownNonNegative); 310 } 311 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 312 : Offset(Offset), Vars(Vars) {} 313 314 void add(int64_t OtherOffset) { 315 Offset = addWithOverflow(Offset, OtherOffset); 316 } 317 318 void add(const Decomposition &Other) { 319 add(Other.Offset); 320 append_range(Vars, Other.Vars); 321 } 322 323 void mul(int64_t Factor) { 324 Offset = multiplyWithOverflow(Offset, Factor); 325 for (auto &Var : Vars) 326 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 327 } 328 }; 329 330 } // namespace 331 332 static Decomposition decompose(Value *V, 333 SmallVectorImpl<PreconditionTy> &Preconditions, 334 bool IsSigned, const DataLayout &DL); 335 336 static bool canUseSExt(ConstantInt *CI) { 337 const APInt &Val = CI->getValue(); 338 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 339 } 340 341 static Decomposition 342 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 343 bool IsSigned, const DataLayout &DL) { 344 // Do not reason about pointers where the index size is larger than 64 bits, 345 // as the coefficients used to encode constraints are 64 bit integers. 346 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 347 return &GEP; 348 349 if (!GEP.isInBounds()) 350 return &GEP; 351 352 assert(!IsSigned && "The logic below only supports decomposition for " 353 "unsinged predicates at the moment."); 354 Type *PtrTy = GEP.getType()->getScalarType(); 355 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 356 MapVector<Value *, APInt> VariableOffsets; 357 APInt ConstantOffset(BitWidth, 0); 358 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 359 return &GEP; 360 361 // Handle the (gep (gep ....), C) case by incrementing the constant 362 // coefficient of the inner GEP, if C is a constant. 363 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 364 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 365 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 366 Result.add(ConstantOffset.getSExtValue()); 367 368 if (ConstantOffset.isNegative()) { 369 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 370 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 371 if (ConstantOffsetI % Scale != 0) 372 return &GEP; 373 // Add pre-condition ensuring the GEP is increasing monotonically and 374 // can be de-composed. 375 // Both sides are normalized by being divided by Scale. 376 Preconditions.emplace_back( 377 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 378 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 379 -1 * (ConstantOffsetI / Scale))); 380 } 381 return Result; 382 } 383 384 Decomposition Result(ConstantOffset.getSExtValue(), 385 DecompEntry(1, GEP.getPointerOperand())); 386 for (auto [Index, Scale] : VariableOffsets) { 387 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 388 IdxResult.mul(Scale.getSExtValue()); 389 Result.add(IdxResult); 390 391 // If Op0 is signed non-negative, the GEP is increasing monotonically and 392 // can be de-composed. 393 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 394 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 395 ConstantInt::get(Index->getType(), 0)); 396 } 397 return Result; 398 } 399 400 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 401 // Variable } where Coefficient * Variable. The sum of the constant offset and 402 // pairs equals \p V. 403 static Decomposition decompose(Value *V, 404 SmallVectorImpl<PreconditionTy> &Preconditions, 405 bool IsSigned, const DataLayout &DL) { 406 407 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 408 bool IsSignedB) { 409 auto ResA = decompose(A, Preconditions, IsSigned, DL); 410 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 411 ResA.add(ResB); 412 return ResA; 413 }; 414 415 Type *Ty = V->getType()->getScalarType(); 416 if (Ty->isPointerTy() && !IsSigned) { 417 if (auto *GEP = dyn_cast<GEPOperator>(V)) 418 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 419 return V; 420 } 421 422 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 423 // coefficient add/mul may wrap, while the operation in the full bit width 424 // would not. 425 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 426 return V; 427 428 // Decompose \p V used with a signed predicate. 429 if (IsSigned) { 430 if (auto *CI = dyn_cast<ConstantInt>(V)) { 431 if (canUseSExt(CI)) 432 return CI->getSExtValue(); 433 } 434 Value *Op0; 435 Value *Op1; 436 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 437 return MergeResults(Op0, Op1, IsSigned); 438 439 ConstantInt *CI; 440 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 441 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 442 Result.mul(CI->getSExtValue()); 443 return Result; 444 } 445 446 return V; 447 } 448 449 if (auto *CI = dyn_cast<ConstantInt>(V)) { 450 if (CI->uge(MaxConstraintValue)) 451 return V; 452 return int64_t(CI->getZExtValue()); 453 } 454 455 Value *Op0; 456 bool IsKnownNonNegative = false; 457 if (match(V, m_ZExt(m_Value(Op0)))) { 458 IsKnownNonNegative = true; 459 V = Op0; 460 } 461 462 Value *Op1; 463 ConstantInt *CI; 464 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 465 return MergeResults(Op0, Op1, IsSigned); 466 } 467 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 468 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 469 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 470 ConstantInt::get(Op0->getType(), 0)); 471 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 472 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 473 ConstantInt::get(Op1->getType(), 0)); 474 475 return MergeResults(Op0, Op1, IsSigned); 476 } 477 478 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 479 canUseSExt(CI)) { 480 Preconditions.emplace_back( 481 CmpInst::ICMP_UGE, Op0, 482 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 483 return MergeResults(Op0, CI, true); 484 } 485 486 // Decompose or as an add if there are no common bits between the operands. 487 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 488 haveNoCommonBitsSet(Op0, CI, DL)) { 489 return MergeResults(Op0, CI, IsSigned); 490 } 491 492 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 493 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 494 return {V, IsKnownNonNegative}; 495 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 496 Result.mul(int64_t{1} << CI->getSExtValue()); 497 return Result; 498 } 499 500 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 501 (!CI->isNegative())) { 502 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 503 Result.mul(CI->getSExtValue()); 504 return Result; 505 } 506 507 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 508 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 509 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 510 return {0, {{1, Op0}, {-1, Op1}}}; 511 512 return {V, IsKnownNonNegative}; 513 } 514 515 ConstraintTy 516 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 517 SmallVectorImpl<Value *> &NewVariables) const { 518 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 519 bool IsEq = false; 520 bool IsNe = false; 521 522 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 523 switch (Pred) { 524 case CmpInst::ICMP_UGT: 525 case CmpInst::ICMP_UGE: 526 case CmpInst::ICMP_SGT: 527 case CmpInst::ICMP_SGE: { 528 Pred = CmpInst::getSwappedPredicate(Pred); 529 std::swap(Op0, Op1); 530 break; 531 } 532 case CmpInst::ICMP_EQ: 533 if (match(Op1, m_Zero())) { 534 Pred = CmpInst::ICMP_ULE; 535 } else { 536 IsEq = true; 537 Pred = CmpInst::ICMP_ULE; 538 } 539 break; 540 case CmpInst::ICMP_NE: 541 if (match(Op1, m_Zero())) { 542 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 543 std::swap(Op0, Op1); 544 } else { 545 IsNe = true; 546 Pred = CmpInst::ICMP_ULE; 547 } 548 break; 549 default: 550 break; 551 } 552 553 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 554 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 555 return {}; 556 557 SmallVector<PreconditionTy, 4> Preconditions; 558 bool IsSigned = CmpInst::isSigned(Pred); 559 auto &Value2Index = getValue2Index(IsSigned); 560 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 561 Preconditions, IsSigned, DL); 562 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 563 Preconditions, IsSigned, DL); 564 int64_t Offset1 = ADec.Offset; 565 int64_t Offset2 = BDec.Offset; 566 Offset1 *= -1; 567 568 auto &VariablesA = ADec.Vars; 569 auto &VariablesB = BDec.Vars; 570 571 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 572 // new entry to NewVariables. 573 DenseMap<Value *, unsigned> NewIndexMap; 574 auto GetOrAddIndex = [&Value2Index, &NewVariables, 575 &NewIndexMap](Value *V) -> unsigned { 576 auto V2I = Value2Index.find(V); 577 if (V2I != Value2Index.end()) 578 return V2I->second; 579 auto Insert = 580 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 581 if (Insert.second) 582 NewVariables.push_back(V); 583 return Insert.first->second; 584 }; 585 586 // Make sure all variables have entries in Value2Index or NewVariables. 587 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 588 GetOrAddIndex(KV.Variable); 589 590 // Build result constraint, by first adding all coefficients from A and then 591 // subtracting all coefficients from B. 592 ConstraintTy Res( 593 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 594 IsSigned, IsEq, IsNe); 595 // Collect variables that are known to be positive in all uses in the 596 // constraint. 597 DenseMap<Value *, bool> KnownNonNegativeVariables; 598 auto &R = Res.Coefficients; 599 for (const auto &KV : VariablesA) { 600 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 601 auto I = 602 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 603 I.first->second &= KV.IsKnownNonNegative; 604 } 605 606 for (const auto &KV : VariablesB) { 607 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 608 R[GetOrAddIndex(KV.Variable)])) 609 return {}; 610 auto I = 611 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 612 I.first->second &= KV.IsKnownNonNegative; 613 } 614 615 int64_t OffsetSum; 616 if (AddOverflow(Offset1, Offset2, OffsetSum)) 617 return {}; 618 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 619 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 620 return {}; 621 R[0] = OffsetSum; 622 Res.Preconditions = std::move(Preconditions); 623 624 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 625 // variables. 626 while (!NewVariables.empty()) { 627 int64_t Last = R.back(); 628 if (Last != 0) 629 break; 630 R.pop_back(); 631 Value *RemovedV = NewVariables.pop_back_val(); 632 NewIndexMap.erase(RemovedV); 633 } 634 635 // Add extra constraints for variables that are known positive. 636 for (auto &KV : KnownNonNegativeVariables) { 637 if (!KV.second || 638 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 639 continue; 640 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 641 C[GetOrAddIndex(KV.first)] = -1; 642 Res.ExtraInfo.push_back(C); 643 } 644 return Res; 645 } 646 647 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 648 Value *Op0, 649 Value *Op1) const { 650 // If both operands are known to be non-negative, change signed predicates to 651 // unsigned ones. This increases the reasoning effectiveness in combination 652 // with the signed <-> unsigned transfer logic. 653 if (CmpInst::isSigned(Pred) && 654 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 655 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 656 Pred = CmpInst::getUnsignedPredicate(Pred); 657 658 SmallVector<Value *> NewVariables; 659 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 660 if (!NewVariables.empty()) 661 return {}; 662 return R; 663 } 664 665 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 666 return Coefficients.size() > 0 && 667 all_of(Preconditions, [&Info](const PreconditionTy &C) { 668 return Info.doesHold(C.Pred, C.Op0, C.Op1); 669 }); 670 } 671 672 std::optional<bool> 673 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 674 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 675 676 if (IsEq || IsNe) { 677 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 678 bool IsNegatedOrEqualImplied = 679 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 680 681 // In order to check that `%a == %b` is true (equality), both conditions `%a 682 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 683 // is true), we return true if they both hold, false in the other cases. 684 if (IsConditionImplied && IsNegatedOrEqualImplied) 685 return IsEq; 686 687 auto Negated = ConstraintSystem::negate(Coefficients); 688 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 689 690 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 691 bool IsStrictLessThanImplied = 692 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 693 694 // In order to check that `%a != %b` is true (non-equality), either 695 // condition `%a > %b` or `%a < %b` must hold true. When checking for 696 // non-equality (`IsNe` is true), we return true if one of the two holds, 697 // false in the other cases. 698 if (IsNegatedImplied || IsStrictLessThanImplied) 699 return IsNe; 700 701 return std::nullopt; 702 } 703 704 if (IsConditionImplied) 705 return true; 706 707 auto Negated = ConstraintSystem::negate(Coefficients); 708 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 709 if (IsNegatedImplied) 710 return false; 711 712 // Neither the condition nor its negated holds, did not prove anything. 713 return std::nullopt; 714 } 715 716 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 717 Value *B) const { 718 auto R = getConstraintForSolving(Pred, A, B); 719 return R.isValid(*this) && 720 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 721 } 722 723 void ConstraintInfo::transferToOtherSystem( 724 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 725 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 726 // Check if we can combine facts from the signed and unsigned systems to 727 // derive additional facts. 728 if (!A->getType()->isIntegerTy()) 729 return; 730 // FIXME: This currently depends on the order we add facts. Ideally we 731 // would first add all known facts and only then try to add additional 732 // facts. 733 switch (Pred) { 734 default: 735 break; 736 case CmpInst::ICMP_ULT: 737 // If B is a signed positive constant, A >=s 0 and A <s B. 738 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 739 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 740 NumOut, DFSInStack); 741 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 742 } 743 break; 744 case CmpInst::ICMP_SLT: 745 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 746 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 747 break; 748 case CmpInst::ICMP_SGT: { 749 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 750 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 751 NumOut, DFSInStack); 752 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 753 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 754 755 break; 756 } 757 case CmpInst::ICMP_SGE: 758 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 759 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 760 } 761 break; 762 } 763 } 764 765 #ifndef NDEBUG 766 767 static void dumpConstraint(ArrayRef<int64_t> C, 768 const DenseMap<Value *, unsigned> &Value2Index) { 769 ConstraintSystem CS(Value2Index); 770 CS.addVariableRowFill(C); 771 CS.dump(); 772 } 773 #endif 774 775 void State::addInfoFor(BasicBlock &BB) { 776 // True as long as long as the current instruction is guaranteed to execute. 777 bool GuaranteedToExecute = true; 778 // Queue conditions and assumes. 779 for (Instruction &I : BB) { 780 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 781 for (Use &U : Cmp->uses()) { 782 auto *UserI = getContextInstForUse(U); 783 auto *DTN = DT.getNode(UserI->getParent()); 784 if (!DTN) 785 continue; 786 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 787 } 788 continue; 789 } 790 791 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 792 WorkList.push_back( 793 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 794 continue; 795 } 796 797 if (isa<MinMaxIntrinsic>(&I)) { 798 WorkList.push_back(FactOrCheck::getFact(DT.getNode(&BB), &I)); 799 continue; 800 } 801 802 Value *Cond; 803 // For now, just handle assumes with a single compare as condition. 804 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 805 isa<ICmpInst>(Cond)) { 806 if (GuaranteedToExecute) { 807 // The assume is guaranteed to execute when BB is entered, hence Cond 808 // holds on entry to BB. 809 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 810 cast<Instruction>(Cond))); 811 } else { 812 WorkList.emplace_back( 813 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 814 } 815 } 816 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 817 } 818 819 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 820 if (!Br || !Br->isConditional()) 821 return; 822 823 Value *Cond = Br->getCondition(); 824 825 // If the condition is a chain of ORs/AND and the successor only has the 826 // current block as predecessor, queue conditions for the successor. 827 Value *Op0, *Op1; 828 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 829 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 830 bool IsOr = match(Cond, m_LogicalOr()); 831 bool IsAnd = match(Cond, m_LogicalAnd()); 832 // If there's a select that matches both AND and OR, we need to commit to 833 // one of the options. Arbitrarily pick OR. 834 if (IsOr && IsAnd) 835 IsAnd = false; 836 837 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 838 if (canAddSuccessor(BB, Successor)) { 839 SmallVector<Value *> CondWorkList; 840 SmallPtrSet<Value *, 8> SeenCond; 841 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 842 if (SeenCond.insert(V).second) 843 CondWorkList.push_back(V); 844 }; 845 QueueValue(Op1); 846 QueueValue(Op0); 847 while (!CondWorkList.empty()) { 848 Value *Cur = CondWorkList.pop_back_val(); 849 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 850 WorkList.emplace_back( 851 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 852 continue; 853 } 854 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 855 QueueValue(Op1); 856 QueueValue(Op0); 857 continue; 858 } 859 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 860 QueueValue(Op1); 861 QueueValue(Op0); 862 continue; 863 } 864 } 865 } 866 return; 867 } 868 869 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 870 if (!CmpI) 871 return; 872 if (canAddSuccessor(BB, Br->getSuccessor(0))) 873 WorkList.emplace_back( 874 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 875 if (canAddSuccessor(BB, Br->getSuccessor(1))) 876 WorkList.emplace_back( 877 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 878 } 879 880 namespace { 881 /// Helper to keep track of a condition and if it should be treated as negated 882 /// for reproducer construction. 883 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 884 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 885 struct ReproducerEntry { 886 ICmpInst::Predicate Pred; 887 Value *LHS; 888 Value *RHS; 889 890 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 891 : Pred(Pred), LHS(LHS), RHS(RHS) {} 892 }; 893 } // namespace 894 895 /// Helper function to generate a reproducer function for simplifying \p Cond. 896 /// The reproducer function contains a series of @llvm.assume calls, one for 897 /// each condition in \p Stack. For each condition, the operand instruction are 898 /// cloned until we reach operands that have an entry in \p Value2Index. Those 899 /// will then be added as function arguments. \p DT is used to order cloned 900 /// instructions. The reproducer function will get added to \p M, if it is 901 /// non-null. Otherwise no reproducer function is generated. 902 static void generateReproducer(CmpInst *Cond, Module *M, 903 ArrayRef<ReproducerEntry> Stack, 904 ConstraintInfo &Info, DominatorTree &DT) { 905 if (!M) 906 return; 907 908 LLVMContext &Ctx = Cond->getContext(); 909 910 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 911 912 ValueToValueMapTy Old2New; 913 SmallVector<Value *> Args; 914 SmallPtrSet<Value *, 8> Seen; 915 // Traverse Cond and its operands recursively until we reach a value that's in 916 // Value2Index or not an instruction, or not a operation that 917 // ConstraintElimination can decompose. Such values will be considered as 918 // external inputs to the reproducer, they are collected and added as function 919 // arguments later. 920 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 921 auto &Value2Index = Info.getValue2Index(IsSigned); 922 SmallVector<Value *, 4> WorkList(Ops); 923 while (!WorkList.empty()) { 924 Value *V = WorkList.pop_back_val(); 925 if (!Seen.insert(V).second) 926 continue; 927 if (Old2New.find(V) != Old2New.end()) 928 continue; 929 if (isa<Constant>(V)) 930 continue; 931 932 auto *I = dyn_cast<Instruction>(V); 933 if (Value2Index.contains(V) || !I || 934 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 935 Old2New[V] = V; 936 Args.push_back(V); 937 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 938 } else { 939 append_range(WorkList, I->operands()); 940 } 941 } 942 }; 943 944 for (auto &Entry : Stack) 945 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 946 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 947 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 948 949 SmallVector<Type *> ParamTys; 950 for (auto *P : Args) 951 ParamTys.push_back(P->getType()); 952 953 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 954 /*isVarArg=*/false); 955 Function *F = Function::Create(FTy, Function::ExternalLinkage, 956 Cond->getModule()->getName() + 957 Cond->getFunction()->getName() + "repro", 958 M); 959 // Add arguments to the reproducer function for each external value collected. 960 for (unsigned I = 0; I < Args.size(); ++I) { 961 F->getArg(I)->setName(Args[I]->getName()); 962 Old2New[Args[I]] = F->getArg(I); 963 } 964 965 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 966 IRBuilder<> Builder(Entry); 967 Builder.CreateRet(Builder.getTrue()); 968 Builder.SetInsertPoint(Entry->getTerminator()); 969 970 // Clone instructions in \p Ops and their operands recursively until reaching 971 // an value in Value2Index (external input to the reproducer). Update Old2New 972 // mapping for the original and cloned instructions. Sort instructions to 973 // clone by dominance, then insert the cloned instructions in the function. 974 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 975 SmallVector<Value *, 4> WorkList(Ops); 976 SmallVector<Instruction *> ToClone; 977 auto &Value2Index = Info.getValue2Index(IsSigned); 978 while (!WorkList.empty()) { 979 Value *V = WorkList.pop_back_val(); 980 if (Old2New.find(V) != Old2New.end()) 981 continue; 982 983 auto *I = dyn_cast<Instruction>(V); 984 if (!Value2Index.contains(V) && I) { 985 Old2New[V] = nullptr; 986 ToClone.push_back(I); 987 append_range(WorkList, I->operands()); 988 } 989 } 990 991 sort(ToClone, 992 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 993 for (Instruction *I : ToClone) { 994 Instruction *Cloned = I->clone(); 995 Old2New[I] = Cloned; 996 Old2New[I]->setName(I->getName()); 997 Cloned->insertBefore(&*Builder.GetInsertPoint()); 998 Cloned->dropUnknownNonDebugMetadata(); 999 Cloned->setDebugLoc({}); 1000 } 1001 }; 1002 1003 // Materialize the assumptions for the reproducer using the entries in Stack. 1004 // That is, first clone the operands of the condition recursively until we 1005 // reach an external input to the reproducer and add them to the reproducer 1006 // function. Then add an ICmp for the condition (with the inverse predicate if 1007 // the entry is negated) and an assert using the ICmp. 1008 for (auto &Entry : Stack) { 1009 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1010 continue; 1011 1012 LLVM_DEBUG( 1013 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1014 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1015 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1016 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1017 1018 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1019 Builder.CreateAssumption(Cmp); 1020 } 1021 1022 // Finally, clone the condition to reproduce and remap instruction operands in 1023 // the reproducer using Old2New. 1024 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1025 Entry->getTerminator()->setOperand(0, Cond); 1026 remapInstructionsInBlocks({Entry}, Old2New); 1027 1028 assert(!verifyFunction(*F, &dbgs())); 1029 } 1030 1031 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1032 unsigned NumIn, unsigned NumOut, 1033 Instruction *ContextInst) { 1034 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1035 1036 CmpInst::Predicate Pred = Cmp->getPredicate(); 1037 Value *A = Cmp->getOperand(0); 1038 Value *B = Cmp->getOperand(1); 1039 1040 auto R = Info.getConstraintForSolving(Pred, A, B); 1041 if (R.empty() || !R.isValid(Info)){ 1042 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1043 return std::nullopt; 1044 } 1045 1046 auto &CSToUse = Info.getCS(R.IsSigned); 1047 1048 // If there was extra information collected during decomposition, apply 1049 // it now and remove it immediately once we are done with reasoning 1050 // about the constraint. 1051 for (auto &Row : R.ExtraInfo) 1052 CSToUse.addVariableRow(Row); 1053 auto InfoRestorer = make_scope_exit([&]() { 1054 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1055 CSToUse.popLastConstraint(); 1056 }); 1057 1058 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1059 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1060 return std::nullopt; 1061 1062 LLVM_DEBUG({ 1063 if (*ImpliedCondition) { 1064 dbgs() << "Condition " << *Cmp; 1065 } else { 1066 auto InversePred = Cmp->getInversePredicate(); 1067 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1068 << *A << ", " << *B; 1069 } 1070 dbgs() << " implied by dominating constraints\n"; 1071 CSToUse.dump(); 1072 }); 1073 return ImpliedCondition; 1074 } 1075 1076 return std::nullopt; 1077 } 1078 1079 static bool checkAndReplaceCondition( 1080 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1081 Instruction *ContextInst, Module *ReproducerModule, 1082 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 1083 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1084 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1085 Constant *ConstantC = ConstantInt::getBool( 1086 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1087 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1088 ContextInst](Use &U) { 1089 auto *UserI = getContextInstForUse(U); 1090 auto *DTN = DT.getNode(UserI->getParent()); 1091 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1092 return false; 1093 if (UserI->getParent() == ContextInst->getParent() && 1094 UserI->comesBefore(ContextInst)) 1095 return false; 1096 1097 // Conditions in an assume trivially simplify to true. Skip uses 1098 // in assume calls to not destroy the available information. 1099 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1100 return !II || II->getIntrinsicID() != Intrinsic::assume; 1101 }); 1102 NumCondsRemoved++; 1103 return true; 1104 }; 1105 1106 if (auto ImpliedCondition = 1107 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1108 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1109 return false; 1110 } 1111 1112 static void 1113 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1114 Module *ReproducerModule, 1115 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1116 SmallVectorImpl<StackEntry> &DFSInStack) { 1117 Info.popLastConstraint(E.IsSigned); 1118 // Remove variables in the system that went out of scope. 1119 auto &Mapping = Info.getValue2Index(E.IsSigned); 1120 for (Value *V : E.ValuesToRelease) 1121 Mapping.erase(V); 1122 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1123 DFSInStack.pop_back(); 1124 if (ReproducerModule) 1125 ReproducerCondStack.pop_back(); 1126 } 1127 1128 /// Check if the first condition for an AND implies the second. 1129 static bool checkAndSecondOpImpliedByFirst( 1130 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1131 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1132 SmallVectorImpl<StackEntry> &DFSInStack) { 1133 CmpInst::Predicate Pred; 1134 Value *A, *B; 1135 Instruction *And = CB.getContextInst(); 1136 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1137 return false; 1138 1139 // Optimistically add fact from first condition. 1140 unsigned OldSize = DFSInStack.size(); 1141 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1142 if (OldSize == DFSInStack.size()) 1143 return false; 1144 1145 bool Changed = false; 1146 // Check if the second condition can be simplified now. 1147 if (auto ImpliedCondition = 1148 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1149 CB.NumOut, CB.getContextInst())) { 1150 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1151 Changed = true; 1152 } 1153 1154 // Remove entries again. 1155 while (OldSize < DFSInStack.size()) { 1156 StackEntry E = DFSInStack.back(); 1157 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1158 DFSInStack); 1159 } 1160 return Changed; 1161 } 1162 1163 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1164 unsigned NumIn, unsigned NumOut, 1165 SmallVectorImpl<StackEntry> &DFSInStack) { 1166 // If the constraint has a pre-condition, skip the constraint if it does not 1167 // hold. 1168 SmallVector<Value *> NewVariables; 1169 auto R = getConstraint(Pred, A, B, NewVariables); 1170 1171 // TODO: Support non-equality for facts as well. 1172 if (!R.isValid(*this) || R.isNe()) 1173 return; 1174 1175 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1176 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1177 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1178 bool Added = false; 1179 auto &CSToUse = getCS(R.IsSigned); 1180 if (R.Coefficients.empty()) 1181 return; 1182 1183 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1184 1185 // If R has been added to the system, add the new variables and queue it for 1186 // removal once it goes out-of-scope. 1187 if (Added) { 1188 SmallVector<Value *, 2> ValuesToRelease; 1189 auto &Value2Index = getValue2Index(R.IsSigned); 1190 for (Value *V : NewVariables) { 1191 Value2Index.insert({V, Value2Index.size() + 1}); 1192 ValuesToRelease.push_back(V); 1193 } 1194 1195 LLVM_DEBUG({ 1196 dbgs() << " constraint: "; 1197 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1198 dbgs() << "\n"; 1199 }); 1200 1201 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1202 std::move(ValuesToRelease)); 1203 1204 if (R.isEq()) { 1205 // Also add the inverted constraint for equality constraints. 1206 for (auto &Coeff : R.Coefficients) 1207 Coeff *= -1; 1208 CSToUse.addVariableRowFill(R.Coefficients); 1209 1210 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1211 SmallVector<Value *, 2>()); 1212 } 1213 } 1214 } 1215 1216 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1217 SmallVectorImpl<Instruction *> &ToRemove) { 1218 bool Changed = false; 1219 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1220 Value *Sub = nullptr; 1221 for (User *U : make_early_inc_range(II->users())) { 1222 if (match(U, m_ExtractValue<0>(m_Value()))) { 1223 if (!Sub) 1224 Sub = Builder.CreateSub(A, B); 1225 U->replaceAllUsesWith(Sub); 1226 Changed = true; 1227 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1228 U->replaceAllUsesWith(Builder.getFalse()); 1229 Changed = true; 1230 } else 1231 continue; 1232 1233 if (U->use_empty()) { 1234 auto *I = cast<Instruction>(U); 1235 ToRemove.push_back(I); 1236 I->setOperand(0, PoisonValue::get(II->getType())); 1237 Changed = true; 1238 } 1239 } 1240 1241 if (II->use_empty()) { 1242 II->eraseFromParent(); 1243 Changed = true; 1244 } 1245 return Changed; 1246 } 1247 1248 static bool 1249 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1250 SmallVectorImpl<Instruction *> &ToRemove) { 1251 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1252 ConstraintInfo &Info) { 1253 auto R = Info.getConstraintForSolving(Pred, A, B); 1254 if (R.size() < 2 || !R.isValid(Info)) 1255 return false; 1256 1257 auto &CSToUse = Info.getCS(R.IsSigned); 1258 return CSToUse.isConditionImplied(R.Coefficients); 1259 }; 1260 1261 bool Changed = false; 1262 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1263 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1264 // can be simplified to a regular sub. 1265 Value *A = II->getArgOperand(0); 1266 Value *B = II->getArgOperand(1); 1267 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1268 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1269 ConstantInt::get(A->getType(), 0), Info)) 1270 return false; 1271 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1272 } 1273 return Changed; 1274 } 1275 1276 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1277 OptimizationRemarkEmitter &ORE) { 1278 bool Changed = false; 1279 DT.updateDFSNumbers(); 1280 SmallVector<Value *> FunctionArgs; 1281 for (Value &Arg : F.args()) 1282 FunctionArgs.push_back(&Arg); 1283 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1284 State S(DT); 1285 std::unique_ptr<Module> ReproducerModule( 1286 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1287 1288 // First, collect conditions implied by branches and blocks with their 1289 // Dominator DFS in and out numbers. 1290 for (BasicBlock &BB : F) { 1291 if (!DT.getNode(&BB)) 1292 continue; 1293 S.addInfoFor(BB); 1294 } 1295 1296 // Next, sort worklist by dominance, so that dominating conditions to check 1297 // and facts come before conditions and facts dominated by them. If a 1298 // condition to check and a fact have the same numbers, conditional facts come 1299 // first. Assume facts and checks are ordered according to their relative 1300 // order in the containing basic block. Also make sure conditions with 1301 // constant operands come before conditions without constant operands. This 1302 // increases the effectiveness of the current signed <-> unsigned fact 1303 // transfer logic. 1304 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1305 auto HasNoConstOp = [](const FactOrCheck &B) { 1306 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1307 !isa<ConstantInt>(B.Inst->getOperand(1)); 1308 }; 1309 // If both entries have the same In numbers, conditional facts come first. 1310 // Otherwise use the relative order in the basic block. 1311 if (A.NumIn == B.NumIn) { 1312 if (A.isConditionFact() && B.isConditionFact()) { 1313 bool NoConstOpA = HasNoConstOp(A); 1314 bool NoConstOpB = HasNoConstOp(B); 1315 return NoConstOpA < NoConstOpB; 1316 } 1317 if (A.isConditionFact()) 1318 return true; 1319 if (B.isConditionFact()) 1320 return false; 1321 auto *InstA = A.getContextInst(); 1322 auto *InstB = B.getContextInst(); 1323 return InstA->comesBefore(InstB); 1324 } 1325 return A.NumIn < B.NumIn; 1326 }); 1327 1328 SmallVector<Instruction *> ToRemove; 1329 1330 // Finally, process ordered worklist and eliminate implied conditions. 1331 SmallVector<StackEntry, 16> DFSInStack; 1332 SmallVector<ReproducerEntry> ReproducerCondStack; 1333 for (FactOrCheck &CB : S.WorkList) { 1334 // First, pop entries from the stack that are out-of-scope for CB. Remove 1335 // the corresponding entry from the constraint system. 1336 while (!DFSInStack.empty()) { 1337 auto &E = DFSInStack.back(); 1338 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1339 << "\n"); 1340 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1341 assert(E.NumIn <= CB.NumIn); 1342 if (CB.NumOut <= E.NumOut) 1343 break; 1344 LLVM_DEBUG({ 1345 dbgs() << "Removing "; 1346 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1347 Info.getValue2Index(E.IsSigned)); 1348 dbgs() << "\n"; 1349 }); 1350 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1351 DFSInStack); 1352 } 1353 1354 LLVM_DEBUG(dbgs() << "Processing "); 1355 1356 // For a block, check if any CmpInsts become known based on the current set 1357 // of constraints. 1358 if (CB.isCheck()) { 1359 Instruction *Inst = CB.getInstructionToSimplify(); 1360 if (!Inst) 1361 continue; 1362 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1363 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1364 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1365 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1366 bool Simplified = checkAndReplaceCondition( 1367 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1368 ReproducerModule.get(), ReproducerCondStack, S.DT); 1369 if (!Simplified && match(CB.getContextInst(), 1370 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1371 Simplified = 1372 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1373 ReproducerCondStack, DFSInStack); 1374 } 1375 Changed |= Simplified; 1376 } 1377 continue; 1378 } 1379 1380 LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n"); 1381 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1382 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1383 LLVM_DEBUG( 1384 dbgs() 1385 << "Skip adding constraint because system has too many rows.\n"); 1386 return; 1387 } 1388 1389 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1390 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1391 ReproducerCondStack.emplace_back(Pred, A, B); 1392 1393 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1394 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1395 // Add dummy entries to ReproducerCondStack to keep it in sync with 1396 // DFSInStack. 1397 for (unsigned I = 0, 1398 E = (DFSInStack.size() - ReproducerCondStack.size()); 1399 I < E; ++I) { 1400 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1401 nullptr, nullptr); 1402 } 1403 } 1404 }; 1405 1406 ICmpInst::Predicate Pred; 1407 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1408 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1409 AddFact(Pred, MinMax, MinMax->getLHS()); 1410 AddFact(Pred, MinMax, MinMax->getRHS()); 1411 continue; 1412 } 1413 1414 Value *A, *B; 1415 Value *Cmp = CB.Inst; 1416 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1417 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1418 // Use the inverse predicate if required. 1419 if (CB.Not) 1420 Pred = CmpInst::getInversePredicate(Pred); 1421 1422 AddFact(Pred, A, B); 1423 } 1424 } 1425 1426 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1427 std::string S; 1428 raw_string_ostream StringS(S); 1429 ReproducerModule->print(StringS, nullptr); 1430 StringS.flush(); 1431 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1432 Rem << ore::NV("module") << S; 1433 ORE.emit(Rem); 1434 } 1435 1436 #ifndef NDEBUG 1437 unsigned SignedEntries = 1438 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1439 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1440 "updates to CS and DFSInStack are out of sync"); 1441 assert(Info.getCS(true).size() == SignedEntries && 1442 "updates to CS and DFSInStack are out of sync"); 1443 #endif 1444 1445 for (Instruction *I : ToRemove) 1446 I->eraseFromParent(); 1447 return Changed; 1448 } 1449 1450 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1451 FunctionAnalysisManager &AM) { 1452 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1453 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1454 if (!eliminateConstraints(F, DT, ORE)) 1455 return PreservedAnalyses::all(); 1456 1457 PreservedAnalyses PA; 1458 PA.preserve<DominatorTreeAnalysis>(); 1459 PA.preserveSet<CFGAnalyses>(); 1460 return PA; 1461 } 1462