xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Transforms/Scalar.h"
31 
32 #include <string>
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 #define DEBUG_TYPE "constraint-elimination"
38 
39 STATISTIC(NumCondsRemoved, "Number of instructions removed");
40 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
41               "Controls which conditions are eliminated");
42 
43 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
44 
45 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
46 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
47 // must be nullptr. If the expression cannot be decomposed, returns an empty
48 // vector.
49 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
50   if (auto *CI = dyn_cast<ConstantInt>(V)) {
51     if (CI->isNegative() || CI->uge(MaxConstraintValue))
52       return {};
53     return {{CI->getSExtValue(), nullptr}};
54   }
55   auto *GEP = dyn_cast<GetElementPtrInst>(V);
56   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
57     Value *Op0, *Op1;
58     ConstantInt *CI;
59 
60     // If the index is zero-extended, it is guaranteed to be positive.
61     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
62               m_ZExt(m_Value(Op0)))) {
63       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
64         return {{0, nullptr},
65                 {1, GEP->getPointerOperand()},
66                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
67       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
68         return {{CI->getSExtValue(), nullptr},
69                 {1, GEP->getPointerOperand()},
70                 {1, Op1}};
71       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
72     }
73 
74     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
75         !CI->isNegative())
76       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
77 
78     SmallVector<std::pair<int64_t, Value *>, 4> Result;
79     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
80               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
81       Result = {{0, nullptr},
82                 {1, GEP->getPointerOperand()},
83                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
84     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
85                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
86       Result = {{CI->getSExtValue(), nullptr},
87                 {1, GEP->getPointerOperand()},
88                 {1, Op0}};
89     else {
90       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
91       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
92     }
93     return Result;
94   }
95 
96   Value *Op0;
97   if (match(V, m_ZExt(m_Value(Op0))))
98     V = Op0;
99 
100   Value *Op1;
101   ConstantInt *CI;
102   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
103     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
104   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
105     return {{0, nullptr}, {1, Op0}, {1, Op1}};
106 
107   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
108     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
109   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
110     return {{0, nullptr}, {1, Op0}, {1, Op1}};
111 
112   return {{0, nullptr}, {1, V}};
113 }
114 
115 struct ConstraintTy {
116   SmallVector<int64_t, 8> Coefficients;
117 
118   ConstraintTy(SmallVector<int64_t, 8> Coefficients)
119       : Coefficients(Coefficients) {}
120 
121   unsigned size() const { return Coefficients.size(); }
122 };
123 
124 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
125 /// Value2Index. Additional indices for newly discovered values are added to \p
126 /// NewIndices.
127 static SmallVector<ConstraintTy, 4>
128 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
129               const DenseMap<Value *, unsigned> &Value2Index,
130               DenseMap<Value *, unsigned> &NewIndices) {
131   int64_t Offset1 = 0;
132   int64_t Offset2 = 0;
133 
134   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
135   // new entry to NewIndices.
136   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
137     auto V2I = Value2Index.find(V);
138     if (V2I != Value2Index.end())
139       return V2I->second;
140     auto NewI = NewIndices.find(V);
141     if (NewI != NewIndices.end())
142       return NewI->second;
143     auto Insert =
144         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
145     return Insert.first->second;
146   };
147 
148   if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
149     return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
150                          Value2Index, NewIndices);
151 
152   if (Pred == CmpInst::ICMP_EQ) {
153     auto A =
154         getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
155     auto B =
156         getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
157     append_range(A, B);
158     return A;
159   }
160 
161   if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
162     return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
163   }
164 
165   // Only ULE and ULT predicates are supported at the moment.
166   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
167     return {};
168 
169   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation());
170   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation());
171   // Skip if decomposing either of the values failed.
172   if (ADec.empty() || BDec.empty())
173     return {};
174 
175   // Skip trivial constraints without any variables.
176   if (ADec.size() == 1 && BDec.size() == 1)
177     return {};
178 
179   Offset1 = ADec[0].first;
180   Offset2 = BDec[0].first;
181   Offset1 *= -1;
182 
183   // Create iterator ranges that skip the constant-factor.
184   auto VariablesA = llvm::drop_begin(ADec);
185   auto VariablesB = llvm::drop_begin(BDec);
186 
187   // Make sure all variables have entries in Value2Index or NewIndices.
188   for (const auto &KV :
189        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
190     GetOrAddIndex(KV.second);
191 
192   // Build result constraint, by first adding all coefficients from A and then
193   // subtracting all coefficients from B.
194   SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
195   for (const auto &KV : VariablesA)
196     R[GetOrAddIndex(KV.second)] += KV.first;
197 
198   for (const auto &KV : VariablesB)
199     R[GetOrAddIndex(KV.second)] -= KV.first;
200 
201   R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
202   return {R};
203 }
204 
205 static SmallVector<ConstraintTy, 4>
206 getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
207               DenseMap<Value *, unsigned> &NewIndices) {
208   return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
209                        Cmp->getOperand(1), Value2Index, NewIndices);
210 }
211 
212 namespace {
213 /// Represents either a condition that holds on entry to a block or a basic
214 /// block, with their respective Dominator DFS in and out numbers.
215 struct ConstraintOrBlock {
216   unsigned NumIn;
217   unsigned NumOut;
218   bool IsBlock;
219   bool Not;
220   union {
221     BasicBlock *BB;
222     CmpInst *Condition;
223   };
224 
225   ConstraintOrBlock(DomTreeNode *DTN)
226       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
227         BB(DTN->getBlock()) {}
228   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
229       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
230         Not(Not), Condition(Condition) {}
231 };
232 
233 struct StackEntry {
234   unsigned NumIn;
235   unsigned NumOut;
236   CmpInst *Condition;
237   bool IsNot;
238 
239   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
240       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
241 };
242 } // namespace
243 
244 #ifndef NDEBUG
245 static void dumpWithNames(ConstraintTy &C,
246                           DenseMap<Value *, unsigned> &Value2Index) {
247   SmallVector<std::string> Names(Value2Index.size(), "");
248   for (auto &KV : Value2Index) {
249     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
250   }
251   ConstraintSystem CS;
252   CS.addVariableRowFill(C.Coefficients);
253   CS.dump(Names);
254 }
255 #endif
256 
257 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
258   bool Changed = false;
259   DT.updateDFSNumbers();
260   ConstraintSystem CS;
261 
262   SmallVector<ConstraintOrBlock, 64> WorkList;
263 
264   // First, collect conditions implied by branches and blocks with their
265   // Dominator DFS in and out numbers.
266   for (BasicBlock &BB : F) {
267     if (!DT.getNode(&BB))
268       continue;
269     WorkList.emplace_back(DT.getNode(&BB));
270 
271     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
272     if (!Br || !Br->isConditional())
273       continue;
274 
275     // Returns true if we can add a known condition from BB to its successor
276     // block Succ. Each predecessor of Succ can either be BB or be dominated by
277     // Succ (e.g. the case when adding a condition from a pre-header to a loop
278     // header).
279     auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
280       return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
281         return Pred == &BB || DT.dominates(Succ, Pred);
282       });
283     };
284     // If the condition is an OR of 2 compares and the false successor only has
285     // the current block as predecessor, queue both negated conditions for the
286     // false successor.
287     Value *Op0, *Op1;
288     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
289         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
290       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
291       if (CanAdd(FalseSuccessor)) {
292         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
293                               true);
294         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
295                               true);
296       }
297       continue;
298     }
299 
300     // If the condition is an AND of 2 compares and the true successor only has
301     // the current block as predecessor, queue both conditions for the true
302     // successor.
303     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
304         match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
305       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
306       if (CanAdd(TrueSuccessor)) {
307         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
308                               false);
309         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
310                               false);
311       }
312       continue;
313     }
314 
315     auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
316     if (!CmpI)
317       continue;
318     if (CanAdd(Br->getSuccessor(0)))
319       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
320     if (CanAdd(Br->getSuccessor(1)))
321       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
322   }
323 
324   // Next, sort worklist by dominance, so that dominating blocks and conditions
325   // come before blocks and conditions dominated by them. If a block and a
326   // condition have the same numbers, the condition comes before the block, as
327   // it holds on entry to the block.
328   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
329     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
330   });
331 
332   // Finally, process ordered worklist and eliminate implied conditions.
333   SmallVector<StackEntry, 16> DFSInStack;
334   DenseMap<Value *, unsigned> Value2Index;
335   for (ConstraintOrBlock &CB : WorkList) {
336     // First, pop entries from the stack that are out-of-scope for CB. Remove
337     // the corresponding entry from the constraint system.
338     while (!DFSInStack.empty()) {
339       auto &E = DFSInStack.back();
340       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
341                         << "\n");
342       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
343       assert(E.NumIn <= CB.NumIn);
344       if (CB.NumOut <= E.NumOut)
345         break;
346       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
347                         << "\n");
348       DFSInStack.pop_back();
349       CS.popLastConstraint();
350     }
351 
352     LLVM_DEBUG({
353       dbgs() << "Processing ";
354       if (CB.IsBlock)
355         dbgs() << *CB.BB;
356       else
357         dbgs() << *CB.Condition;
358       dbgs() << "\n";
359     });
360 
361     // For a block, check if any CmpInsts become known based on the current set
362     // of constraints.
363     if (CB.IsBlock) {
364       for (Instruction &I : *CB.BB) {
365         auto *Cmp = dyn_cast<CmpInst>(&I);
366         if (!Cmp)
367           continue;
368 
369         DenseMap<Value *, unsigned> NewIndices;
370         auto R = getConstraint(Cmp, Value2Index, NewIndices);
371         if (R.size() != 1)
372           continue;
373 
374         // Check if all coefficients of new indices are 0 after building the
375         // constraint. Skip if any of the new indices has a non-null
376         // coefficient.
377         bool HasNewIndex = false;
378         for (unsigned I = 0; I < NewIndices.size(); ++I) {
379           int64_t Last = R[0].Coefficients.pop_back_val();
380           if (Last != 0) {
381             HasNewIndex = true;
382             break;
383           }
384         }
385         if (HasNewIndex || R[0].size() == 1)
386           continue;
387 
388         if (CS.isConditionImplied(R[0].Coefficients)) {
389           if (!DebugCounter::shouldExecute(EliminatedCounter))
390             continue;
391 
392           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
393                             << " implied by dominating constraints\n");
394           LLVM_DEBUG({
395             for (auto &E : reverse(DFSInStack))
396               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
397           });
398           Cmp->replaceAllUsesWith(
399               ConstantInt::getTrue(F.getParent()->getContext()));
400           NumCondsRemoved++;
401           Changed = true;
402         }
403         if (CS.isConditionImplied(
404                 ConstraintSystem::negate(R[0].Coefficients))) {
405           if (!DebugCounter::shouldExecute(EliminatedCounter))
406             continue;
407 
408           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
409                             << " implied by dominating constraints\n");
410           LLVM_DEBUG({
411             for (auto &E : reverse(DFSInStack))
412               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
413           });
414           Cmp->replaceAllUsesWith(
415               ConstantInt::getFalse(F.getParent()->getContext()));
416           NumCondsRemoved++;
417           Changed = true;
418         }
419       }
420       continue;
421     }
422 
423     // Set up a function to restore the predicate at the end of the scope if it
424     // has been negated. Negate the predicate in-place, if required.
425     auto *CI = dyn_cast<CmpInst>(CB.Condition);
426     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
427       if (CB.Not && CI)
428         CI->setPredicate(CI->getInversePredicate());
429     });
430     if (CB.Not) {
431       if (CI) {
432         CI->setPredicate(CI->getInversePredicate());
433       } else {
434         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
435         continue;
436       }
437     }
438 
439     // Otherwise, add the condition to the system and stack, if we can transform
440     // it into a constraint.
441     DenseMap<Value *, unsigned> NewIndices;
442     auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
443     if (R.empty())
444       continue;
445 
446     for (auto &KV : NewIndices)
447       Value2Index.insert(KV);
448 
449     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
450     bool Added = false;
451     for (auto &C : R) {
452       auto Coeffs = C.Coefficients;
453       LLVM_DEBUG({
454         dbgs() << "  constraint: ";
455         dumpWithNames(C, Value2Index);
456       });
457       Added |= CS.addVariableRowFill(Coeffs);
458       // If R has been added to the system, queue it for removal once it goes
459       // out-of-scope.
460       if (Added)
461         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
462     }
463   }
464 
465   assert(CS.size() == DFSInStack.size() &&
466          "updates to CS and DFSInStack are out of sync");
467   return Changed;
468 }
469 
470 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
471                                                  FunctionAnalysisManager &AM) {
472   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
473   if (!eliminateConstraints(F, DT))
474     return PreservedAnalyses::all();
475 
476   PreservedAnalyses PA;
477   PA.preserve<DominatorTreeAnalysis>();
478   PA.preserveSet<CFGAnalyses>();
479   return PA;
480 }
481 
482 namespace {
483 
484 class ConstraintElimination : public FunctionPass {
485 public:
486   static char ID;
487 
488   ConstraintElimination() : FunctionPass(ID) {
489     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
490   }
491 
492   bool runOnFunction(Function &F) override {
493     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
494     return eliminateConstraints(F, DT);
495   }
496 
497   void getAnalysisUsage(AnalysisUsage &AU) const override {
498     AU.setPreservesCFG();
499     AU.addRequired<DominatorTreeWrapperPass>();
500     AU.addPreserved<GlobalsAAWrapperPass>();
501     AU.addPreserved<DominatorTreeWrapperPass>();
502   }
503 };
504 
505 } // end anonymous namespace
506 
507 char ConstraintElimination::ID = 0;
508 
509 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
510                       "Constraint Elimination", false, false)
511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
512 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
513 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
514                     "Constraint Elimination", false, false)
515 
516 FunctionPass *llvm::createConstraintEliminationPass() {
517   return new ConstraintElimination();
518 }
519