1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Transforms/Scalar.h" 32 33 #include <string> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "constraint-elimination" 39 40 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 42 "Controls which conditions are eliminated"); 43 44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 45 46 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 47 // sum of the pairs equals \p V. The first pair is the constant-factor and X 48 // must be nullptr. If the expression cannot be decomposed, returns an empty 49 // vector. 50 static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) { 51 if (auto *CI = dyn_cast<ConstantInt>(V)) { 52 if (CI->isNegative() || CI->uge(MaxConstraintValue)) 53 return {}; 54 return {{CI->getSExtValue(), nullptr}}; 55 } 56 auto *GEP = dyn_cast<GetElementPtrInst>(V); 57 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 58 Value *Op0, *Op1; 59 ConstantInt *CI; 60 61 // If the index is zero-extended, it is guaranteed to be positive. 62 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 63 m_ZExt(m_Value(Op0)))) { 64 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 65 return {{0, nullptr}, 66 {1, GEP->getPointerOperand()}, 67 {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 68 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 69 return {{CI->getSExtValue(), nullptr}, 70 {1, GEP->getPointerOperand()}, 71 {1, Op1}}; 72 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 73 } 74 75 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 76 !CI->isNegative()) 77 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 78 79 SmallVector<std::pair<int64_t, Value *>, 4> Result; 80 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 81 m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 82 Result = {{0, nullptr}, 83 {1, GEP->getPointerOperand()}, 84 {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 85 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 86 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 87 Result = {{CI->getSExtValue(), nullptr}, 88 {1, GEP->getPointerOperand()}, 89 {1, Op0}}; 90 else { 91 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 92 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 93 } 94 return Result; 95 } 96 97 Value *Op0; 98 if (match(V, m_ZExt(m_Value(Op0)))) 99 V = Op0; 100 101 Value *Op1; 102 ConstantInt *CI; 103 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 104 return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 105 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 106 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 107 108 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 109 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 110 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 111 return {{0, nullptr}, {1, Op0}, {1, Op1}}; 112 113 return {{0, nullptr}, {1, V}}; 114 } 115 116 struct ConstraintTy { 117 SmallVector<int64_t, 8> Coefficients; 118 119 ConstraintTy(SmallVector<int64_t, 8> Coefficients) 120 : Coefficients(Coefficients) {} 121 122 unsigned size() const { return Coefficients.size(); } 123 }; 124 125 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 126 /// Value2Index. Additional indices for newly discovered values are added to \p 127 /// NewIndices. 128 static SmallVector<ConstraintTy, 4> 129 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 130 const DenseMap<Value *, unsigned> &Value2Index, 131 DenseMap<Value *, unsigned> &NewIndices) { 132 int64_t Offset1 = 0; 133 int64_t Offset2 = 0; 134 135 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 136 // new entry to NewIndices. 137 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 138 auto V2I = Value2Index.find(V); 139 if (V2I != Value2Index.end()) 140 return V2I->second; 141 auto NewI = NewIndices.find(V); 142 if (NewI != NewIndices.end()) 143 return NewI->second; 144 auto Insert = 145 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 146 return Insert.first->second; 147 }; 148 149 if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE) 150 return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, 151 Value2Index, NewIndices); 152 153 if (Pred == CmpInst::ICMP_EQ) { 154 auto A = 155 getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices); 156 auto B = 157 getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); 158 append_range(A, B); 159 return A; 160 } 161 162 if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) { 163 return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices); 164 } 165 166 // Only ULE and ULT predicates are supported at the moment. 167 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT) 168 return {}; 169 170 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation()); 171 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation()); 172 // Skip if decomposing either of the values failed. 173 if (ADec.empty() || BDec.empty()) 174 return {}; 175 176 // Skip trivial constraints without any variables. 177 if (ADec.size() == 1 && BDec.size() == 1) 178 return {}; 179 180 Offset1 = ADec[0].first; 181 Offset2 = BDec[0].first; 182 Offset1 *= -1; 183 184 // Create iterator ranges that skip the constant-factor. 185 auto VariablesA = llvm::drop_begin(ADec); 186 auto VariablesB = llvm::drop_begin(BDec); 187 188 // Make sure all variables have entries in Value2Index or NewIndices. 189 for (const auto &KV : 190 concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 191 GetOrAddIndex(KV.second); 192 193 // Build result constraint, by first adding all coefficients from A and then 194 // subtracting all coefficients from B. 195 SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0); 196 for (const auto &KV : VariablesA) 197 R[GetOrAddIndex(KV.second)] += KV.first; 198 199 for (const auto &KV : VariablesB) 200 R[GetOrAddIndex(KV.second)] -= KV.first; 201 202 R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0); 203 return {R}; 204 } 205 206 static SmallVector<ConstraintTy, 4> 207 getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index, 208 DenseMap<Value *, unsigned> &NewIndices) { 209 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 210 Cmp->getOperand(1), Value2Index, NewIndices); 211 } 212 213 namespace { 214 /// Represents either a condition that holds on entry to a block or a basic 215 /// block, with their respective Dominator DFS in and out numbers. 216 struct ConstraintOrBlock { 217 unsigned NumIn; 218 unsigned NumOut; 219 bool IsBlock; 220 bool Not; 221 union { 222 BasicBlock *BB; 223 CmpInst *Condition; 224 }; 225 226 ConstraintOrBlock(DomTreeNode *DTN) 227 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 228 BB(DTN->getBlock()) {} 229 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 230 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 231 Not(Not), Condition(Condition) {} 232 }; 233 234 struct StackEntry { 235 unsigned NumIn; 236 unsigned NumOut; 237 CmpInst *Condition; 238 bool IsNot; 239 240 StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot) 241 : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {} 242 }; 243 } // namespace 244 245 #ifndef NDEBUG 246 static void dumpWithNames(ConstraintTy &C, 247 DenseMap<Value *, unsigned> &Value2Index) { 248 SmallVector<std::string> Names(Value2Index.size(), ""); 249 for (auto &KV : Value2Index) { 250 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 251 } 252 ConstraintSystem CS; 253 CS.addVariableRowFill(C.Coefficients); 254 CS.dump(Names); 255 } 256 #endif 257 258 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 259 bool Changed = false; 260 DT.updateDFSNumbers(); 261 ConstraintSystem CS; 262 263 SmallVector<ConstraintOrBlock, 64> WorkList; 264 265 // First, collect conditions implied by branches and blocks with their 266 // Dominator DFS in and out numbers. 267 for (BasicBlock &BB : F) { 268 if (!DT.getNode(&BB)) 269 continue; 270 WorkList.emplace_back(DT.getNode(&BB)); 271 272 // True as long as long as the current instruction is guaranteed to execute. 273 bool GuaranteedToExecute = true; 274 // Scan BB for assume calls. 275 // TODO: also use this scan to queue conditions to simplify, so we can 276 // interleave facts from assumes and conditions to simplify in a single 277 // basic block. And to skip another traversal of each basic block when 278 // simplifying. 279 for (Instruction &I : BB) { 280 Value *Cond; 281 // For now, just handle assumes with a single compare as condition. 282 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 283 isa<CmpInst>(Cond)) { 284 if (GuaranteedToExecute) { 285 // The assume is guaranteed to execute when BB is entered, hence Cond 286 // holds on entry to BB. 287 WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false); 288 } else { 289 // Otherwise the condition only holds in the successors. 290 for (BasicBlock *Succ : successors(&BB)) 291 WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false); 292 } 293 } 294 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 295 } 296 297 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 298 if (!Br || !Br->isConditional()) 299 continue; 300 301 // Returns true if we can add a known condition from BB to its successor 302 // block Succ. Each predecessor of Succ can either be BB or be dominated by 303 // Succ (e.g. the case when adding a condition from a pre-header to a loop 304 // header). 305 auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 306 return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 307 return Pred == &BB || DT.dominates(Succ, Pred); 308 }); 309 }; 310 // If the condition is an OR of 2 compares and the false successor only has 311 // the current block as predecessor, queue both negated conditions for the 312 // false successor. 313 Value *Op0, *Op1; 314 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 315 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 316 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 317 if (CanAdd(FalseSuccessor)) { 318 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0), 319 true); 320 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1), 321 true); 322 } 323 continue; 324 } 325 326 // If the condition is an AND of 2 compares and the true successor only has 327 // the current block as predecessor, queue both conditions for the true 328 // successor. 329 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 330 match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 331 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 332 if (CanAdd(TrueSuccessor)) { 333 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0), 334 false); 335 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1), 336 false); 337 } 338 continue; 339 } 340 341 auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); 342 if (!CmpI) 343 continue; 344 if (CanAdd(Br->getSuccessor(0))) 345 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 346 if (CanAdd(Br->getSuccessor(1))) 347 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 348 } 349 350 // Next, sort worklist by dominance, so that dominating blocks and conditions 351 // come before blocks and conditions dominated by them. If a block and a 352 // condition have the same numbers, the condition comes before the block, as 353 // it holds on entry to the block. 354 sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 355 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 356 }); 357 358 // Finally, process ordered worklist and eliminate implied conditions. 359 SmallVector<StackEntry, 16> DFSInStack; 360 DenseMap<Value *, unsigned> Value2Index; 361 for (ConstraintOrBlock &CB : WorkList) { 362 // First, pop entries from the stack that are out-of-scope for CB. Remove 363 // the corresponding entry from the constraint system. 364 while (!DFSInStack.empty()) { 365 auto &E = DFSInStack.back(); 366 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 367 << "\n"); 368 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 369 assert(E.NumIn <= CB.NumIn); 370 if (CB.NumOut <= E.NumOut) 371 break; 372 LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 373 << "\n"); 374 DFSInStack.pop_back(); 375 CS.popLastConstraint(); 376 } 377 378 LLVM_DEBUG({ 379 dbgs() << "Processing "; 380 if (CB.IsBlock) 381 dbgs() << *CB.BB; 382 else 383 dbgs() << *CB.Condition; 384 dbgs() << "\n"; 385 }); 386 387 // For a block, check if any CmpInsts become known based on the current set 388 // of constraints. 389 if (CB.IsBlock) { 390 for (Instruction &I : *CB.BB) { 391 auto *Cmp = dyn_cast<CmpInst>(&I); 392 if (!Cmp) 393 continue; 394 395 DenseMap<Value *, unsigned> NewIndices; 396 auto R = getConstraint(Cmp, Value2Index, NewIndices); 397 if (R.size() != 1) 398 continue; 399 400 // Check if all coefficients of new indices are 0 after building the 401 // constraint. Skip if any of the new indices has a non-null 402 // coefficient. 403 bool HasNewIndex = false; 404 for (unsigned I = 0; I < NewIndices.size(); ++I) { 405 int64_t Last = R[0].Coefficients.pop_back_val(); 406 if (Last != 0) { 407 HasNewIndex = true; 408 break; 409 } 410 } 411 if (HasNewIndex || R[0].size() == 1) 412 continue; 413 414 if (CS.isConditionImplied(R[0].Coefficients)) { 415 if (!DebugCounter::shouldExecute(EliminatedCounter)) 416 continue; 417 418 LLVM_DEBUG(dbgs() << "Condition " << *Cmp 419 << " implied by dominating constraints\n"); 420 LLVM_DEBUG({ 421 for (auto &E : reverse(DFSInStack)) 422 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 423 }); 424 Cmp->replaceUsesWithIf( 425 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 426 // Conditions in an assume trivially simplify to true. Skip uses 427 // in assume calls to not destroy the available information. 428 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 429 return !II || II->getIntrinsicID() != Intrinsic::assume; 430 }); 431 NumCondsRemoved++; 432 Changed = true; 433 } 434 if (CS.isConditionImplied( 435 ConstraintSystem::negate(R[0].Coefficients))) { 436 if (!DebugCounter::shouldExecute(EliminatedCounter)) 437 continue; 438 439 LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 440 << " implied by dominating constraints\n"); 441 LLVM_DEBUG({ 442 for (auto &E : reverse(DFSInStack)) 443 dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 444 }); 445 Cmp->replaceAllUsesWith( 446 ConstantInt::getFalse(F.getParent()->getContext())); 447 NumCondsRemoved++; 448 Changed = true; 449 } 450 } 451 continue; 452 } 453 454 // Set up a function to restore the predicate at the end of the scope if it 455 // has been negated. Negate the predicate in-place, if required. 456 auto *CI = dyn_cast<CmpInst>(CB.Condition); 457 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 458 if (CB.Not && CI) 459 CI->setPredicate(CI->getInversePredicate()); 460 }); 461 if (CB.Not) { 462 if (CI) { 463 CI->setPredicate(CI->getInversePredicate()); 464 } else { 465 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 466 continue; 467 } 468 } 469 470 // Otherwise, add the condition to the system and stack, if we can transform 471 // it into a constraint. 472 DenseMap<Value *, unsigned> NewIndices; 473 auto R = getConstraint(CB.Condition, Value2Index, NewIndices); 474 if (R.empty()) 475 continue; 476 477 for (auto &KV : NewIndices) 478 Value2Index.insert(KV); 479 480 LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 481 bool Added = false; 482 for (auto &C : R) { 483 auto Coeffs = C.Coefficients; 484 LLVM_DEBUG({ 485 dbgs() << " constraint: "; 486 dumpWithNames(C, Value2Index); 487 }); 488 Added |= CS.addVariableRowFill(Coeffs); 489 // If R has been added to the system, queue it for removal once it goes 490 // out-of-scope. 491 if (Added) 492 DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not); 493 } 494 } 495 496 assert(CS.size() == DFSInStack.size() && 497 "updates to CS and DFSInStack are out of sync"); 498 return Changed; 499 } 500 501 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 502 FunctionAnalysisManager &AM) { 503 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 504 if (!eliminateConstraints(F, DT)) 505 return PreservedAnalyses::all(); 506 507 PreservedAnalyses PA; 508 PA.preserve<DominatorTreeAnalysis>(); 509 PA.preserveSet<CFGAnalyses>(); 510 return PA; 511 } 512 513 namespace { 514 515 class ConstraintElimination : public FunctionPass { 516 public: 517 static char ID; 518 519 ConstraintElimination() : FunctionPass(ID) { 520 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 521 } 522 523 bool runOnFunction(Function &F) override { 524 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 525 return eliminateConstraints(F, DT); 526 } 527 528 void getAnalysisUsage(AnalysisUsage &AU) const override { 529 AU.setPreservesCFG(); 530 AU.addRequired<DominatorTreeWrapperPass>(); 531 AU.addPreserved<GlobalsAAWrapperPass>(); 532 AU.addPreserved<DominatorTreeWrapperPass>(); 533 } 534 }; 535 536 } // end anonymous namespace 537 538 char ConstraintElimination::ID = 0; 539 540 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 541 "Constraint Elimination", false, false) 542 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 543 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 544 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 545 "Constraint Elimination", false, false) 546 547 FunctionPass *llvm::createConstraintEliminationPass() { 548 return new ConstraintElimination(); 549 } 550