xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 56727255ad47072ec2cc81b4ae728a099697b0e4)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Verifier.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/DebugCounter.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 
42 #include <cmath>
43 #include <optional>
44 #include <string>
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 #define DEBUG_TYPE "constraint-elimination"
50 
51 STATISTIC(NumCondsRemoved, "Number of instructions removed");
52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
53               "Controls which conditions are eliminated");
54 
55 static cl::opt<unsigned>
56     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
57             cl::desc("Maximum number of rows to keep in constraint system"));
58 
59 static cl::opt<bool> DumpReproducers(
60     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
61     cl::desc("Dump IR to reproduce successful transformations."));
62 
63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
65 
66 // A helper to multiply 2 signed integers where overflowing is allowed.
67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
68   int64_t Result;
69   MulOverflow(A, B, Result);
70   return Result;
71 }
72 
73 // A helper to add 2 signed integers where overflowing is allowed.
74 static int64_t addWithOverflow(int64_t A, int64_t B) {
75   int64_t Result;
76   AddOverflow(A, B, Result);
77   return Result;
78 }
79 
80 static Instruction *getContextInstForUse(Use &U) {
81   Instruction *UserI = cast<Instruction>(U.getUser());
82   if (auto *Phi = dyn_cast<PHINode>(UserI))
83     UserI = Phi->getIncomingBlock(U)->getTerminator();
84   return UserI;
85 }
86 
87 namespace {
88 /// Struct to express a condition of the form %Op0 Pred %Op1.
89 struct ConditionTy {
90   CmpInst::Predicate Pred;
91   Value *Op0;
92   Value *Op1;
93 
94   ConditionTy()
95       : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
96   ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
97       : Pred(Pred), Op0(Op0), Op1(Op1) {}
98 };
99 
100 /// Represents either
101 ///  * a condition that holds on entry to a block (=condition fact)
102 ///  * an assume (=assume fact)
103 ///  * a use of a compare instruction to simplify.
104 /// It also tracks the Dominator DFS in and out numbers for each entry.
105 struct FactOrCheck {
106   enum class EntryTy {
107     ConditionFact, /// A condition that holds on entry to a block.
108     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
109                    /// min/mix intrinsic.
110     InstCheck,     /// An instruction to simplify (e.g. an overflow math
111                    /// intrinsics).
112     UseCheck       /// An use of a compare instruction to simplify.
113   };
114 
115   union {
116     Instruction *Inst;
117     Use *U;
118     ConditionTy Cond;
119   };
120 
121   /// A pre-condition that must hold for the current fact to be added to the
122   /// system.
123   ConditionTy DoesHold;
124 
125   unsigned NumIn;
126   unsigned NumOut;
127   EntryTy Ty;
128 
129   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
130       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
131         Ty(Ty) {}
132 
133   FactOrCheck(DomTreeNode *DTN, Use *U)
134       : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
135         NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
136         Ty(EntryTy::UseCheck) {}
137 
138   FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
139               ConditionTy Precond = ConditionTy())
140       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
141         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
142 
143   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
144                                       Value *Op0, Value *Op1,
145                                       ConditionTy Precond = ConditionTy()) {
146     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
147   }
148 
149   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
150     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
151   }
152 
153   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
154     return FactOrCheck(DTN, U);
155   }
156 
157   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
158     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
159   }
160 
161   bool isCheck() const {
162     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
163   }
164 
165   Instruction *getContextInst() const {
166     if (Ty == EntryTy::UseCheck)
167       return getContextInstForUse(*U);
168     return Inst;
169   }
170 
171   Instruction *getInstructionToSimplify() const {
172     assert(isCheck());
173     if (Ty == EntryTy::InstCheck)
174       return Inst;
175     // The use may have been simplified to a constant already.
176     return dyn_cast<Instruction>(*U);
177   }
178 
179   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
180 };
181 
182 /// Keep state required to build worklist.
183 struct State {
184   DominatorTree &DT;
185   LoopInfo &LI;
186   ScalarEvolution &SE;
187   SmallVector<FactOrCheck, 64> WorkList;
188 
189   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
190       : DT(DT), LI(LI), SE(SE) {}
191 
192   /// Process block \p BB and add known facts to work-list.
193   void addInfoFor(BasicBlock &BB);
194 
195   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
196   /// controlling the loop header.
197   void addInfoForInductions(BasicBlock &BB);
198 
199   /// Returns true if we can add a known condition from BB to its successor
200   /// block Succ.
201   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
202     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
203   }
204 };
205 
206 class ConstraintInfo;
207 
208 struct StackEntry {
209   unsigned NumIn;
210   unsigned NumOut;
211   bool IsSigned = false;
212   /// Variables that can be removed from the system once the stack entry gets
213   /// removed.
214   SmallVector<Value *, 2> ValuesToRelease;
215 
216   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
217              SmallVector<Value *, 2> ValuesToRelease)
218       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
219         ValuesToRelease(ValuesToRelease) {}
220 };
221 
222 struct ConstraintTy {
223   SmallVector<int64_t, 8> Coefficients;
224   SmallVector<ConditionTy, 2> Preconditions;
225 
226   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
227 
228   bool IsSigned = false;
229 
230   ConstraintTy() = default;
231 
232   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
233                bool IsNe)
234       : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) {
235   }
236 
237   unsigned size() const { return Coefficients.size(); }
238 
239   unsigned empty() const { return Coefficients.empty(); }
240 
241   /// Returns true if all preconditions for this list of constraints are
242   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
243   bool isValid(const ConstraintInfo &Info) const;
244 
245   bool isEq() const { return IsEq; }
246 
247   bool isNe() const { return IsNe; }
248 
249   /// Check if the current constraint is implied by the given ConstraintSystem.
250   ///
251   /// \return true or false if the constraint is proven to be respectively true,
252   /// or false. When the constraint cannot be proven to be either true or false,
253   /// std::nullopt is returned.
254   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
255 
256 private:
257   bool IsEq = false;
258   bool IsNe = false;
259 };
260 
261 /// Wrapper encapsulating separate constraint systems and corresponding value
262 /// mappings for both unsigned and signed information. Facts are added to and
263 /// conditions are checked against the corresponding system depending on the
264 /// signed-ness of their predicates. While the information is kept separate
265 /// based on signed-ness, certain conditions can be transferred between the two
266 /// systems.
267 class ConstraintInfo {
268 
269   ConstraintSystem UnsignedCS;
270   ConstraintSystem SignedCS;
271 
272   const DataLayout &DL;
273 
274 public:
275   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
276       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
277     auto &Value2Index = getValue2Index(false);
278     // Add Arg > -1 constraints to unsigned system for all function arguments.
279     for (Value *Arg : FunctionArgs) {
280       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
281                           false, false, false);
282       VarPos.Coefficients[Value2Index[Arg]] = -1;
283       UnsignedCS.addVariableRow(VarPos.Coefficients);
284     }
285   }
286 
287   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
288     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
289   }
290   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
291     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
292   }
293 
294   ConstraintSystem &getCS(bool Signed) {
295     return Signed ? SignedCS : UnsignedCS;
296   }
297   const ConstraintSystem &getCS(bool Signed) const {
298     return Signed ? SignedCS : UnsignedCS;
299   }
300 
301   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
302   void popLastNVariables(bool Signed, unsigned N) {
303     getCS(Signed).popLastNVariables(N);
304   }
305 
306   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
307 
308   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
309                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
310 
311   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312   /// constraints, using indices from the corresponding constraint system.
313   /// New variables that need to be added to the system are collected in
314   /// \p NewVariables.
315   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
316                              SmallVectorImpl<Value *> &NewVariables) const;
317 
318   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
319   /// constraints using getConstraint. Returns an empty constraint if the result
320   /// cannot be used to query the existing constraint system, e.g. because it
321   /// would require adding new variables. Also tries to convert signed
322   /// predicates to unsigned ones if possible to allow using the unsigned system
323   /// which increases the effectiveness of the signed <-> unsigned transfer
324   /// logic.
325   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
326                                        Value *Op1) const;
327 
328   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
329   /// system if \p Pred is signed/unsigned.
330   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
331                              unsigned NumIn, unsigned NumOut,
332                              SmallVectorImpl<StackEntry> &DFSInStack);
333 };
334 
335 /// Represents a (Coefficient * Variable) entry after IR decomposition.
336 struct DecompEntry {
337   int64_t Coefficient;
338   Value *Variable;
339   /// True if the variable is known positive in the current constraint.
340   bool IsKnownNonNegative;
341 
342   DecompEntry(int64_t Coefficient, Value *Variable,
343               bool IsKnownNonNegative = false)
344       : Coefficient(Coefficient), Variable(Variable),
345         IsKnownNonNegative(IsKnownNonNegative) {}
346 };
347 
348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
349 struct Decomposition {
350   int64_t Offset = 0;
351   SmallVector<DecompEntry, 3> Vars;
352 
353   Decomposition(int64_t Offset) : Offset(Offset) {}
354   Decomposition(Value *V, bool IsKnownNonNegative = false) {
355     Vars.emplace_back(1, V, IsKnownNonNegative);
356   }
357   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
358       : Offset(Offset), Vars(Vars) {}
359 
360   void add(int64_t OtherOffset) {
361     Offset = addWithOverflow(Offset, OtherOffset);
362   }
363 
364   void add(const Decomposition &Other) {
365     add(Other.Offset);
366     append_range(Vars, Other.Vars);
367   }
368 
369   void sub(const Decomposition &Other) {
370     Decomposition Tmp = Other;
371     Tmp.mul(-1);
372     add(Tmp.Offset);
373     append_range(Vars, Tmp.Vars);
374   }
375 
376   void mul(int64_t Factor) {
377     Offset = multiplyWithOverflow(Offset, Factor);
378     for (auto &Var : Vars)
379       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
380   }
381 };
382 
383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
384 struct OffsetResult {
385   Value *BasePtr;
386   APInt ConstantOffset;
387   MapVector<Value *, APInt> VariableOffsets;
388   bool AllInbounds;
389 
390   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
391 
392   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
393       : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
394     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
395   }
396 };
397 } // namespace
398 
399 // Try to collect variable and constant offsets for \p GEP, partly traversing
400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
401 // the offset fails.
402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
403   OffsetResult Result(GEP, DL);
404   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
405   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
406                          Result.ConstantOffset))
407     return {};
408 
409   // If we have a nested GEP, check if we can combine the constant offset of the
410   // inner GEP with the outer GEP.
411   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
412     MapVector<Value *, APInt> VariableOffsets2;
413     APInt ConstantOffset2(BitWidth, 0);
414     bool CanCollectInner = InnerGEP->collectOffset(
415         DL, BitWidth, VariableOffsets2, ConstantOffset2);
416     // TODO: Support cases with more than 1 variable offset.
417     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
418         VariableOffsets2.size() > 1 ||
419         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
420       // More than 1 variable index, use outer result.
421       return Result;
422     }
423     Result.BasePtr = InnerGEP->getPointerOperand();
424     Result.ConstantOffset += ConstantOffset2;
425     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
426       Result.VariableOffsets = VariableOffsets2;
427     Result.AllInbounds &= InnerGEP->isInBounds();
428   }
429   return Result;
430 }
431 
432 static Decomposition decompose(Value *V,
433                                SmallVectorImpl<ConditionTy> &Preconditions,
434                                bool IsSigned, const DataLayout &DL);
435 
436 static bool canUseSExt(ConstantInt *CI) {
437   const APInt &Val = CI->getValue();
438   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
439 }
440 
441 static Decomposition decomposeGEP(GEPOperator &GEP,
442                                   SmallVectorImpl<ConditionTy> &Preconditions,
443                                   bool IsSigned, const DataLayout &DL) {
444   // Do not reason about pointers where the index size is larger than 64 bits,
445   // as the coefficients used to encode constraints are 64 bit integers.
446   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
447     return &GEP;
448 
449   assert(!IsSigned && "The logic below only supports decomposition for "
450                       "unsigned predicates at the moment.");
451   const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
452       collectOffsets(GEP, DL);
453   if (!BasePtr || !AllInbounds)
454     return &GEP;
455 
456   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
457   for (auto [Index, Scale] : VariableOffsets) {
458     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
459     IdxResult.mul(Scale.getSExtValue());
460     Result.add(IdxResult);
461 
462     // If Op0 is signed non-negative, the GEP is increasing monotonically and
463     // can be de-composed.
464     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
465       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
466                                  ConstantInt::get(Index->getType(), 0));
467   }
468   return Result;
469 }
470 
471 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
472 // Variable } where Coefficient * Variable. The sum of the constant offset and
473 // pairs equals \p V.
474 static Decomposition decompose(Value *V,
475                                SmallVectorImpl<ConditionTy> &Preconditions,
476                                bool IsSigned, const DataLayout &DL) {
477 
478   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
479                                                       bool IsSignedB) {
480     auto ResA = decompose(A, Preconditions, IsSigned, DL);
481     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
482     ResA.add(ResB);
483     return ResA;
484   };
485 
486   Type *Ty = V->getType()->getScalarType();
487   if (Ty->isPointerTy() && !IsSigned) {
488     if (auto *GEP = dyn_cast<GEPOperator>(V))
489       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
490     if (isa<ConstantPointerNull>(V))
491       return int64_t(0);
492 
493     return V;
494   }
495 
496   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
497   // coefficient add/mul may wrap, while the operation in the full bit width
498   // would not.
499   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
500     return V;
501 
502   // Decompose \p V used with a signed predicate.
503   if (IsSigned) {
504     if (auto *CI = dyn_cast<ConstantInt>(V)) {
505       if (canUseSExt(CI))
506         return CI->getSExtValue();
507     }
508     Value *Op0;
509     Value *Op1;
510     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
511       return MergeResults(Op0, Op1, IsSigned);
512 
513     ConstantInt *CI;
514     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
515       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
516       Result.mul(CI->getSExtValue());
517       return Result;
518     }
519 
520     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
521     // shift == bw-1.
522     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
523       uint64_t Shift = CI->getValue().getLimitedValue();
524       if (Shift < Ty->getIntegerBitWidth() - 1) {
525         assert(Shift < 64 && "Would overflow");
526         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
527         Result.mul(int64_t(1) << Shift);
528         return Result;
529       }
530     }
531 
532     return V;
533   }
534 
535   if (auto *CI = dyn_cast<ConstantInt>(V)) {
536     if (CI->uge(MaxConstraintValue))
537       return V;
538     return int64_t(CI->getZExtValue());
539   }
540 
541   Value *Op0;
542   bool IsKnownNonNegative = false;
543   if (match(V, m_ZExt(m_Value(Op0)))) {
544     IsKnownNonNegative = true;
545     V = Op0;
546   }
547 
548   Value *Op1;
549   ConstantInt *CI;
550   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
551     return MergeResults(Op0, Op1, IsSigned);
552   }
553   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
554     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
555       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
556                                  ConstantInt::get(Op0->getType(), 0));
557     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
558       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
559                                  ConstantInt::get(Op1->getType(), 0));
560 
561     return MergeResults(Op0, Op1, IsSigned);
562   }
563 
564   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
565       canUseSExt(CI)) {
566     Preconditions.emplace_back(
567         CmpInst::ICMP_UGE, Op0,
568         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
569     return MergeResults(Op0, CI, true);
570   }
571 
572   // Decompose or as an add if there are no common bits between the operands.
573   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
574     return MergeResults(Op0, CI, IsSigned);
575 
576   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
577     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
578       return {V, IsKnownNonNegative};
579     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
580     Result.mul(int64_t{1} << CI->getSExtValue());
581     return Result;
582   }
583 
584   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
585       (!CI->isNegative())) {
586     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
587     Result.mul(CI->getSExtValue());
588     return Result;
589   }
590 
591   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
592     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
593     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
594     ResA.sub(ResB);
595     return ResA;
596   }
597 
598   return {V, IsKnownNonNegative};
599 }
600 
601 ConstraintTy
602 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
603                               SmallVectorImpl<Value *> &NewVariables) const {
604   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
605   bool IsEq = false;
606   bool IsNe = false;
607 
608   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
609   switch (Pred) {
610   case CmpInst::ICMP_UGT:
611   case CmpInst::ICMP_UGE:
612   case CmpInst::ICMP_SGT:
613   case CmpInst::ICMP_SGE: {
614     Pred = CmpInst::getSwappedPredicate(Pred);
615     std::swap(Op0, Op1);
616     break;
617   }
618   case CmpInst::ICMP_EQ:
619     if (match(Op1, m_Zero())) {
620       Pred = CmpInst::ICMP_ULE;
621     } else {
622       IsEq = true;
623       Pred = CmpInst::ICMP_ULE;
624     }
625     break;
626   case CmpInst::ICMP_NE:
627     if (match(Op1, m_Zero())) {
628       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
629       std::swap(Op0, Op1);
630     } else {
631       IsNe = true;
632       Pred = CmpInst::ICMP_ULE;
633     }
634     break;
635   default:
636     break;
637   }
638 
639   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
640       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
641     return {};
642 
643   SmallVector<ConditionTy, 4> Preconditions;
644   bool IsSigned = CmpInst::isSigned(Pred);
645   auto &Value2Index = getValue2Index(IsSigned);
646   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
647                         Preconditions, IsSigned, DL);
648   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
649                         Preconditions, IsSigned, DL);
650   int64_t Offset1 = ADec.Offset;
651   int64_t Offset2 = BDec.Offset;
652   Offset1 *= -1;
653 
654   auto &VariablesA = ADec.Vars;
655   auto &VariablesB = BDec.Vars;
656 
657   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
658   // new entry to NewVariables.
659   SmallDenseMap<Value *, unsigned> NewIndexMap;
660   auto GetOrAddIndex = [&Value2Index, &NewVariables,
661                         &NewIndexMap](Value *V) -> unsigned {
662     auto V2I = Value2Index.find(V);
663     if (V2I != Value2Index.end())
664       return V2I->second;
665     auto Insert =
666         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
667     if (Insert.second)
668       NewVariables.push_back(V);
669     return Insert.first->second;
670   };
671 
672   // Make sure all variables have entries in Value2Index or NewVariables.
673   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
674     GetOrAddIndex(KV.Variable);
675 
676   // Build result constraint, by first adding all coefficients from A and then
677   // subtracting all coefficients from B.
678   ConstraintTy Res(
679       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
680       IsSigned, IsEq, IsNe);
681   // Collect variables that are known to be positive in all uses in the
682   // constraint.
683   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
684   auto &R = Res.Coefficients;
685   for (const auto &KV : VariablesA) {
686     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
687     auto I =
688         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
689     I.first->second &= KV.IsKnownNonNegative;
690   }
691 
692   for (const auto &KV : VariablesB) {
693     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
694                     R[GetOrAddIndex(KV.Variable)]))
695       return {};
696     auto I =
697         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
698     I.first->second &= KV.IsKnownNonNegative;
699   }
700 
701   int64_t OffsetSum;
702   if (AddOverflow(Offset1, Offset2, OffsetSum))
703     return {};
704   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
705     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
706       return {};
707   R[0] = OffsetSum;
708   Res.Preconditions = std::move(Preconditions);
709 
710   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
711   // variables.
712   while (!NewVariables.empty()) {
713     int64_t Last = R.back();
714     if (Last != 0)
715       break;
716     R.pop_back();
717     Value *RemovedV = NewVariables.pop_back_val();
718     NewIndexMap.erase(RemovedV);
719   }
720 
721   // Add extra constraints for variables that are known positive.
722   for (auto &KV : KnownNonNegativeVariables) {
723     if (!KV.second ||
724         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
725       continue;
726     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
727     C[GetOrAddIndex(KV.first)] = -1;
728     Res.ExtraInfo.push_back(C);
729   }
730   return Res;
731 }
732 
733 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
734                                                      Value *Op0,
735                                                      Value *Op1) const {
736   Constant *NullC = Constant::getNullValue(Op0->getType());
737   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
738   // for all variables in the unsigned system.
739   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
740       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
741     auto &Value2Index = getValue2Index(false);
742     // Return constraint that's trivially true.
743     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
744                         false, false);
745   }
746 
747   // If both operands are known to be non-negative, change signed predicates to
748   // unsigned ones. This increases the reasoning effectiveness in combination
749   // with the signed <-> unsigned transfer logic.
750   if (CmpInst::isSigned(Pred) &&
751       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
752       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
753     Pred = CmpInst::getUnsignedPredicate(Pred);
754 
755   SmallVector<Value *> NewVariables;
756   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
757   if (!NewVariables.empty())
758     return {};
759   return R;
760 }
761 
762 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
763   return Coefficients.size() > 0 &&
764          all_of(Preconditions, [&Info](const ConditionTy &C) {
765            return Info.doesHold(C.Pred, C.Op0, C.Op1);
766          });
767 }
768 
769 std::optional<bool>
770 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
771   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
772 
773   if (IsEq || IsNe) {
774     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
775     bool IsNegatedOrEqualImplied =
776         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
777 
778     // In order to check that `%a == %b` is true (equality), both conditions `%a
779     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
780     // is true), we return true if they both hold, false in the other cases.
781     if (IsConditionImplied && IsNegatedOrEqualImplied)
782       return IsEq;
783 
784     auto Negated = ConstraintSystem::negate(Coefficients);
785     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
786 
787     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
788     bool IsStrictLessThanImplied =
789         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
790 
791     // In order to check that `%a != %b` is true (non-equality), either
792     // condition `%a > %b` or `%a < %b` must hold true. When checking for
793     // non-equality (`IsNe` is true), we return true if one of the two holds,
794     // false in the other cases.
795     if (IsNegatedImplied || IsStrictLessThanImplied)
796       return IsNe;
797 
798     return std::nullopt;
799   }
800 
801   if (IsConditionImplied)
802     return true;
803 
804   auto Negated = ConstraintSystem::negate(Coefficients);
805   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
806   if (IsNegatedImplied)
807     return false;
808 
809   // Neither the condition nor its negated holds, did not prove anything.
810   return std::nullopt;
811 }
812 
813 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
814                               Value *B) const {
815   auto R = getConstraintForSolving(Pred, A, B);
816   return R.isValid(*this) &&
817          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
818 }
819 
820 void ConstraintInfo::transferToOtherSystem(
821     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
822     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
823   auto IsKnownNonNegative = [this](Value *V) {
824     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
825            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
826   };
827   // Check if we can combine facts from the signed and unsigned systems to
828   // derive additional facts.
829   if (!A->getType()->isIntegerTy())
830     return;
831   // FIXME: This currently depends on the order we add facts. Ideally we
832   // would first add all known facts and only then try to add additional
833   // facts.
834   switch (Pred) {
835   default:
836     break;
837   case CmpInst::ICMP_ULT:
838   case CmpInst::ICMP_ULE:
839     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
840     if (IsKnownNonNegative(B)) {
841       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
842               NumOut, DFSInStack);
843       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
844               DFSInStack);
845     }
846     break;
847   case CmpInst::ICMP_UGE:
848   case CmpInst::ICMP_UGT:
849     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
850     if (IsKnownNonNegative(A)) {
851       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
852               NumOut, DFSInStack);
853       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
854               DFSInStack);
855     }
856     break;
857   case CmpInst::ICMP_SLT:
858     if (IsKnownNonNegative(A))
859       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
860     break;
861   case CmpInst::ICMP_SGT: {
862     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
863       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
864               NumOut, DFSInStack);
865     if (IsKnownNonNegative(B))
866       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
867 
868     break;
869   }
870   case CmpInst::ICMP_SGE:
871     if (IsKnownNonNegative(B))
872       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
873     break;
874   }
875 }
876 
877 #ifndef NDEBUG
878 
879 static void dumpConstraint(ArrayRef<int64_t> C,
880                            const DenseMap<Value *, unsigned> &Value2Index) {
881   ConstraintSystem CS(Value2Index);
882   CS.addVariableRowFill(C);
883   CS.dump();
884 }
885 #endif
886 
887 void State::addInfoForInductions(BasicBlock &BB) {
888   auto *L = LI.getLoopFor(&BB);
889   if (!L || L->getHeader() != &BB)
890     return;
891 
892   Value *A;
893   Value *B;
894   CmpInst::Predicate Pred;
895 
896   if (!match(BB.getTerminator(),
897              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
898     return;
899   PHINode *PN = dyn_cast<PHINode>(A);
900   if (!PN) {
901     Pred = CmpInst::getSwappedPredicate(Pred);
902     std::swap(A, B);
903     PN = dyn_cast<PHINode>(A);
904   }
905 
906   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
907       !SE.isSCEVable(PN->getType()))
908     return;
909 
910   BasicBlock *InLoopSucc = nullptr;
911   if (Pred == CmpInst::ICMP_NE)
912     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
913   else if (Pred == CmpInst::ICMP_EQ)
914     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
915   else
916     return;
917 
918   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
919     return;
920 
921   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
922   BasicBlock *LoopPred = L->getLoopPredecessor();
923   if (!AR || AR->getLoop() != L || !LoopPred)
924     return;
925 
926   const SCEV *StartSCEV = AR->getStart();
927   Value *StartValue = nullptr;
928   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
929     StartValue = C->getValue();
930   } else {
931     StartValue = PN->getIncomingValueForBlock(LoopPred);
932     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
933   }
934 
935   DomTreeNode *DTN = DT.getNode(InLoopSucc);
936   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
937   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
938   bool MonotonicallyIncreasingUnsigned =
939       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
940   bool MonotonicallyIncreasingSigned =
941       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
942   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
943   // unconditionally.
944   if (MonotonicallyIncreasingUnsigned)
945     WorkList.push_back(
946         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
947   if (MonotonicallyIncreasingSigned)
948     WorkList.push_back(
949         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
950 
951   APInt StepOffset;
952   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
953     StepOffset = C->getAPInt();
954   else
955     return;
956 
957   // Make sure the bound B is loop-invariant.
958   if (!L->isLoopInvariant(B))
959     return;
960 
961   // Handle negative steps.
962   if (StepOffset.isNegative()) {
963     // TODO: Extend to allow steps > -1.
964     if (!(-StepOffset).isOne())
965       return;
966 
967     // AR may wrap.
968     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
969     // the loop exits before wrapping with a step of -1.
970     WorkList.push_back(FactOrCheck::getConditionFact(
971         DTN, CmpInst::ICMP_UGE, StartValue, PN,
972         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
973     WorkList.push_back(FactOrCheck::getConditionFact(
974         DTN, CmpInst::ICMP_SGE, StartValue, PN,
975         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
976     // Add PN > B conditional on B <= StartValue which guarantees that the loop
977     // exits when reaching B with a step of -1.
978     WorkList.push_back(FactOrCheck::getConditionFact(
979         DTN, CmpInst::ICMP_UGT, PN, B,
980         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
981     WorkList.push_back(FactOrCheck::getConditionFact(
982         DTN, CmpInst::ICMP_SGT, PN, B,
983         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
984     return;
985   }
986 
987   // Make sure AR either steps by 1 or that the value we compare against is a
988   // GEP based on the same start value and all offsets are a multiple of the
989   // step size, to guarantee that the induction will reach the value.
990   if (StepOffset.isZero() || StepOffset.isNegative())
991     return;
992 
993   if (!StepOffset.isOne()) {
994     // Check whether B-Start is known to be a multiple of StepOffset.
995     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
996     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
997         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
998       return;
999   }
1000 
1001   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1002   // guarantees that the loop exits before wrapping in combination with the
1003   // restrictions on B and the step above.
1004   if (!MonotonicallyIncreasingUnsigned)
1005     WorkList.push_back(FactOrCheck::getConditionFact(
1006         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1007         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1008   if (!MonotonicallyIncreasingSigned)
1009     WorkList.push_back(FactOrCheck::getConditionFact(
1010         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1011         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1012 
1013   WorkList.push_back(FactOrCheck::getConditionFact(
1014       DTN, CmpInst::ICMP_ULT, PN, B,
1015       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1016   WorkList.push_back(FactOrCheck::getConditionFact(
1017       DTN, CmpInst::ICMP_SLT, PN, B,
1018       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1019 }
1020 
1021 void State::addInfoFor(BasicBlock &BB) {
1022   addInfoForInductions(BB);
1023 
1024   // True as long as long as the current instruction is guaranteed to execute.
1025   bool GuaranteedToExecute = true;
1026   // Queue conditions and assumes.
1027   for (Instruction &I : BB) {
1028     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1029       for (Use &U : Cmp->uses()) {
1030         auto *UserI = getContextInstForUse(U);
1031         auto *DTN = DT.getNode(UserI->getParent());
1032         if (!DTN)
1033           continue;
1034         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1035       }
1036       continue;
1037     }
1038 
1039     auto *II = dyn_cast<IntrinsicInst>(&I);
1040     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1041     switch (ID) {
1042     case Intrinsic::assume: {
1043       Value *A, *B;
1044       CmpInst::Predicate Pred;
1045       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1046         break;
1047       if (GuaranteedToExecute) {
1048         // The assume is guaranteed to execute when BB is entered, hence Cond
1049         // holds on entry to BB.
1050         WorkList.emplace_back(FactOrCheck::getConditionFact(
1051             DT.getNode(I.getParent()), Pred, A, B));
1052       } else {
1053         WorkList.emplace_back(
1054             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1055       }
1056       break;
1057     }
1058     // Enqueue ssub_with_overflow for simplification.
1059     case Intrinsic::ssub_with_overflow:
1060       WorkList.push_back(
1061           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1062       break;
1063     // Enqueue the intrinsics to add extra info.
1064     case Intrinsic::umin:
1065     case Intrinsic::umax:
1066     case Intrinsic::smin:
1067     case Intrinsic::smax:
1068       // TODO: Check if it is possible to instead only added the min/max facts
1069       // when simplifying uses of the min/max intrinsics.
1070       if (!isGuaranteedNotToBePoison(&I))
1071         break;
1072       [[fallthrough]];
1073     case Intrinsic::abs:
1074       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1075       break;
1076     }
1077 
1078     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1079   }
1080 
1081   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1082     for (auto &Case : Switch->cases()) {
1083       BasicBlock *Succ = Case.getCaseSuccessor();
1084       Value *V = Case.getCaseValue();
1085       if (!canAddSuccessor(BB, Succ))
1086         continue;
1087       WorkList.emplace_back(FactOrCheck::getConditionFact(
1088           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1089     }
1090     return;
1091   }
1092 
1093   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1094   if (!Br || !Br->isConditional())
1095     return;
1096 
1097   Value *Cond = Br->getCondition();
1098 
1099   // If the condition is a chain of ORs/AND and the successor only has the
1100   // current block as predecessor, queue conditions for the successor.
1101   Value *Op0, *Op1;
1102   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1103       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1104     bool IsOr = match(Cond, m_LogicalOr());
1105     bool IsAnd = match(Cond, m_LogicalAnd());
1106     // If there's a select that matches both AND and OR, we need to commit to
1107     // one of the options. Arbitrarily pick OR.
1108     if (IsOr && IsAnd)
1109       IsAnd = false;
1110 
1111     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1112     if (canAddSuccessor(BB, Successor)) {
1113       SmallVector<Value *> CondWorkList;
1114       SmallPtrSet<Value *, 8> SeenCond;
1115       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1116         if (SeenCond.insert(V).second)
1117           CondWorkList.push_back(V);
1118       };
1119       QueueValue(Op1);
1120       QueueValue(Op0);
1121       while (!CondWorkList.empty()) {
1122         Value *Cur = CondWorkList.pop_back_val();
1123         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1124           WorkList.emplace_back(FactOrCheck::getConditionFact(
1125               DT.getNode(Successor),
1126               IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1127                    : Cmp->getPredicate(),
1128               Cmp->getOperand(0), Cmp->getOperand(1)));
1129           continue;
1130         }
1131         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1132           QueueValue(Op1);
1133           QueueValue(Op0);
1134           continue;
1135         }
1136         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1137           QueueValue(Op1);
1138           QueueValue(Op0);
1139           continue;
1140         }
1141       }
1142     }
1143     return;
1144   }
1145 
1146   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1147   if (!CmpI)
1148     return;
1149   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1150     WorkList.emplace_back(FactOrCheck::getConditionFact(
1151         DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1152         CmpI->getOperand(0), CmpI->getOperand(1)));
1153   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1154     WorkList.emplace_back(FactOrCheck::getConditionFact(
1155         DT.getNode(Br->getSuccessor(1)),
1156         CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1157         CmpI->getOperand(1)));
1158 }
1159 
1160 #ifndef NDEBUG
1161 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1162                              Value *LHS, Value *RHS) {
1163   OS << "icmp " << Pred << ' ';
1164   LHS->printAsOperand(OS, /*PrintType=*/true);
1165   OS << ", ";
1166   RHS->printAsOperand(OS, /*PrintType=*/false);
1167 }
1168 #endif
1169 
1170 namespace {
1171 /// Helper to keep track of a condition and if it should be treated as negated
1172 /// for reproducer construction.
1173 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1174 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1175 struct ReproducerEntry {
1176   ICmpInst::Predicate Pred;
1177   Value *LHS;
1178   Value *RHS;
1179 
1180   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1181       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1182 };
1183 } // namespace
1184 
1185 /// Helper function to generate a reproducer function for simplifying \p Cond.
1186 /// The reproducer function contains a series of @llvm.assume calls, one for
1187 /// each condition in \p Stack. For each condition, the operand instruction are
1188 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1189 /// will then be added as function arguments. \p DT is used to order cloned
1190 /// instructions. The reproducer function will get added to \p M, if it is
1191 /// non-null. Otherwise no reproducer function is generated.
1192 static void generateReproducer(CmpInst *Cond, Module *M,
1193                                ArrayRef<ReproducerEntry> Stack,
1194                                ConstraintInfo &Info, DominatorTree &DT) {
1195   if (!M)
1196     return;
1197 
1198   LLVMContext &Ctx = Cond->getContext();
1199 
1200   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1201 
1202   ValueToValueMapTy Old2New;
1203   SmallVector<Value *> Args;
1204   SmallPtrSet<Value *, 8> Seen;
1205   // Traverse Cond and its operands recursively until we reach a value that's in
1206   // Value2Index or not an instruction, or not a operation that
1207   // ConstraintElimination can decompose. Such values will be considered as
1208   // external inputs to the reproducer, they are collected and added as function
1209   // arguments later.
1210   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1211     auto &Value2Index = Info.getValue2Index(IsSigned);
1212     SmallVector<Value *, 4> WorkList(Ops);
1213     while (!WorkList.empty()) {
1214       Value *V = WorkList.pop_back_val();
1215       if (!Seen.insert(V).second)
1216         continue;
1217       if (Old2New.find(V) != Old2New.end())
1218         continue;
1219       if (isa<Constant>(V))
1220         continue;
1221 
1222       auto *I = dyn_cast<Instruction>(V);
1223       if (Value2Index.contains(V) || !I ||
1224           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1225         Old2New[V] = V;
1226         Args.push_back(V);
1227         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1228       } else {
1229         append_range(WorkList, I->operands());
1230       }
1231     }
1232   };
1233 
1234   for (auto &Entry : Stack)
1235     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1236       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1237   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1238 
1239   SmallVector<Type *> ParamTys;
1240   for (auto *P : Args)
1241     ParamTys.push_back(P->getType());
1242 
1243   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1244                                         /*isVarArg=*/false);
1245   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1246                                  Cond->getModule()->getName() +
1247                                      Cond->getFunction()->getName() + "repro",
1248                                  M);
1249   // Add arguments to the reproducer function for each external value collected.
1250   for (unsigned I = 0; I < Args.size(); ++I) {
1251     F->getArg(I)->setName(Args[I]->getName());
1252     Old2New[Args[I]] = F->getArg(I);
1253   }
1254 
1255   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1256   IRBuilder<> Builder(Entry);
1257   Builder.CreateRet(Builder.getTrue());
1258   Builder.SetInsertPoint(Entry->getTerminator());
1259 
1260   // Clone instructions in \p Ops and their operands recursively until reaching
1261   // an value in Value2Index (external input to the reproducer). Update Old2New
1262   // mapping for the original and cloned instructions. Sort instructions to
1263   // clone by dominance, then insert the cloned instructions in the function.
1264   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1265     SmallVector<Value *, 4> WorkList(Ops);
1266     SmallVector<Instruction *> ToClone;
1267     auto &Value2Index = Info.getValue2Index(IsSigned);
1268     while (!WorkList.empty()) {
1269       Value *V = WorkList.pop_back_val();
1270       if (Old2New.find(V) != Old2New.end())
1271         continue;
1272 
1273       auto *I = dyn_cast<Instruction>(V);
1274       if (!Value2Index.contains(V) && I) {
1275         Old2New[V] = nullptr;
1276         ToClone.push_back(I);
1277         append_range(WorkList, I->operands());
1278       }
1279     }
1280 
1281     sort(ToClone,
1282          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1283     for (Instruction *I : ToClone) {
1284       Instruction *Cloned = I->clone();
1285       Old2New[I] = Cloned;
1286       Old2New[I]->setName(I->getName());
1287       Cloned->insertBefore(&*Builder.GetInsertPoint());
1288       Cloned->dropUnknownNonDebugMetadata();
1289       Cloned->setDebugLoc({});
1290     }
1291   };
1292 
1293   // Materialize the assumptions for the reproducer using the entries in Stack.
1294   // That is, first clone the operands of the condition recursively until we
1295   // reach an external input to the reproducer and add them to the reproducer
1296   // function. Then add an ICmp for the condition (with the inverse predicate if
1297   // the entry is negated) and an assert using the ICmp.
1298   for (auto &Entry : Stack) {
1299     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1300       continue;
1301 
1302     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1303                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1304                dbgs() << "\n");
1305     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1306 
1307     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1308     Builder.CreateAssumption(Cmp);
1309   }
1310 
1311   // Finally, clone the condition to reproduce and remap instruction operands in
1312   // the reproducer using Old2New.
1313   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1314   Entry->getTerminator()->setOperand(0, Cond);
1315   remapInstructionsInBlocks({Entry}, Old2New);
1316 
1317   assert(!verifyFunction(*F, &dbgs()));
1318 }
1319 
1320 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1321                                           Value *B, Instruction *CheckInst,
1322                                           ConstraintInfo &Info) {
1323   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1324 
1325   auto R = Info.getConstraintForSolving(Pred, A, B);
1326   if (R.empty() || !R.isValid(Info)){
1327     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1328     return std::nullopt;
1329   }
1330 
1331   auto &CSToUse = Info.getCS(R.IsSigned);
1332 
1333   // If there was extra information collected during decomposition, apply
1334   // it now and remove it immediately once we are done with reasoning
1335   // about the constraint.
1336   for (auto &Row : R.ExtraInfo)
1337     CSToUse.addVariableRow(Row);
1338   auto InfoRestorer = make_scope_exit([&]() {
1339     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1340       CSToUse.popLastConstraint();
1341   });
1342 
1343   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1344     if (!DebugCounter::shouldExecute(EliminatedCounter))
1345       return std::nullopt;
1346 
1347     LLVM_DEBUG({
1348       dbgs() << "Condition ";
1349       dumpUnpackedICmp(
1350           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1351           A, B);
1352       dbgs() << " implied by dominating constraints\n";
1353       CSToUse.dump();
1354     });
1355     return ImpliedCondition;
1356   }
1357 
1358   return std::nullopt;
1359 }
1360 
1361 static bool checkAndReplaceCondition(
1362     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1363     Instruction *ContextInst, Module *ReproducerModule,
1364     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1365     SmallVectorImpl<Instruction *> &ToRemove) {
1366   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1367     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1368     Constant *ConstantC = ConstantInt::getBool(
1369         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1370     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1371                                        ContextInst](Use &U) {
1372       auto *UserI = getContextInstForUse(U);
1373       auto *DTN = DT.getNode(UserI->getParent());
1374       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1375         return false;
1376       if (UserI->getParent() == ContextInst->getParent() &&
1377           UserI->comesBefore(ContextInst))
1378         return false;
1379 
1380       // Conditions in an assume trivially simplify to true. Skip uses
1381       // in assume calls to not destroy the available information.
1382       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1383       return !II || II->getIntrinsicID() != Intrinsic::assume;
1384     });
1385     NumCondsRemoved++;
1386     if (Cmp->use_empty())
1387       ToRemove.push_back(Cmp);
1388     return true;
1389   };
1390 
1391   if (auto ImpliedCondition =
1392           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1393                          Cmp->getOperand(1), Cmp, Info))
1394     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1395   return false;
1396 }
1397 
1398 static void
1399 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1400                      Module *ReproducerModule,
1401                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1402                      SmallVectorImpl<StackEntry> &DFSInStack) {
1403   Info.popLastConstraint(E.IsSigned);
1404   // Remove variables in the system that went out of scope.
1405   auto &Mapping = Info.getValue2Index(E.IsSigned);
1406   for (Value *V : E.ValuesToRelease)
1407     Mapping.erase(V);
1408   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1409   DFSInStack.pop_back();
1410   if (ReproducerModule)
1411     ReproducerCondStack.pop_back();
1412 }
1413 
1414 /// Check if either the first condition of an AND or OR is implied by the
1415 /// (negated in case of OR) second condition or vice versa.
1416 static bool checkOrAndOpImpliedByOther(
1417     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1418     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1419     SmallVectorImpl<StackEntry> &DFSInStack) {
1420 
1421   CmpInst::Predicate Pred;
1422   Value *A, *B;
1423   Instruction *JoinOp = CB.getContextInst();
1424   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1425   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1426 
1427   // Don't try to simplify the first condition of a select by the second, as
1428   // this may make the select more poisonous than the original one.
1429   // TODO: check if the first operand may be poison.
1430   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1431     return false;
1432 
1433   if (!match(JoinOp->getOperand(OtherOpIdx),
1434              m_ICmp(Pred, m_Value(A), m_Value(B))))
1435     return false;
1436 
1437   // For OR, check if the negated condition implies CmpToCheck.
1438   bool IsOr = match(JoinOp, m_LogicalOr());
1439   if (IsOr)
1440     Pred = CmpInst::getInversePredicate(Pred);
1441 
1442   // Optimistically add fact from first condition.
1443   unsigned OldSize = DFSInStack.size();
1444   Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1445   if (OldSize == DFSInStack.size())
1446     return false;
1447 
1448   bool Changed = false;
1449   // Check if the second condition can be simplified now.
1450   if (auto ImpliedCondition =
1451           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1452                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1453     if (IsOr && isa<SelectInst>(JoinOp)) {
1454       JoinOp->setOperand(
1455           OtherOpIdx == 0 ? 2 : 0,
1456           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1457     } else
1458       JoinOp->setOperand(
1459           1 - OtherOpIdx,
1460           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1461 
1462     Changed = true;
1463   }
1464 
1465   // Remove entries again.
1466   while (OldSize < DFSInStack.size()) {
1467     StackEntry E = DFSInStack.back();
1468     removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1469                          DFSInStack);
1470   }
1471   return Changed;
1472 }
1473 
1474 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1475                              unsigned NumIn, unsigned NumOut,
1476                              SmallVectorImpl<StackEntry> &DFSInStack) {
1477   // If the constraint has a pre-condition, skip the constraint if it does not
1478   // hold.
1479   SmallVector<Value *> NewVariables;
1480   auto R = getConstraint(Pred, A, B, NewVariables);
1481 
1482   // TODO: Support non-equality for facts as well.
1483   if (!R.isValid(*this) || R.isNe())
1484     return;
1485 
1486   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1487              dbgs() << "'\n");
1488   bool Added = false;
1489   auto &CSToUse = getCS(R.IsSigned);
1490   if (R.Coefficients.empty())
1491     return;
1492 
1493   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1494 
1495   // If R has been added to the system, add the new variables and queue it for
1496   // removal once it goes out-of-scope.
1497   if (Added) {
1498     SmallVector<Value *, 2> ValuesToRelease;
1499     auto &Value2Index = getValue2Index(R.IsSigned);
1500     for (Value *V : NewVariables) {
1501       Value2Index.insert({V, Value2Index.size() + 1});
1502       ValuesToRelease.push_back(V);
1503     }
1504 
1505     LLVM_DEBUG({
1506       dbgs() << "  constraint: ";
1507       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1508       dbgs() << "\n";
1509     });
1510 
1511     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1512                             std::move(ValuesToRelease));
1513 
1514     if (!R.IsSigned) {
1515       for (Value *V : NewVariables) {
1516         ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1517                             false, false, false);
1518         VarPos.Coefficients[Value2Index[V]] = -1;
1519         CSToUse.addVariableRow(VarPos.Coefficients);
1520         DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1521                                 SmallVector<Value *, 2>());
1522       }
1523     }
1524 
1525     if (R.isEq()) {
1526       // Also add the inverted constraint for equality constraints.
1527       for (auto &Coeff : R.Coefficients)
1528         Coeff *= -1;
1529       CSToUse.addVariableRowFill(R.Coefficients);
1530 
1531       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1532                               SmallVector<Value *, 2>());
1533     }
1534   }
1535 }
1536 
1537 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1538                                    SmallVectorImpl<Instruction *> &ToRemove) {
1539   bool Changed = false;
1540   IRBuilder<> Builder(II->getParent(), II->getIterator());
1541   Value *Sub = nullptr;
1542   for (User *U : make_early_inc_range(II->users())) {
1543     if (match(U, m_ExtractValue<0>(m_Value()))) {
1544       if (!Sub)
1545         Sub = Builder.CreateSub(A, B);
1546       U->replaceAllUsesWith(Sub);
1547       Changed = true;
1548     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1549       U->replaceAllUsesWith(Builder.getFalse());
1550       Changed = true;
1551     } else
1552       continue;
1553 
1554     if (U->use_empty()) {
1555       auto *I = cast<Instruction>(U);
1556       ToRemove.push_back(I);
1557       I->setOperand(0, PoisonValue::get(II->getType()));
1558       Changed = true;
1559     }
1560   }
1561 
1562   if (II->use_empty()) {
1563     II->eraseFromParent();
1564     Changed = true;
1565   }
1566   return Changed;
1567 }
1568 
1569 static bool
1570 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1571                           SmallVectorImpl<Instruction *> &ToRemove) {
1572   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1573                               ConstraintInfo &Info) {
1574     auto R = Info.getConstraintForSolving(Pred, A, B);
1575     if (R.size() < 2 || !R.isValid(Info))
1576       return false;
1577 
1578     auto &CSToUse = Info.getCS(R.IsSigned);
1579     return CSToUse.isConditionImplied(R.Coefficients);
1580   };
1581 
1582   bool Changed = false;
1583   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1584     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1585     // can be simplified to a regular sub.
1586     Value *A = II->getArgOperand(0);
1587     Value *B = II->getArgOperand(1);
1588     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1589         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1590                            ConstantInt::get(A->getType(), 0), Info))
1591       return false;
1592     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1593   }
1594   return Changed;
1595 }
1596 
1597 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1598                                  ScalarEvolution &SE,
1599                                  OptimizationRemarkEmitter &ORE) {
1600   bool Changed = false;
1601   DT.updateDFSNumbers();
1602   SmallVector<Value *> FunctionArgs;
1603   for (Value &Arg : F.args())
1604     FunctionArgs.push_back(&Arg);
1605   ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1606   State S(DT, LI, SE);
1607   std::unique_ptr<Module> ReproducerModule(
1608       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1609 
1610   // First, collect conditions implied by branches and blocks with their
1611   // Dominator DFS in and out numbers.
1612   for (BasicBlock &BB : F) {
1613     if (!DT.getNode(&BB))
1614       continue;
1615     S.addInfoFor(BB);
1616   }
1617 
1618   // Next, sort worklist by dominance, so that dominating conditions to check
1619   // and facts come before conditions and facts dominated by them. If a
1620   // condition to check and a fact have the same numbers, conditional facts come
1621   // first. Assume facts and checks are ordered according to their relative
1622   // order in the containing basic block. Also make sure conditions with
1623   // constant operands come before conditions without constant operands. This
1624   // increases the effectiveness of the current signed <-> unsigned fact
1625   // transfer logic.
1626   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1627     auto HasNoConstOp = [](const FactOrCheck &B) {
1628       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1629       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1630       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1631     };
1632     // If both entries have the same In numbers, conditional facts come first.
1633     // Otherwise use the relative order in the basic block.
1634     if (A.NumIn == B.NumIn) {
1635       if (A.isConditionFact() && B.isConditionFact()) {
1636         bool NoConstOpA = HasNoConstOp(A);
1637         bool NoConstOpB = HasNoConstOp(B);
1638         return NoConstOpA < NoConstOpB;
1639       }
1640       if (A.isConditionFact())
1641         return true;
1642       if (B.isConditionFact())
1643         return false;
1644       auto *InstA = A.getContextInst();
1645       auto *InstB = B.getContextInst();
1646       return InstA->comesBefore(InstB);
1647     }
1648     return A.NumIn < B.NumIn;
1649   });
1650 
1651   SmallVector<Instruction *> ToRemove;
1652 
1653   // Finally, process ordered worklist and eliminate implied conditions.
1654   SmallVector<StackEntry, 16> DFSInStack;
1655   SmallVector<ReproducerEntry> ReproducerCondStack;
1656   for (FactOrCheck &CB : S.WorkList) {
1657     // First, pop entries from the stack that are out-of-scope for CB. Remove
1658     // the corresponding entry from the constraint system.
1659     while (!DFSInStack.empty()) {
1660       auto &E = DFSInStack.back();
1661       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1662                         << "\n");
1663       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1664       assert(E.NumIn <= CB.NumIn);
1665       if (CB.NumOut <= E.NumOut)
1666         break;
1667       LLVM_DEBUG({
1668         dbgs() << "Removing ";
1669         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1670                        Info.getValue2Index(E.IsSigned));
1671         dbgs() << "\n";
1672       });
1673       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1674                            DFSInStack);
1675     }
1676 
1677     // For a block, check if any CmpInsts become known based on the current set
1678     // of constraints.
1679     if (CB.isCheck()) {
1680       Instruction *Inst = CB.getInstructionToSimplify();
1681       if (!Inst)
1682         continue;
1683       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1684                         << "\n");
1685       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1686         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1687       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1688         bool Simplified = checkAndReplaceCondition(
1689             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1690             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1691         if (!Simplified &&
1692             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1693           Simplified =
1694               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1695                                          ReproducerCondStack, DFSInStack);
1696         }
1697         Changed |= Simplified;
1698       }
1699       continue;
1700     }
1701 
1702     auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1703       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1704                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1705       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1706         LLVM_DEBUG(
1707             dbgs()
1708             << "Skip adding constraint because system has too many rows.\n");
1709         return;
1710       }
1711 
1712       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1713       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1714         ReproducerCondStack.emplace_back(Pred, A, B);
1715 
1716       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1717       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1718         // Add dummy entries to ReproducerCondStack to keep it in sync with
1719         // DFSInStack.
1720         for (unsigned I = 0,
1721                       E = (DFSInStack.size() - ReproducerCondStack.size());
1722              I < E; ++I) {
1723           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1724                                            nullptr, nullptr);
1725         }
1726       }
1727     };
1728 
1729     ICmpInst::Predicate Pred;
1730     if (!CB.isConditionFact()) {
1731       Value *X;
1732       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1733         // TODO: Add CB.Inst >= 0 fact.
1734         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1735         continue;
1736       }
1737 
1738       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1739         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1740         AddFact(Pred, MinMax, MinMax->getLHS());
1741         AddFact(Pred, MinMax, MinMax->getRHS());
1742         continue;
1743       }
1744     }
1745 
1746     Value *A = nullptr, *B = nullptr;
1747     if (CB.isConditionFact()) {
1748       Pred = CB.Cond.Pred;
1749       A = CB.Cond.Op0;
1750       B = CB.Cond.Op1;
1751       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1752           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1753         LLVM_DEBUG({
1754           dbgs() << "Not adding fact ";
1755           dumpUnpackedICmp(dbgs(), Pred, A, B);
1756           dbgs() << " because precondition ";
1757           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1758                            CB.DoesHold.Op1);
1759           dbgs() << " does not hold.\n";
1760         });
1761         continue;
1762       }
1763     } else {
1764       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1765                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1766       (void)Matched;
1767       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1768     }
1769     AddFact(Pred, A, B);
1770   }
1771 
1772   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1773     std::string S;
1774     raw_string_ostream StringS(S);
1775     ReproducerModule->print(StringS, nullptr);
1776     StringS.flush();
1777     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1778     Rem << ore::NV("module") << S;
1779     ORE.emit(Rem);
1780   }
1781 
1782 #ifndef NDEBUG
1783   unsigned SignedEntries =
1784       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1785   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1786              DFSInStack.size() - SignedEntries &&
1787          "updates to CS and DFSInStack are out of sync");
1788   assert(Info.getCS(true).size() == SignedEntries &&
1789          "updates to CS and DFSInStack are out of sync");
1790 #endif
1791 
1792   for (Instruction *I : ToRemove)
1793     I->eraseFromParent();
1794   return Changed;
1795 }
1796 
1797 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1798                                                  FunctionAnalysisManager &AM) {
1799   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1800   auto &LI = AM.getResult<LoopAnalysis>(F);
1801   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1802   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1803   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1804     return PreservedAnalyses::all();
1805 
1806   PreservedAnalyses PA;
1807   PA.preserve<DominatorTreeAnalysis>();
1808   PA.preserve<LoopAnalysis>();
1809   PA.preserve<ScalarEvolutionAnalysis>();
1810   PA.preserveSet<CFGAnalyses>();
1811   return PA;
1812 }
1813