1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <optional> 42 #include <string> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "constraint-elimination" 48 49 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 51 "Controls which conditions are eliminated"); 52 53 static cl::opt<unsigned> 54 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 55 cl::desc("Maximum number of rows to keep in constraint system")); 56 57 static cl::opt<bool> DumpReproducers( 58 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 59 cl::desc("Dump IR to reproduce successful transformations.")); 60 61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 63 64 // A helper to multiply 2 signed integers where overflowing is allowed. 65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 66 int64_t Result; 67 MulOverflow(A, B, Result); 68 return Result; 69 } 70 71 // A helper to add 2 signed integers where overflowing is allowed. 72 static int64_t addWithOverflow(int64_t A, int64_t B) { 73 int64_t Result; 74 AddOverflow(A, B, Result); 75 return Result; 76 } 77 78 static Instruction *getContextInstForUse(Use &U) { 79 Instruction *UserI = cast<Instruction>(U.getUser()); 80 if (auto *Phi = dyn_cast<PHINode>(UserI)) 81 UserI = Phi->getIncomingBlock(U)->getTerminator(); 82 return UserI; 83 } 84 85 namespace { 86 /// Represents either 87 /// * a condition that holds on entry to a block (=conditional fact) 88 /// * an assume (=assume fact) 89 /// * a use of a compare instruction to simplify. 90 /// It also tracks the Dominator DFS in and out numbers for each entry. 91 struct FactOrCheck { 92 union { 93 Instruction *Inst; 94 Use *U; 95 }; 96 unsigned NumIn; 97 unsigned NumOut; 98 bool HasInst; 99 bool Not; 100 101 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not) 102 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 103 HasInst(true), Not(Not) {} 104 105 FactOrCheck(DomTreeNode *DTN, Use *U) 106 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 107 HasInst(false), Not(false) {} 108 109 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 110 bool Not = false) { 111 return FactOrCheck(DTN, Inst, Not); 112 } 113 114 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 115 return FactOrCheck(DTN, U); 116 } 117 118 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 119 return FactOrCheck(DTN, CI, false); 120 } 121 122 bool isCheck() const { 123 return !HasInst || 124 match(Inst, m_Intrinsic<Intrinsic::ssub_with_overflow>()); 125 } 126 127 Instruction *getContextInst() const { 128 if (HasInst) 129 return Inst; 130 return getContextInstForUse(*U); 131 } 132 Instruction *getInstructionToSimplify() const { 133 assert(isCheck()); 134 if (HasInst) 135 return Inst; 136 // The use may have been simplified to a constant already. 137 return dyn_cast<Instruction>(*U); 138 } 139 bool isConditionFact() const { return !isCheck() && isa<CmpInst>(Inst); } 140 }; 141 142 /// Keep state required to build worklist. 143 struct State { 144 DominatorTree &DT; 145 SmallVector<FactOrCheck, 64> WorkList; 146 147 State(DominatorTree &DT) : DT(DT) {} 148 149 /// Process block \p BB and add known facts to work-list. 150 void addInfoFor(BasicBlock &BB); 151 152 /// Returns true if we can add a known condition from BB to its successor 153 /// block Succ. 154 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 155 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 156 } 157 }; 158 159 class ConstraintInfo; 160 161 struct StackEntry { 162 unsigned NumIn; 163 unsigned NumOut; 164 bool IsSigned = false; 165 /// Variables that can be removed from the system once the stack entry gets 166 /// removed. 167 SmallVector<Value *, 2> ValuesToRelease; 168 169 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 170 SmallVector<Value *, 2> ValuesToRelease) 171 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 172 ValuesToRelease(ValuesToRelease) {} 173 }; 174 175 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 176 struct PreconditionTy { 177 CmpInst::Predicate Pred; 178 Value *Op0; 179 Value *Op1; 180 181 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 182 : Pred(Pred), Op0(Op0), Op1(Op1) {} 183 }; 184 185 struct ConstraintTy { 186 SmallVector<int64_t, 8> Coefficients; 187 SmallVector<PreconditionTy, 2> Preconditions; 188 189 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 190 191 bool IsSigned = false; 192 193 ConstraintTy() = default; 194 195 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 196 bool IsNe) 197 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 198 } 199 200 unsigned size() const { return Coefficients.size(); } 201 202 unsigned empty() const { return Coefficients.empty(); } 203 204 /// Returns true if all preconditions for this list of constraints are 205 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 206 bool isValid(const ConstraintInfo &Info) const; 207 208 bool isEq() const { return IsEq; } 209 210 bool isNe() const { return IsNe; } 211 212 /// Check if the current constraint is implied by the given ConstraintSystem. 213 /// 214 /// \return true or false if the constraint is proven to be respectively true, 215 /// or false. When the constraint cannot be proven to be either true or false, 216 /// std::nullopt is returned. 217 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 218 219 private: 220 bool IsEq = false; 221 bool IsNe = false; 222 }; 223 224 /// Wrapper encapsulating separate constraint systems and corresponding value 225 /// mappings for both unsigned and signed information. Facts are added to and 226 /// conditions are checked against the corresponding system depending on the 227 /// signed-ness of their predicates. While the information is kept separate 228 /// based on signed-ness, certain conditions can be transferred between the two 229 /// systems. 230 class ConstraintInfo { 231 232 ConstraintSystem UnsignedCS; 233 ConstraintSystem SignedCS; 234 235 const DataLayout &DL; 236 237 public: 238 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 239 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 240 241 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 242 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 243 } 244 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 245 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 246 } 247 248 ConstraintSystem &getCS(bool Signed) { 249 return Signed ? SignedCS : UnsignedCS; 250 } 251 const ConstraintSystem &getCS(bool Signed) const { 252 return Signed ? SignedCS : UnsignedCS; 253 } 254 255 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 256 void popLastNVariables(bool Signed, unsigned N) { 257 getCS(Signed).popLastNVariables(N); 258 } 259 260 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 261 262 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 263 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 264 265 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 266 /// constraints, using indices from the corresponding constraint system. 267 /// New variables that need to be added to the system are collected in 268 /// \p NewVariables. 269 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 270 SmallVectorImpl<Value *> &NewVariables) const; 271 272 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 273 /// constraints using getConstraint. Returns an empty constraint if the result 274 /// cannot be used to query the existing constraint system, e.g. because it 275 /// would require adding new variables. Also tries to convert signed 276 /// predicates to unsigned ones if possible to allow using the unsigned system 277 /// which increases the effectiveness of the signed <-> unsigned transfer 278 /// logic. 279 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 280 Value *Op1) const; 281 282 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 283 /// system if \p Pred is signed/unsigned. 284 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 285 unsigned NumIn, unsigned NumOut, 286 SmallVectorImpl<StackEntry> &DFSInStack); 287 }; 288 289 /// Represents a (Coefficient * Variable) entry after IR decomposition. 290 struct DecompEntry { 291 int64_t Coefficient; 292 Value *Variable; 293 /// True if the variable is known positive in the current constraint. 294 bool IsKnownNonNegative; 295 296 DecompEntry(int64_t Coefficient, Value *Variable, 297 bool IsKnownNonNegative = false) 298 : Coefficient(Coefficient), Variable(Variable), 299 IsKnownNonNegative(IsKnownNonNegative) {} 300 }; 301 302 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 303 struct Decomposition { 304 int64_t Offset = 0; 305 SmallVector<DecompEntry, 3> Vars; 306 307 Decomposition(int64_t Offset) : Offset(Offset) {} 308 Decomposition(Value *V, bool IsKnownNonNegative = false) { 309 Vars.emplace_back(1, V, IsKnownNonNegative); 310 } 311 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 312 : Offset(Offset), Vars(Vars) {} 313 314 void add(int64_t OtherOffset) { 315 Offset = addWithOverflow(Offset, OtherOffset); 316 } 317 318 void add(const Decomposition &Other) { 319 add(Other.Offset); 320 append_range(Vars, Other.Vars); 321 } 322 323 void mul(int64_t Factor) { 324 Offset = multiplyWithOverflow(Offset, Factor); 325 for (auto &Var : Vars) 326 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 327 } 328 }; 329 330 } // namespace 331 332 static Decomposition decompose(Value *V, 333 SmallVectorImpl<PreconditionTy> &Preconditions, 334 bool IsSigned, const DataLayout &DL); 335 336 static bool canUseSExt(ConstantInt *CI) { 337 const APInt &Val = CI->getValue(); 338 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 339 } 340 341 static Decomposition 342 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 343 bool IsSigned, const DataLayout &DL) { 344 // Do not reason about pointers where the index size is larger than 64 bits, 345 // as the coefficients used to encode constraints are 64 bit integers. 346 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 347 return &GEP; 348 349 if (!GEP.isInBounds()) 350 return &GEP; 351 352 assert(!IsSigned && "The logic below only supports decomposition for " 353 "unsinged predicates at the moment."); 354 Type *PtrTy = GEP.getType()->getScalarType(); 355 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 356 MapVector<Value *, APInt> VariableOffsets; 357 APInt ConstantOffset(BitWidth, 0); 358 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 359 return &GEP; 360 361 // Handle the (gep (gep ....), C) case by incrementing the constant 362 // coefficient of the inner GEP, if C is a constant. 363 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 364 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 365 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 366 Result.add(ConstantOffset.getSExtValue()); 367 368 if (ConstantOffset.isNegative()) { 369 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 370 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 371 if (ConstantOffsetI % Scale != 0) 372 return &GEP; 373 // Add pre-condition ensuring the GEP is increasing monotonically and 374 // can be de-composed. 375 // Both sides are normalized by being divided by Scale. 376 Preconditions.emplace_back( 377 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 378 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 379 -1 * (ConstantOffsetI / Scale))); 380 } 381 return Result; 382 } 383 384 Decomposition Result(ConstantOffset.getSExtValue(), 385 DecompEntry(1, GEP.getPointerOperand())); 386 for (auto [Index, Scale] : VariableOffsets) { 387 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 388 IdxResult.mul(Scale.getSExtValue()); 389 Result.add(IdxResult); 390 391 // If Op0 is signed non-negative, the GEP is increasing monotonically and 392 // can be de-composed. 393 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 394 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 395 ConstantInt::get(Index->getType(), 0)); 396 } 397 return Result; 398 } 399 400 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 401 // Variable } where Coefficient * Variable. The sum of the constant offset and 402 // pairs equals \p V. 403 static Decomposition decompose(Value *V, 404 SmallVectorImpl<PreconditionTy> &Preconditions, 405 bool IsSigned, const DataLayout &DL) { 406 407 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 408 bool IsSignedB) { 409 auto ResA = decompose(A, Preconditions, IsSigned, DL); 410 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 411 ResA.add(ResB); 412 return ResA; 413 }; 414 415 // Decompose \p V used with a signed predicate. 416 if (IsSigned) { 417 if (auto *CI = dyn_cast<ConstantInt>(V)) { 418 if (canUseSExt(CI)) 419 return CI->getSExtValue(); 420 } 421 Value *Op0; 422 Value *Op1; 423 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 424 return MergeResults(Op0, Op1, IsSigned); 425 426 ConstantInt *CI; 427 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI)))) { 428 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 429 Result.mul(CI->getSExtValue()); 430 return Result; 431 } 432 433 return V; 434 } 435 436 if (auto *CI = dyn_cast<ConstantInt>(V)) { 437 if (CI->uge(MaxConstraintValue)) 438 return V; 439 return int64_t(CI->getZExtValue()); 440 } 441 442 if (auto *GEP = dyn_cast<GEPOperator>(V)) 443 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 444 445 Value *Op0; 446 bool IsKnownNonNegative = false; 447 if (match(V, m_ZExt(m_Value(Op0)))) { 448 IsKnownNonNegative = true; 449 V = Op0; 450 } 451 452 Value *Op1; 453 ConstantInt *CI; 454 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 455 return MergeResults(Op0, Op1, IsSigned); 456 } 457 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 458 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 459 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 460 ConstantInt::get(Op0->getType(), 0)); 461 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 462 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 463 ConstantInt::get(Op1->getType(), 0)); 464 465 return MergeResults(Op0, Op1, IsSigned); 466 } 467 468 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 469 canUseSExt(CI)) { 470 Preconditions.emplace_back( 471 CmpInst::ICMP_UGE, Op0, 472 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 473 return MergeResults(Op0, CI, true); 474 } 475 476 // Decompose or as an add if there are no common bits between the operands. 477 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 478 haveNoCommonBitsSet(Op0, CI, DL)) { 479 return MergeResults(Op0, CI, IsSigned); 480 } 481 482 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 483 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 484 return {V, IsKnownNonNegative}; 485 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 486 Result.mul(int64_t{1} << CI->getSExtValue()); 487 return Result; 488 } 489 490 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 491 (!CI->isNegative())) { 492 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 493 Result.mul(CI->getSExtValue()); 494 return Result; 495 } 496 497 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 498 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 499 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 500 return {0, {{1, Op0}, {-1, Op1}}}; 501 502 return {V, IsKnownNonNegative}; 503 } 504 505 ConstraintTy 506 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 507 SmallVectorImpl<Value *> &NewVariables) const { 508 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 509 bool IsEq = false; 510 bool IsNe = false; 511 512 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 513 switch (Pred) { 514 case CmpInst::ICMP_UGT: 515 case CmpInst::ICMP_UGE: 516 case CmpInst::ICMP_SGT: 517 case CmpInst::ICMP_SGE: { 518 Pred = CmpInst::getSwappedPredicate(Pred); 519 std::swap(Op0, Op1); 520 break; 521 } 522 case CmpInst::ICMP_EQ: 523 if (match(Op1, m_Zero())) { 524 Pred = CmpInst::ICMP_ULE; 525 } else { 526 IsEq = true; 527 Pred = CmpInst::ICMP_ULE; 528 } 529 break; 530 case CmpInst::ICMP_NE: 531 if (match(Op1, m_Zero())) { 532 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 533 std::swap(Op0, Op1); 534 } else { 535 IsNe = true; 536 Pred = CmpInst::ICMP_ULE; 537 } 538 break; 539 default: 540 break; 541 } 542 543 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 544 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 545 return {}; 546 547 SmallVector<PreconditionTy, 4> Preconditions; 548 bool IsSigned = CmpInst::isSigned(Pred); 549 auto &Value2Index = getValue2Index(IsSigned); 550 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 551 Preconditions, IsSigned, DL); 552 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 553 Preconditions, IsSigned, DL); 554 int64_t Offset1 = ADec.Offset; 555 int64_t Offset2 = BDec.Offset; 556 Offset1 *= -1; 557 558 auto &VariablesA = ADec.Vars; 559 auto &VariablesB = BDec.Vars; 560 561 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 562 // new entry to NewVariables. 563 DenseMap<Value *, unsigned> NewIndexMap; 564 auto GetOrAddIndex = [&Value2Index, &NewVariables, 565 &NewIndexMap](Value *V) -> unsigned { 566 auto V2I = Value2Index.find(V); 567 if (V2I != Value2Index.end()) 568 return V2I->second; 569 auto Insert = 570 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 571 if (Insert.second) 572 NewVariables.push_back(V); 573 return Insert.first->second; 574 }; 575 576 // Make sure all variables have entries in Value2Index or NewVariables. 577 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 578 GetOrAddIndex(KV.Variable); 579 580 // Build result constraint, by first adding all coefficients from A and then 581 // subtracting all coefficients from B. 582 ConstraintTy Res( 583 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 584 IsSigned, IsEq, IsNe); 585 // Collect variables that are known to be positive in all uses in the 586 // constraint. 587 DenseMap<Value *, bool> KnownNonNegativeVariables; 588 auto &R = Res.Coefficients; 589 for (const auto &KV : VariablesA) { 590 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 591 auto I = 592 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 593 I.first->second &= KV.IsKnownNonNegative; 594 } 595 596 for (const auto &KV : VariablesB) { 597 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 598 R[GetOrAddIndex(KV.Variable)])) 599 return {}; 600 auto I = 601 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 602 I.first->second &= KV.IsKnownNonNegative; 603 } 604 605 int64_t OffsetSum; 606 if (AddOverflow(Offset1, Offset2, OffsetSum)) 607 return {}; 608 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 609 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 610 return {}; 611 R[0] = OffsetSum; 612 Res.Preconditions = std::move(Preconditions); 613 614 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 615 // variables. 616 while (!NewVariables.empty()) { 617 int64_t Last = R.back(); 618 if (Last != 0) 619 break; 620 R.pop_back(); 621 Value *RemovedV = NewVariables.pop_back_val(); 622 NewIndexMap.erase(RemovedV); 623 } 624 625 // Add extra constraints for variables that are known positive. 626 for (auto &KV : KnownNonNegativeVariables) { 627 if (!KV.second || 628 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 629 continue; 630 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 631 C[GetOrAddIndex(KV.first)] = -1; 632 Res.ExtraInfo.push_back(C); 633 } 634 return Res; 635 } 636 637 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 638 Value *Op0, 639 Value *Op1) const { 640 // If both operands are known to be non-negative, change signed predicates to 641 // unsigned ones. This increases the reasoning effectiveness in combination 642 // with the signed <-> unsigned transfer logic. 643 if (CmpInst::isSigned(Pred) && 644 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 645 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 646 Pred = CmpInst::getUnsignedPredicate(Pred); 647 648 SmallVector<Value *> NewVariables; 649 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 650 if (!NewVariables.empty()) 651 return {}; 652 return R; 653 } 654 655 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 656 return Coefficients.size() > 0 && 657 all_of(Preconditions, [&Info](const PreconditionTy &C) { 658 return Info.doesHold(C.Pred, C.Op0, C.Op1); 659 }); 660 } 661 662 std::optional<bool> 663 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 664 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 665 666 if (IsEq || IsNe) { 667 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 668 bool IsNegatedOrEqualImplied = 669 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 670 671 // In order to check that `%a == %b` is true (equality), both conditions `%a 672 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 673 // is true), we return true if they both hold, false in the other cases. 674 if (IsConditionImplied && IsNegatedOrEqualImplied) 675 return IsEq; 676 677 auto Negated = ConstraintSystem::negate(Coefficients); 678 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 679 680 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 681 bool IsStrictLessThanImplied = 682 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 683 684 // In order to check that `%a != %b` is true (non-equality), either 685 // condition `%a > %b` or `%a < %b` must hold true. When checking for 686 // non-equality (`IsNe` is true), we return true if one of the two holds, 687 // false in the other cases. 688 if (IsNegatedImplied || IsStrictLessThanImplied) 689 return IsNe; 690 691 return std::nullopt; 692 } 693 694 if (IsConditionImplied) 695 return true; 696 697 auto Negated = ConstraintSystem::negate(Coefficients); 698 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 699 if (IsNegatedImplied) 700 return false; 701 702 // Neither the condition nor its negated holds, did not prove anything. 703 return std::nullopt; 704 } 705 706 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 707 Value *B) const { 708 auto R = getConstraintForSolving(Pred, A, B); 709 return R.isValid(*this) && 710 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 711 } 712 713 void ConstraintInfo::transferToOtherSystem( 714 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 715 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 716 // Check if we can combine facts from the signed and unsigned systems to 717 // derive additional facts. 718 if (!A->getType()->isIntegerTy()) 719 return; 720 // FIXME: This currently depends on the order we add facts. Ideally we 721 // would first add all known facts and only then try to add additional 722 // facts. 723 switch (Pred) { 724 default: 725 break; 726 case CmpInst::ICMP_ULT: 727 // If B is a signed positive constant, A >=s 0 and A <s B. 728 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 729 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 730 NumOut, DFSInStack); 731 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 732 } 733 break; 734 case CmpInst::ICMP_SLT: 735 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 736 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 737 break; 738 case CmpInst::ICMP_SGT: { 739 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 740 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 741 NumOut, DFSInStack); 742 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 743 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 744 745 break; 746 } 747 case CmpInst::ICMP_SGE: 748 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 749 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 750 } 751 break; 752 } 753 } 754 755 #ifndef NDEBUG 756 757 static void dumpConstraint(ArrayRef<int64_t> C, 758 const DenseMap<Value *, unsigned> &Value2Index) { 759 ConstraintSystem CS(Value2Index); 760 CS.addVariableRowFill(C); 761 CS.dump(); 762 } 763 #endif 764 765 void State::addInfoFor(BasicBlock &BB) { 766 // True as long as long as the current instruction is guaranteed to execute. 767 bool GuaranteedToExecute = true; 768 // Queue conditions and assumes. 769 for (Instruction &I : BB) { 770 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 771 for (Use &U : Cmp->uses()) { 772 auto *UserI = getContextInstForUse(U); 773 auto *DTN = DT.getNode(UserI->getParent()); 774 if (!DTN) 775 continue; 776 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 777 } 778 continue; 779 } 780 781 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 782 WorkList.push_back( 783 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 784 continue; 785 } 786 787 if (isa<MinMaxIntrinsic>(&I)) { 788 WorkList.push_back(FactOrCheck::getFact(DT.getNode(&BB), &I)); 789 continue; 790 } 791 792 Value *Cond; 793 // For now, just handle assumes with a single compare as condition. 794 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 795 isa<ICmpInst>(Cond)) { 796 if (GuaranteedToExecute) { 797 // The assume is guaranteed to execute when BB is entered, hence Cond 798 // holds on entry to BB. 799 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 800 cast<Instruction>(Cond))); 801 } else { 802 WorkList.emplace_back( 803 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 804 } 805 } 806 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 807 } 808 809 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 810 if (!Br || !Br->isConditional()) 811 return; 812 813 Value *Cond = Br->getCondition(); 814 815 // If the condition is a chain of ORs/AND and the successor only has the 816 // current block as predecessor, queue conditions for the successor. 817 Value *Op0, *Op1; 818 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 819 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 820 bool IsOr = match(Cond, m_LogicalOr()); 821 bool IsAnd = match(Cond, m_LogicalAnd()); 822 // If there's a select that matches both AND and OR, we need to commit to 823 // one of the options. Arbitrarily pick OR. 824 if (IsOr && IsAnd) 825 IsAnd = false; 826 827 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 828 if (canAddSuccessor(BB, Successor)) { 829 SmallVector<Value *> CondWorkList; 830 SmallPtrSet<Value *, 8> SeenCond; 831 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 832 if (SeenCond.insert(V).second) 833 CondWorkList.push_back(V); 834 }; 835 QueueValue(Op1); 836 QueueValue(Op0); 837 while (!CondWorkList.empty()) { 838 Value *Cur = CondWorkList.pop_back_val(); 839 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 840 WorkList.emplace_back( 841 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 842 continue; 843 } 844 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 845 QueueValue(Op1); 846 QueueValue(Op0); 847 continue; 848 } 849 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 850 QueueValue(Op1); 851 QueueValue(Op0); 852 continue; 853 } 854 } 855 } 856 return; 857 } 858 859 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 860 if (!CmpI) 861 return; 862 if (canAddSuccessor(BB, Br->getSuccessor(0))) 863 WorkList.emplace_back( 864 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 865 if (canAddSuccessor(BB, Br->getSuccessor(1))) 866 WorkList.emplace_back( 867 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 868 } 869 870 namespace { 871 /// Helper to keep track of a condition and if it should be treated as negated 872 /// for reproducer construction. 873 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 874 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 875 struct ReproducerEntry { 876 ICmpInst::Predicate Pred; 877 Value *LHS; 878 Value *RHS; 879 880 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 881 : Pred(Pred), LHS(LHS), RHS(RHS) {} 882 }; 883 } // namespace 884 885 /// Helper function to generate a reproducer function for simplifying \p Cond. 886 /// The reproducer function contains a series of @llvm.assume calls, one for 887 /// each condition in \p Stack. For each condition, the operand instruction are 888 /// cloned until we reach operands that have an entry in \p Value2Index. Those 889 /// will then be added as function arguments. \p DT is used to order cloned 890 /// instructions. The reproducer function will get added to \p M, if it is 891 /// non-null. Otherwise no reproducer function is generated. 892 static void generateReproducer(CmpInst *Cond, Module *M, 893 ArrayRef<ReproducerEntry> Stack, 894 ConstraintInfo &Info, DominatorTree &DT) { 895 if (!M) 896 return; 897 898 LLVMContext &Ctx = Cond->getContext(); 899 900 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 901 902 ValueToValueMapTy Old2New; 903 SmallVector<Value *> Args; 904 SmallPtrSet<Value *, 8> Seen; 905 // Traverse Cond and its operands recursively until we reach a value that's in 906 // Value2Index or not an instruction, or not a operation that 907 // ConstraintElimination can decompose. Such values will be considered as 908 // external inputs to the reproducer, they are collected and added as function 909 // arguments later. 910 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 911 auto &Value2Index = Info.getValue2Index(IsSigned); 912 SmallVector<Value *, 4> WorkList(Ops); 913 while (!WorkList.empty()) { 914 Value *V = WorkList.pop_back_val(); 915 if (!Seen.insert(V).second) 916 continue; 917 if (Old2New.find(V) != Old2New.end()) 918 continue; 919 if (isa<Constant>(V)) 920 continue; 921 922 auto *I = dyn_cast<Instruction>(V); 923 if (Value2Index.contains(V) || !I || 924 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 925 Old2New[V] = V; 926 Args.push_back(V); 927 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 928 } else { 929 append_range(WorkList, I->operands()); 930 } 931 } 932 }; 933 934 for (auto &Entry : Stack) 935 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 936 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 937 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 938 939 SmallVector<Type *> ParamTys; 940 for (auto *P : Args) 941 ParamTys.push_back(P->getType()); 942 943 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 944 /*isVarArg=*/false); 945 Function *F = Function::Create(FTy, Function::ExternalLinkage, 946 Cond->getModule()->getName() + 947 Cond->getFunction()->getName() + "repro", 948 M); 949 // Add arguments to the reproducer function for each external value collected. 950 for (unsigned I = 0; I < Args.size(); ++I) { 951 F->getArg(I)->setName(Args[I]->getName()); 952 Old2New[Args[I]] = F->getArg(I); 953 } 954 955 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 956 IRBuilder<> Builder(Entry); 957 Builder.CreateRet(Builder.getTrue()); 958 Builder.SetInsertPoint(Entry->getTerminator()); 959 960 // Clone instructions in \p Ops and their operands recursively until reaching 961 // an value in Value2Index (external input to the reproducer). Update Old2New 962 // mapping for the original and cloned instructions. Sort instructions to 963 // clone by dominance, then insert the cloned instructions in the function. 964 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 965 SmallVector<Value *, 4> WorkList(Ops); 966 SmallVector<Instruction *> ToClone; 967 auto &Value2Index = Info.getValue2Index(IsSigned); 968 while (!WorkList.empty()) { 969 Value *V = WorkList.pop_back_val(); 970 if (Old2New.find(V) != Old2New.end()) 971 continue; 972 973 auto *I = dyn_cast<Instruction>(V); 974 if (!Value2Index.contains(V) && I) { 975 Old2New[V] = nullptr; 976 ToClone.push_back(I); 977 append_range(WorkList, I->operands()); 978 } 979 } 980 981 sort(ToClone, 982 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 983 for (Instruction *I : ToClone) { 984 Instruction *Cloned = I->clone(); 985 Old2New[I] = Cloned; 986 Old2New[I]->setName(I->getName()); 987 Cloned->insertBefore(&*Builder.GetInsertPoint()); 988 Cloned->dropUnknownNonDebugMetadata(); 989 Cloned->setDebugLoc({}); 990 } 991 }; 992 993 // Materialize the assumptions for the reproducer using the entries in Stack. 994 // That is, first clone the operands of the condition recursively until we 995 // reach an external input to the reproducer and add them to the reproducer 996 // function. Then add an ICmp for the condition (with the inverse predicate if 997 // the entry is negated) and an assert using the ICmp. 998 for (auto &Entry : Stack) { 999 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1000 continue; 1001 1002 LLVM_DEBUG( 1003 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1004 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1005 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1006 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1007 1008 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1009 Builder.CreateAssumption(Cmp); 1010 } 1011 1012 // Finally, clone the condition to reproduce and remap instruction operands in 1013 // the reproducer using Old2New. 1014 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1015 Entry->getTerminator()->setOperand(0, Cond); 1016 remapInstructionsInBlocks({Entry}, Old2New); 1017 1018 assert(!verifyFunction(*F, &dbgs())); 1019 } 1020 1021 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1022 unsigned NumIn, unsigned NumOut, 1023 Instruction *ContextInst) { 1024 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1025 1026 CmpInst::Predicate Pred = Cmp->getPredicate(); 1027 Value *A = Cmp->getOperand(0); 1028 Value *B = Cmp->getOperand(1); 1029 1030 auto R = Info.getConstraintForSolving(Pred, A, B); 1031 if (R.empty() || !R.isValid(Info)){ 1032 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1033 return std::nullopt; 1034 } 1035 1036 auto &CSToUse = Info.getCS(R.IsSigned); 1037 1038 // If there was extra information collected during decomposition, apply 1039 // it now and remove it immediately once we are done with reasoning 1040 // about the constraint. 1041 for (auto &Row : R.ExtraInfo) 1042 CSToUse.addVariableRow(Row); 1043 auto InfoRestorer = make_scope_exit([&]() { 1044 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1045 CSToUse.popLastConstraint(); 1046 }); 1047 1048 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1049 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1050 return std::nullopt; 1051 1052 LLVM_DEBUG({ 1053 if (*ImpliedCondition) { 1054 dbgs() << "Condition " << *Cmp; 1055 } else { 1056 auto InversePred = Cmp->getInversePredicate(); 1057 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1058 << *A << ", " << *B; 1059 } 1060 dbgs() << " implied by dominating constraints\n"; 1061 CSToUse.dump(); 1062 }); 1063 return ImpliedCondition; 1064 } 1065 1066 return std::nullopt; 1067 } 1068 1069 static bool checkAndReplaceCondition( 1070 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1071 Instruction *ContextInst, Module *ReproducerModule, 1072 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 1073 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1074 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1075 Constant *ConstantC = ConstantInt::getBool( 1076 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1077 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1078 ContextInst](Use &U) { 1079 auto *UserI = getContextInstForUse(U); 1080 auto *DTN = DT.getNode(UserI->getParent()); 1081 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1082 return false; 1083 if (UserI->getParent() == ContextInst->getParent() && 1084 UserI->comesBefore(ContextInst)) 1085 return false; 1086 1087 // Conditions in an assume trivially simplify to true. Skip uses 1088 // in assume calls to not destroy the available information. 1089 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1090 return !II || II->getIntrinsicID() != Intrinsic::assume; 1091 }); 1092 NumCondsRemoved++; 1093 return true; 1094 }; 1095 1096 if (auto ImpliedCondition = 1097 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1098 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1099 return false; 1100 } 1101 1102 static void 1103 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1104 Module *ReproducerModule, 1105 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1106 SmallVectorImpl<StackEntry> &DFSInStack) { 1107 Info.popLastConstraint(E.IsSigned); 1108 // Remove variables in the system that went out of scope. 1109 auto &Mapping = Info.getValue2Index(E.IsSigned); 1110 for (Value *V : E.ValuesToRelease) 1111 Mapping.erase(V); 1112 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1113 DFSInStack.pop_back(); 1114 if (ReproducerModule) 1115 ReproducerCondStack.pop_back(); 1116 } 1117 1118 /// Check if the first condition for an AND implies the second. 1119 static bool checkAndSecondOpImpliedByFirst( 1120 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1121 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1122 SmallVectorImpl<StackEntry> &DFSInStack) { 1123 CmpInst::Predicate Pred; 1124 Value *A, *B; 1125 Instruction *And = CB.getContextInst(); 1126 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1127 return false; 1128 1129 // Optimistically add fact from first condition. 1130 unsigned OldSize = DFSInStack.size(); 1131 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1132 if (OldSize == DFSInStack.size()) 1133 return false; 1134 1135 bool Changed = false; 1136 // Check if the second condition can be simplified now. 1137 if (auto ImpliedCondition = 1138 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1139 CB.NumOut, CB.getContextInst())) { 1140 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1141 Changed = true; 1142 } 1143 1144 // Remove entries again. 1145 while (OldSize < DFSInStack.size()) { 1146 StackEntry E = DFSInStack.back(); 1147 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1148 DFSInStack); 1149 } 1150 return Changed; 1151 } 1152 1153 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1154 unsigned NumIn, unsigned NumOut, 1155 SmallVectorImpl<StackEntry> &DFSInStack) { 1156 // If the constraint has a pre-condition, skip the constraint if it does not 1157 // hold. 1158 SmallVector<Value *> NewVariables; 1159 auto R = getConstraint(Pred, A, B, NewVariables); 1160 1161 // TODO: Support non-equality for facts as well. 1162 if (!R.isValid(*this) || R.isNe()) 1163 return; 1164 1165 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1166 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1167 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1168 bool Added = false; 1169 auto &CSToUse = getCS(R.IsSigned); 1170 if (R.Coefficients.empty()) 1171 return; 1172 1173 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1174 1175 // If R has been added to the system, add the new variables and queue it for 1176 // removal once it goes out-of-scope. 1177 if (Added) { 1178 SmallVector<Value *, 2> ValuesToRelease; 1179 auto &Value2Index = getValue2Index(R.IsSigned); 1180 for (Value *V : NewVariables) { 1181 Value2Index.insert({V, Value2Index.size() + 1}); 1182 ValuesToRelease.push_back(V); 1183 } 1184 1185 LLVM_DEBUG({ 1186 dbgs() << " constraint: "; 1187 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1188 dbgs() << "\n"; 1189 }); 1190 1191 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1192 std::move(ValuesToRelease)); 1193 1194 if (R.isEq()) { 1195 // Also add the inverted constraint for equality constraints. 1196 for (auto &Coeff : R.Coefficients) 1197 Coeff *= -1; 1198 CSToUse.addVariableRowFill(R.Coefficients); 1199 1200 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1201 SmallVector<Value *, 2>()); 1202 } 1203 } 1204 } 1205 1206 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1207 SmallVectorImpl<Instruction *> &ToRemove) { 1208 bool Changed = false; 1209 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1210 Value *Sub = nullptr; 1211 for (User *U : make_early_inc_range(II->users())) { 1212 if (match(U, m_ExtractValue<0>(m_Value()))) { 1213 if (!Sub) 1214 Sub = Builder.CreateSub(A, B); 1215 U->replaceAllUsesWith(Sub); 1216 Changed = true; 1217 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1218 U->replaceAllUsesWith(Builder.getFalse()); 1219 Changed = true; 1220 } else 1221 continue; 1222 1223 if (U->use_empty()) { 1224 auto *I = cast<Instruction>(U); 1225 ToRemove.push_back(I); 1226 I->setOperand(0, PoisonValue::get(II->getType())); 1227 Changed = true; 1228 } 1229 } 1230 1231 if (II->use_empty()) { 1232 II->eraseFromParent(); 1233 Changed = true; 1234 } 1235 return Changed; 1236 } 1237 1238 static bool 1239 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1240 SmallVectorImpl<Instruction *> &ToRemove) { 1241 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1242 ConstraintInfo &Info) { 1243 auto R = Info.getConstraintForSolving(Pred, A, B); 1244 if (R.size() < 2 || !R.isValid(Info)) 1245 return false; 1246 1247 auto &CSToUse = Info.getCS(R.IsSigned); 1248 return CSToUse.isConditionImplied(R.Coefficients); 1249 }; 1250 1251 bool Changed = false; 1252 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1253 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1254 // can be simplified to a regular sub. 1255 Value *A = II->getArgOperand(0); 1256 Value *B = II->getArgOperand(1); 1257 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1258 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1259 ConstantInt::get(A->getType(), 0), Info)) 1260 return false; 1261 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1262 } 1263 return Changed; 1264 } 1265 1266 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1267 OptimizationRemarkEmitter &ORE) { 1268 bool Changed = false; 1269 DT.updateDFSNumbers(); 1270 SmallVector<Value *> FunctionArgs; 1271 for (Value &Arg : F.args()) 1272 FunctionArgs.push_back(&Arg); 1273 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1274 State S(DT); 1275 std::unique_ptr<Module> ReproducerModule( 1276 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1277 1278 // First, collect conditions implied by branches and blocks with their 1279 // Dominator DFS in and out numbers. 1280 for (BasicBlock &BB : F) { 1281 if (!DT.getNode(&BB)) 1282 continue; 1283 S.addInfoFor(BB); 1284 } 1285 1286 // Next, sort worklist by dominance, so that dominating conditions to check 1287 // and facts come before conditions and facts dominated by them. If a 1288 // condition to check and a fact have the same numbers, conditional facts come 1289 // first. Assume facts and checks are ordered according to their relative 1290 // order in the containing basic block. Also make sure conditions with 1291 // constant operands come before conditions without constant operands. This 1292 // increases the effectiveness of the current signed <-> unsigned fact 1293 // transfer logic. 1294 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1295 auto HasNoConstOp = [](const FactOrCheck &B) { 1296 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1297 !isa<ConstantInt>(B.Inst->getOperand(1)); 1298 }; 1299 // If both entries have the same In numbers, conditional facts come first. 1300 // Otherwise use the relative order in the basic block. 1301 if (A.NumIn == B.NumIn) { 1302 if (A.isConditionFact() && B.isConditionFact()) { 1303 bool NoConstOpA = HasNoConstOp(A); 1304 bool NoConstOpB = HasNoConstOp(B); 1305 return NoConstOpA < NoConstOpB; 1306 } 1307 if (A.isConditionFact()) 1308 return true; 1309 if (B.isConditionFact()) 1310 return false; 1311 auto *InstA = A.getContextInst(); 1312 auto *InstB = B.getContextInst(); 1313 return InstA->comesBefore(InstB); 1314 } 1315 return A.NumIn < B.NumIn; 1316 }); 1317 1318 SmallVector<Instruction *> ToRemove; 1319 1320 // Finally, process ordered worklist and eliminate implied conditions. 1321 SmallVector<StackEntry, 16> DFSInStack; 1322 SmallVector<ReproducerEntry> ReproducerCondStack; 1323 for (FactOrCheck &CB : S.WorkList) { 1324 // First, pop entries from the stack that are out-of-scope for CB. Remove 1325 // the corresponding entry from the constraint system. 1326 while (!DFSInStack.empty()) { 1327 auto &E = DFSInStack.back(); 1328 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1329 << "\n"); 1330 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1331 assert(E.NumIn <= CB.NumIn); 1332 if (CB.NumOut <= E.NumOut) 1333 break; 1334 LLVM_DEBUG({ 1335 dbgs() << "Removing "; 1336 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1337 Info.getValue2Index(E.IsSigned)); 1338 dbgs() << "\n"; 1339 }); 1340 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1341 DFSInStack); 1342 } 1343 1344 LLVM_DEBUG(dbgs() << "Processing "); 1345 1346 // For a block, check if any CmpInsts become known based on the current set 1347 // of constraints. 1348 if (CB.isCheck()) { 1349 Instruction *Inst = CB.getInstructionToSimplify(); 1350 if (!Inst) 1351 continue; 1352 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1353 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1354 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1355 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1356 bool Simplified = checkAndReplaceCondition( 1357 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1358 ReproducerModule.get(), ReproducerCondStack, S.DT); 1359 if (!Simplified && match(CB.getContextInst(), 1360 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1361 Simplified = 1362 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1363 ReproducerCondStack, DFSInStack); 1364 } 1365 Changed |= Simplified; 1366 } 1367 continue; 1368 } 1369 1370 LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n"); 1371 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1372 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1373 LLVM_DEBUG( 1374 dbgs() 1375 << "Skip adding constraint because system has too many rows.\n"); 1376 return; 1377 } 1378 1379 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1380 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1381 ReproducerCondStack.emplace_back(Pred, A, B); 1382 1383 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1384 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1385 // Add dummy entries to ReproducerCondStack to keep it in sync with 1386 // DFSInStack. 1387 for (unsigned I = 0, 1388 E = (DFSInStack.size() - ReproducerCondStack.size()); 1389 I < E; ++I) { 1390 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1391 nullptr, nullptr); 1392 } 1393 } 1394 }; 1395 1396 ICmpInst::Predicate Pred; 1397 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1398 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1399 AddFact(Pred, MinMax, MinMax->getLHS()); 1400 AddFact(Pred, MinMax, MinMax->getRHS()); 1401 continue; 1402 } 1403 1404 Value *A, *B; 1405 Value *Cmp = CB.Inst; 1406 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1407 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1408 // Use the inverse predicate if required. 1409 if (CB.Not) 1410 Pred = CmpInst::getInversePredicate(Pred); 1411 1412 AddFact(Pred, A, B); 1413 } 1414 } 1415 1416 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1417 std::string S; 1418 raw_string_ostream StringS(S); 1419 ReproducerModule->print(StringS, nullptr); 1420 StringS.flush(); 1421 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1422 Rem << ore::NV("module") << S; 1423 ORE.emit(Rem); 1424 } 1425 1426 #ifndef NDEBUG 1427 unsigned SignedEntries = 1428 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1429 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1430 "updates to CS and DFSInStack are out of sync"); 1431 assert(Info.getCS(true).size() == SignedEntries && 1432 "updates to CS and DFSInStack are out of sync"); 1433 #endif 1434 1435 for (Instruction *I : ToRemove) 1436 I->eraseFromParent(); 1437 return Changed; 1438 } 1439 1440 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1441 FunctionAnalysisManager &AM) { 1442 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1443 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1444 if (!eliminateConstraints(F, DT, ORE)) 1445 return PreservedAnalyses::all(); 1446 1447 PreservedAnalyses PA; 1448 PA.preserve<DominatorTreeAnalysis>(); 1449 PA.preserveSet<CFGAnalyses>(); 1450 return PA; 1451 } 1452