1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/Analysis/BlockFrequencyInfo.h" 42 #include "llvm/Analysis/ProfileSummaryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/SizeOpts.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 using namespace consthoist; 74 75 #define DEBUG_TYPE "consthoist" 76 77 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 78 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 79 80 static cl::opt<bool> ConstHoistWithBlockFrequency( 81 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 82 cl::desc("Enable the use of the block frequency analysis to reduce the " 83 "chance to execute const materialization more frequently than " 84 "without hoisting.")); 85 86 static cl::opt<bool> ConstHoistGEP( 87 "consthoist-gep", cl::init(false), cl::Hidden, 88 cl::desc("Try hoisting constant gep expressions")); 89 90 static cl::opt<unsigned> 91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 92 cl::desc("Do not rebase if number of dependent constants of a Base is less " 93 "than this number."), 94 cl::init(0), cl::Hidden); 95 96 namespace { 97 98 /// The constant hoisting pass. 99 class ConstantHoistingLegacyPass : public FunctionPass { 100 public: 101 static char ID; // Pass identification, replacement for typeid 102 103 ConstantHoistingLegacyPass() : FunctionPass(ID) { 104 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnFunction(Function &Fn) override; 108 109 StringRef getPassName() const override { return "Constant Hoisting"; } 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 AU.setPreservesCFG(); 113 if (ConstHoistWithBlockFrequency) 114 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 115 AU.addRequired<DominatorTreeWrapperPass>(); 116 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 117 AU.addRequired<TargetTransformInfoWrapperPass>(); 118 } 119 120 private: 121 ConstantHoistingPass Impl; 122 }; 123 124 } // end anonymous namespace 125 126 char ConstantHoistingLegacyPass::ID = 0; 127 128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 129 "Constant Hoisting", false, false) 130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 135 "Constant Hoisting", false, false) 136 137 FunctionPass *llvm::createConstantHoistingPass() { 138 return new ConstantHoistingLegacyPass(); 139 } 140 141 /// Perform the constant hoisting optimization for the given function. 142 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 143 if (skipFunction(Fn)) 144 return false; 145 146 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 147 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 148 149 bool MadeChange = 150 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 151 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 152 ConstHoistWithBlockFrequency 153 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 154 : nullptr, 155 Fn.getEntryBlock(), 156 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 157 158 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 159 160 return MadeChange; 161 } 162 163 void ConstantHoistingPass::collectMatInsertPts( 164 const RebasedConstantListType &RebasedConstants, 165 SmallVectorImpl<Instruction *> &MatInsertPts) const { 166 for (const RebasedConstantInfo &RCI : RebasedConstants) 167 for (const ConstantUser &U : RCI.Uses) 168 MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx)); 169 } 170 171 /// Find the constant materialization insertion point. 172 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 173 unsigned Idx) const { 174 // If the operand is a cast instruction, then we have to materialize the 175 // constant before the cast instruction. 176 if (Idx != ~0U) { 177 Value *Opnd = Inst->getOperand(Idx); 178 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 179 if (CastInst->isCast()) 180 return CastInst; 181 } 182 183 // The simple and common case. This also includes constant expressions. 184 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 185 return Inst; 186 187 // We can't insert directly before a phi node or an eh pad. Insert before 188 // the terminator of the incoming or dominating block. 189 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 190 BasicBlock *InsertionBlock = nullptr; 191 if (Idx != ~0U && isa<PHINode>(Inst)) { 192 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx); 193 if (!InsertionBlock->isEHPad()) { 194 return InsertionBlock->getTerminator(); 195 } 196 } else { 197 InsertionBlock = Inst->getParent(); 198 } 199 200 // This must be an EH pad. Iterate over immediate dominators until we find a 201 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 202 // and terminators. 203 auto *IDom = DT->getNode(InsertionBlock)->getIDom(); 204 while (IDom->getBlock()->isEHPad()) { 205 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 206 IDom = IDom->getIDom(); 207 } 208 209 return IDom->getBlock()->getTerminator(); 210 } 211 212 /// Given \p BBs as input, find another set of BBs which collectively 213 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 214 /// set found in \p BBs. 215 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 216 BasicBlock *Entry, 217 SetVector<BasicBlock *> &BBs) { 218 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 219 // Nodes on the current path to the root. 220 SmallPtrSet<BasicBlock *, 8> Path; 221 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 222 // dominated by any other blocks in set 'BBs', and all nodes in the path 223 // in the dominator tree from Entry to 'BB'. 224 SmallPtrSet<BasicBlock *, 16> Candidates; 225 for (auto *BB : BBs) { 226 // Ignore unreachable basic blocks. 227 if (!DT.isReachableFromEntry(BB)) 228 continue; 229 Path.clear(); 230 // Walk up the dominator tree until Entry or another BB in BBs 231 // is reached. Insert the nodes on the way to the Path. 232 BasicBlock *Node = BB; 233 // The "Path" is a candidate path to be added into Candidates set. 234 bool isCandidate = false; 235 do { 236 Path.insert(Node); 237 if (Node == Entry || Candidates.count(Node)) { 238 isCandidate = true; 239 break; 240 } 241 assert(DT.getNode(Node)->getIDom() && 242 "Entry doens't dominate current Node"); 243 Node = DT.getNode(Node)->getIDom()->getBlock(); 244 } while (!BBs.count(Node)); 245 246 // If isCandidate is false, Node is another Block in BBs dominating 247 // current 'BB'. Drop the nodes on the Path. 248 if (!isCandidate) 249 continue; 250 251 // Add nodes on the Path into Candidates. 252 Candidates.insert(Path.begin(), Path.end()); 253 } 254 255 // Sort the nodes in Candidates in top-down order and save the nodes 256 // in Orders. 257 unsigned Idx = 0; 258 SmallVector<BasicBlock *, 16> Orders; 259 Orders.push_back(Entry); 260 while (Idx != Orders.size()) { 261 BasicBlock *Node = Orders[Idx++]; 262 for (auto *ChildDomNode : DT.getNode(Node)->children()) { 263 if (Candidates.count(ChildDomNode->getBlock())) 264 Orders.push_back(ChildDomNode->getBlock()); 265 } 266 } 267 268 // Visit Orders in bottom-up order. 269 using InsertPtsCostPair = 270 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 271 272 // InsertPtsMap is a map from a BB to the best insertion points for the 273 // subtree of BB (subtree not including the BB itself). 274 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 275 InsertPtsMap.reserve(Orders.size() + 1); 276 for (BasicBlock *Node : llvm::reverse(Orders)) { 277 bool NodeInBBs = BBs.count(Node); 278 auto &InsertPts = InsertPtsMap[Node].first; 279 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 280 281 // Return the optimal insert points in BBs. 282 if (Node == Entry) { 283 BBs.clear(); 284 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 285 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 286 BBs.insert(Entry); 287 else 288 BBs.insert(InsertPts.begin(), InsertPts.end()); 289 break; 290 } 291 292 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 293 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 294 // will update its parent's ParentInsertPts and ParentPtsFreq. 295 auto &ParentInsertPts = InsertPtsMap[Parent].first; 296 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 297 // Choose to insert in Node or in subtree of Node. 298 // Don't hoist to EHPad because we may not find a proper place to insert 299 // in EHPad. 300 // If the total frequency of InsertPts is the same as the frequency of the 301 // target Node, and InsertPts contains more than one nodes, choose hoisting 302 // to reduce code size. 303 if (NodeInBBs || 304 (!Node->isEHPad() && 305 (InsertPtsFreq > BFI.getBlockFreq(Node) || 306 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 307 ParentInsertPts.insert(Node); 308 ParentPtsFreq += BFI.getBlockFreq(Node); 309 } else { 310 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 311 ParentPtsFreq += InsertPtsFreq; 312 } 313 } 314 } 315 316 /// Find an insertion point that dominates all uses. 317 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( 318 const ConstantInfo &ConstInfo, 319 const ArrayRef<Instruction *> MatInsertPts) const { 320 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 321 // Collect all basic blocks. 322 SetVector<BasicBlock *> BBs; 323 SetVector<Instruction *> InsertPts; 324 325 for (Instruction *MatInsertPt : MatInsertPts) 326 BBs.insert(MatInsertPt->getParent()); 327 328 if (BBs.count(Entry)) { 329 InsertPts.insert(&Entry->front()); 330 return InsertPts; 331 } 332 333 if (BFI) { 334 findBestInsertionSet(*DT, *BFI, Entry, BBs); 335 for (BasicBlock *BB : BBs) 336 InsertPts.insert(&*BB->getFirstInsertionPt()); 337 return InsertPts; 338 } 339 340 while (BBs.size() >= 2) { 341 BasicBlock *BB, *BB1, *BB2; 342 BB1 = BBs.pop_back_val(); 343 BB2 = BBs.pop_back_val(); 344 BB = DT->findNearestCommonDominator(BB1, BB2); 345 if (BB == Entry) { 346 InsertPts.insert(&Entry->front()); 347 return InsertPts; 348 } 349 BBs.insert(BB); 350 } 351 assert((BBs.size() == 1) && "Expected only one element."); 352 Instruction &FirstInst = (*BBs.begin())->front(); 353 InsertPts.insert(findMatInsertPt(&FirstInst)); 354 return InsertPts; 355 } 356 357 /// Record constant integer ConstInt for instruction Inst at operand 358 /// index Idx. 359 /// 360 /// The operand at index Idx is not necessarily the constant integer itself. It 361 /// could also be a cast instruction or a constant expression that uses the 362 /// constant integer. 363 void ConstantHoistingPass::collectConstantCandidates( 364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 365 ConstantInt *ConstInt) { 366 InstructionCost Cost; 367 // Ask the target about the cost of materializing the constant for the given 368 // instruction and operand index. 369 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 370 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 371 ConstInt->getValue(), ConstInt->getType(), 372 TargetTransformInfo::TCK_SizeAndLatency); 373 else 374 Cost = TTI->getIntImmCostInst( 375 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 376 TargetTransformInfo::TCK_SizeAndLatency, Inst); 377 378 // Ignore cheap integer constants. 379 if (Cost > TargetTransformInfo::TCC_Basic) { 380 ConstCandMapType::iterator Itr; 381 bool Inserted; 382 ConstPtrUnionType Cand = ConstInt; 383 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 384 if (Inserted) { 385 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 386 Itr->second = ConstIntCandVec.size() - 1; 387 } 388 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 389 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 390 << "Collect constant " << *ConstInt << " from " << *Inst 391 << " with cost " << Cost << '\n'; 392 else dbgs() << "Collect constant " << *ConstInt 393 << " indirectly from " << *Inst << " via " 394 << *Inst->getOperand(Idx) << " with cost " << Cost 395 << '\n';); 396 } 397 } 398 399 /// Record constant GEP expression for instruction Inst at operand index Idx. 400 void ConstantHoistingPass::collectConstantCandidates( 401 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 402 ConstantExpr *ConstExpr) { 403 // TODO: Handle vector GEPs 404 if (ConstExpr->getType()->isVectorTy()) 405 return; 406 407 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 408 if (!BaseGV) 409 return; 410 411 // Get offset from the base GV. 412 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 413 IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace()); 414 APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true); 415 auto *GEPO = cast<GEPOperator>(ConstExpr); 416 417 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a 418 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to 419 // inbounds GEP for now -- alternatively, we could drop inbounds from the 420 // constant expression, 421 if (!GEPO->isInBounds()) 422 return; 423 424 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 425 return; 426 427 if (!Offset.isIntN(32)) 428 return; 429 430 // A constant GEP expression that has a GlobalVariable as base pointer is 431 // usually lowered to a load from constant pool. Such operation is unlikely 432 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 433 // an ADD instruction or folded into Load/Store instruction. 434 InstructionCost Cost = 435 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy, 436 TargetTransformInfo::TCK_SizeAndLatency, Inst); 437 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 438 ConstCandMapType::iterator Itr; 439 bool Inserted; 440 ConstPtrUnionType Cand = ConstExpr; 441 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 442 if (Inserted) { 443 ExprCandVec.push_back(ConstantCandidate( 444 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 445 ConstExpr)); 446 Itr->second = ExprCandVec.size() - 1; 447 } 448 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 449 } 450 451 /// Check the operand for instruction Inst at index Idx. 452 void ConstantHoistingPass::collectConstantCandidates( 453 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 454 Value *Opnd = Inst->getOperand(Idx); 455 456 // Visit constant integers. 457 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 458 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 459 return; 460 } 461 462 // Visit cast instructions that have constant integers. 463 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 464 // Only visit cast instructions, which have been skipped. All other 465 // instructions should have already been visited. 466 if (!CastInst->isCast()) 467 return; 468 469 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 470 // Pretend the constant is directly used by the instruction and ignore 471 // the cast instruction. 472 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 473 return; 474 } 475 } 476 477 // Visit constant expressions that have constant integers. 478 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 479 // Handle constant gep expressions. 480 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr)) 481 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 482 483 // Only visit constant cast expressions. 484 if (!ConstExpr->isCast()) 485 return; 486 487 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 488 // Pretend the constant is directly used by the instruction and ignore 489 // the constant expression. 490 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 491 return; 492 } 493 } 494 } 495 496 /// Scan the instruction for expensive integer constants and record them 497 /// in the constant candidate vector. 498 void ConstantHoistingPass::collectConstantCandidates( 499 ConstCandMapType &ConstCandMap, Instruction *Inst) { 500 // Skip all cast instructions. They are visited indirectly later on. 501 if (Inst->isCast()) 502 return; 503 504 // Scan all operands. 505 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 506 // The cost of materializing the constants (defined in 507 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 508 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 509 // So it's safe for us to collect constant candidates from all 510 // IntrinsicInsts. 511 if (canReplaceOperandWithVariable(Inst, Idx)) { 512 collectConstantCandidates(ConstCandMap, Inst, Idx); 513 } 514 } // end of for all operands 515 } 516 517 /// Collect all integer constants in the function that cannot be folded 518 /// into an instruction itself. 519 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 520 ConstCandMapType ConstCandMap; 521 for (BasicBlock &BB : Fn) { 522 // Ignore unreachable basic blocks. 523 if (!DT->isReachableFromEntry(&BB)) 524 continue; 525 for (Instruction &Inst : BB) 526 if (!TTI->preferToKeepConstantsAttached(Inst, Fn)) 527 collectConstantCandidates(ConstCandMap, &Inst); 528 } 529 } 530 531 // This helper function is necessary to deal with values that have different 532 // bit widths (APInt Operator- does not like that). If the value cannot be 533 // represented in uint64 we return an "empty" APInt. This is then interpreted 534 // as the value is not in range. 535 static std::optional<APInt> calculateOffsetDiff(const APInt &V1, 536 const APInt &V2) { 537 std::optional<APInt> Res; 538 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 539 V1.getBitWidth() : V2.getBitWidth(); 540 uint64_t LimVal1 = V1.getLimitedValue(); 541 uint64_t LimVal2 = V2.getLimitedValue(); 542 543 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 544 return Res; 545 546 uint64_t Diff = LimVal1 - LimVal2; 547 return APInt(BW, Diff, true); 548 } 549 550 // From a list of constants, one needs to picked as the base and the other 551 // constants will be transformed into an offset from that base constant. The 552 // question is which we can pick best? For example, consider these constants 553 // and their number of uses: 554 // 555 // Constants| 2 | 4 | 12 | 42 | 556 // NumUses | 3 | 2 | 8 | 7 | 557 // 558 // Selecting constant 12 because it has the most uses will generate negative 559 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 560 // offsets lead to less optimal code generation, then there might be better 561 // solutions. Suppose immediates in the range of 0..35 are most optimally 562 // supported by the architecture, then selecting constant 2 is most optimal 563 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 564 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 565 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 566 // selecting the base constant the range of the offsets is a very important 567 // factor too that we take into account here. This algorithm calculates a total 568 // costs for selecting a constant as the base and substract the costs if 569 // immediates are out of range. It has quadratic complexity, so we call this 570 // function only when we're optimising for size and there are less than 100 571 // constants, we fall back to the straightforward algorithm otherwise 572 // which does not do all the offset calculations. 573 unsigned 574 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 575 ConstCandVecType::iterator E, 576 ConstCandVecType::iterator &MaxCostItr) { 577 unsigned NumUses = 0; 578 579 if (!OptForSize || std::distance(S,E) > 100) { 580 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 581 NumUses += ConstCand->Uses.size(); 582 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 583 MaxCostItr = ConstCand; 584 } 585 return NumUses; 586 } 587 588 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 589 InstructionCost MaxCost = -1; 590 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 591 auto Value = ConstCand->ConstInt->getValue(); 592 Type *Ty = ConstCand->ConstInt->getType(); 593 InstructionCost Cost = 0; 594 NumUses += ConstCand->Uses.size(); 595 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 596 << "\n"); 597 598 for (auto User : ConstCand->Uses) { 599 unsigned Opcode = User.Inst->getOpcode(); 600 unsigned OpndIdx = User.OpndIdx; 601 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 602 TargetTransformInfo::TCK_SizeAndLatency); 603 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 604 605 for (auto C2 = S; C2 != E; ++C2) { 606 std::optional<APInt> Diff = calculateOffsetDiff( 607 C2->ConstInt->getValue(), ConstCand->ConstInt->getValue()); 608 if (Diff) { 609 const InstructionCost ImmCosts = 610 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty); 611 Cost -= ImmCosts; 612 LLVM_DEBUG(dbgs() << "Offset " << *Diff << " " 613 << "has penalty: " << ImmCosts << "\n" 614 << "Adjusted cost: " << Cost << "\n"); 615 } 616 } 617 } 618 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 619 if (Cost > MaxCost) { 620 MaxCost = Cost; 621 MaxCostItr = ConstCand; 622 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 623 << "\n"); 624 } 625 } 626 return NumUses; 627 } 628 629 /// Find the base constant within the given range and rebase all other 630 /// constants with respect to the base constant. 631 void ConstantHoistingPass::findAndMakeBaseConstant( 632 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 633 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 634 auto MaxCostItr = S; 635 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 636 637 // Don't hoist constants that have only one use. 638 if (NumUses <= 1) 639 return; 640 641 ConstantInt *ConstInt = MaxCostItr->ConstInt; 642 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 643 ConstantInfo ConstInfo; 644 ConstInfo.BaseInt = ConstInt; 645 ConstInfo.BaseExpr = ConstExpr; 646 Type *Ty = ConstInt->getType(); 647 648 // Rebase the constants with respect to the base constant. 649 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 650 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 651 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 652 Type *ConstTy = 653 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 654 ConstInfo.RebasedConstants.push_back( 655 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 656 } 657 ConstInfoVec.push_back(std::move(ConstInfo)); 658 } 659 660 /// Finds and combines constant candidates that can be easily 661 /// rematerialized with an add from a common base constant. 662 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 663 // If BaseGV is nullptr, find base among candidate constant integers; 664 // Otherwise find base among constant GEPs that share the same BaseGV. 665 ConstCandVecType &ConstCandVec = BaseGV ? 666 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 667 ConstInfoVecType &ConstInfoVec = BaseGV ? 668 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 669 670 // Sort the constants by value and type. This invalidates the mapping! 671 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 672 const ConstantCandidate &RHS) { 673 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 674 return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth(); 675 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 676 }); 677 678 // Simple linear scan through the sorted constant candidate vector for viable 679 // merge candidates. 680 auto MinValItr = ConstCandVec.begin(); 681 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 682 CC != E; ++CC) { 683 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 684 Type *MemUseValTy = nullptr; 685 for (auto &U : CC->Uses) { 686 auto *UI = U.Inst; 687 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 688 MemUseValTy = LI->getType(); 689 break; 690 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 691 // Make sure the constant is used as pointer operand of the StoreInst. 692 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 693 MemUseValTy = SI->getValueOperand()->getType(); 694 break; 695 } 696 } 697 } 698 699 // Check if the constant is in range of an add with immediate. 700 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 701 if ((Diff.getBitWidth() <= 64) && 702 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 703 // Check if Diff can be used as offset in addressing mode of the user 704 // memory instruction. 705 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 706 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 707 /*HasBaseReg*/true, /*Scale*/0))) 708 continue; 709 } 710 // We either have now a different constant type or the constant is not in 711 // range of an add with immediate anymore. 712 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 713 // Start a new base constant search. 714 MinValItr = CC; 715 } 716 // Finalize the last base constant search. 717 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 718 } 719 720 /// Updates the operand at Idx in instruction Inst with the result of 721 /// instruction Mat. If the instruction is a PHI node then special 722 /// handling for duplicate values from the same incoming basic block is 723 /// required. 724 /// \return The update will always succeed, but the return value indicated if 725 /// Mat was used for the update or not. 726 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 727 if (auto PHI = dyn_cast<PHINode>(Inst)) { 728 // Check if any previous operand of the PHI node has the same incoming basic 729 // block. This is a very odd case that happens when the incoming basic block 730 // has a switch statement. In this case use the same value as the previous 731 // operand(s), otherwise we will fail verification due to different values. 732 // The values are actually the same, but the variable names are different 733 // and the verifier doesn't like that. 734 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 735 for (unsigned i = 0; i < Idx; ++i) { 736 if (PHI->getIncomingBlock(i) == IncomingBB) { 737 Value *IncomingVal = PHI->getIncomingValue(i); 738 Inst->setOperand(Idx, IncomingVal); 739 return false; 740 } 741 } 742 } 743 744 Inst->setOperand(Idx, Mat); 745 return true; 746 } 747 748 /// Emit materialization code for all rebased constants and update their 749 /// users. 750 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 751 UserAdjustment *Adj) { 752 Instruction *Mat = Base; 753 754 // The same offset can be dereferenced to different types in nested struct. 755 if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType()) 756 Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 757 758 if (Adj->Offset) { 759 if (Adj->Ty) { 760 // Constant being rebased is a ConstantExpr. 761 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset, 762 "mat_gep", Adj->MatInsertPt); 763 // Hide it behind a bitcast. 764 Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast", Adj->MatInsertPt); 765 } else 766 // Constant being rebased is a ConstantInt. 767 Mat = BinaryOperator::Create(Instruction::Add, Base, Adj->Offset, 768 "const_mat", Adj->MatInsertPt); 769 770 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 771 << " + " << *Adj->Offset << ") in BB " 772 << Mat->getParent()->getName() << '\n' 773 << *Mat << '\n'); 774 Mat->setDebugLoc(Adj->User.Inst->getDebugLoc()); 775 } 776 Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx); 777 778 // Visit constant integer. 779 if (isa<ConstantInt>(Opnd)) { 780 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 781 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset) 782 Mat->eraseFromParent(); 783 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 784 return; 785 } 786 787 // Visit cast instruction. 788 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 789 assert(CastInst->isCast() && "Expected an cast instruction!"); 790 // Check if we already have visited this cast instruction before to avoid 791 // unnecessary cloning. 792 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 793 if (!ClonedCastInst) { 794 ClonedCastInst = CastInst->clone(); 795 ClonedCastInst->setOperand(0, Mat); 796 ClonedCastInst->insertAfter(CastInst); 797 // Use the same debug location as the original cast instruction. 798 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 799 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 800 << "To : " << *ClonedCastInst << '\n'); 801 } 802 803 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 804 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst); 805 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 806 return; 807 } 808 809 // Visit constant expression. 810 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 811 if (isa<GEPOperator>(ConstExpr)) { 812 // Operand is a ConstantGEP, replace it. 813 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat); 814 return; 815 } 816 817 // Aside from constant GEPs, only constant cast expressions are collected. 818 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 819 Instruction *ConstExprInst = ConstExpr->getAsInstruction(Adj->MatInsertPt); 820 ConstExprInst->setOperand(0, Mat); 821 822 // Use the same debug location as the instruction we are about to update. 823 ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc()); 824 825 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 826 << "From : " << *ConstExpr << '\n'); 827 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 828 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) { 829 ConstExprInst->eraseFromParent(); 830 if (Adj->Offset) 831 Mat->eraseFromParent(); 832 } 833 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 834 return; 835 } 836 } 837 838 /// Hoist and hide the base constant behind a bitcast and emit 839 /// materialization code for derived constants. 840 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 841 bool MadeChange = false; 842 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 843 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 844 for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) { 845 SmallVector<Instruction *, 4> MatInsertPts; 846 collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts); 847 SetVector<Instruction *> IPSet = 848 findConstantInsertionPoint(ConstInfo, MatInsertPts); 849 // We can have an empty set if the function contains unreachable blocks. 850 if (IPSet.empty()) 851 continue; 852 853 unsigned UsesNum = 0; 854 unsigned ReBasesNum = 0; 855 unsigned NotRebasedNum = 0; 856 for (Instruction *IP : IPSet) { 857 // First, collect constants depending on this IP of the base. 858 UsesNum = 0; 859 SmallVector<UserAdjustment, 4> ToBeRebased; 860 unsigned MatCtr = 0; 861 for (auto const &RCI : ConstInfo.RebasedConstants) { 862 UsesNum += RCI.Uses.size(); 863 for (auto const &U : RCI.Uses) { 864 Instruction *MatInsertPt = MatInsertPts[MatCtr++]; 865 BasicBlock *OrigMatInsertBB = MatInsertPt->getParent(); 866 // If Base constant is to be inserted in multiple places, 867 // generate rebase for U using the Base dominating U. 868 if (IPSet.size() == 1 || 869 DT->dominates(IP->getParent(), OrigMatInsertBB)) 870 ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U); 871 } 872 } 873 874 // If only few constants depend on this IP of base, skip rebasing, 875 // assuming the base and the rebased have the same materialization cost. 876 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 877 NotRebasedNum += ToBeRebased.size(); 878 continue; 879 } 880 881 // Emit an instance of the base at this IP. 882 Instruction *Base = nullptr; 883 // Hoist and hide the base constant behind a bitcast. 884 if (ConstInfo.BaseExpr) { 885 assert(BaseGV && "A base constant expression must have an base GV"); 886 Type *Ty = ConstInfo.BaseExpr->getType(); 887 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 888 } else { 889 IntegerType *Ty = ConstInfo.BaseInt->getIntegerType(); 890 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 891 } 892 893 Base->setDebugLoc(IP->getDebugLoc()); 894 895 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 896 << ") to BB " << IP->getParent()->getName() << '\n' 897 << *Base << '\n'); 898 899 // Emit materialization code for rebased constants depending on this IP. 900 for (UserAdjustment &R : ToBeRebased) { 901 emitBaseConstants(Base, &R); 902 ReBasesNum++; 903 // Use the same debug location as the last user of the constant. 904 Base->setDebugLoc(DILocation::getMergedLocation( 905 Base->getDebugLoc(), R.User.Inst->getDebugLoc())); 906 } 907 assert(!Base->use_empty() && "The use list is empty!?"); 908 assert(isa<Instruction>(Base->user_back()) && 909 "All uses should be instructions."); 910 } 911 (void)UsesNum; 912 (void)ReBasesNum; 913 (void)NotRebasedNum; 914 // Expect all uses are rebased after rebase is done. 915 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 916 "Not all uses are rebased"); 917 918 NumConstantsHoisted++; 919 920 // Base constant is also included in ConstInfo.RebasedConstants, so 921 // deduct 1 from ConstInfo.RebasedConstants.size(). 922 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 923 924 MadeChange = true; 925 } 926 return MadeChange; 927 } 928 929 /// Check all cast instructions we made a copy of and remove them if they 930 /// have no more users. 931 void ConstantHoistingPass::deleteDeadCastInst() const { 932 for (auto const &I : ClonedCastMap) 933 if (I.first->use_empty()) 934 I.first->eraseFromParent(); 935 } 936 937 /// Optimize expensive integer constants in the given function. 938 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 939 DominatorTree &DT, BlockFrequencyInfo *BFI, 940 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 941 this->TTI = &TTI; 942 this->DT = &DT; 943 this->BFI = BFI; 944 this->DL = &Fn.getParent()->getDataLayout(); 945 this->Ctx = &Fn.getContext(); 946 this->Entry = &Entry; 947 this->PSI = PSI; 948 this->OptForSize = Entry.getParent()->hasOptSize() || 949 llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI, 950 PGSOQueryType::IRPass); 951 952 // Collect all constant candidates. 953 collectConstantCandidates(Fn); 954 955 // Combine constants that can be easily materialized with an add from a common 956 // base constant. 957 if (!ConstIntCandVec.empty()) 958 findBaseConstants(nullptr); 959 for (const auto &MapEntry : ConstGEPCandMap) 960 if (!MapEntry.second.empty()) 961 findBaseConstants(MapEntry.first); 962 963 // Finally hoist the base constant and emit materialization code for dependent 964 // constants. 965 bool MadeChange = false; 966 if (!ConstIntInfoVec.empty()) 967 MadeChange = emitBaseConstants(nullptr); 968 for (const auto &MapEntry : ConstGEPInfoMap) 969 if (!MapEntry.second.empty()) 970 MadeChange |= emitBaseConstants(MapEntry.first); 971 972 973 // Cleanup dead instructions. 974 deleteDeadCastInst(); 975 976 cleanup(); 977 978 return MadeChange; 979 } 980 981 PreservedAnalyses ConstantHoistingPass::run(Function &F, 982 FunctionAnalysisManager &AM) { 983 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 984 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 985 auto BFI = ConstHoistWithBlockFrequency 986 ? &AM.getResult<BlockFrequencyAnalysis>(F) 987 : nullptr; 988 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 989 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 990 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 991 return PreservedAnalyses::all(); 992 993 PreservedAnalyses PA; 994 PA.preserveSet<CFGAnalyses>(); 995 return PA; 996 } 997