xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp (revision 90ec6a30353aa7caaf995ea50e2e23aa5a099600)
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <tuple>
71 #include <utility>
72 
73 using namespace llvm;
74 using namespace consthoist;
75 
76 #define DEBUG_TYPE "consthoist"
77 
78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79 STATISTIC(NumConstantsRebased, "Number of constants rebased");
80 
81 static cl::opt<bool> ConstHoistWithBlockFrequency(
82     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83     cl::desc("Enable the use of the block frequency analysis to reduce the "
84              "chance to execute const materialization more frequently than "
85              "without hoisting."));
86 
87 static cl::opt<bool> ConstHoistGEP(
88     "consthoist-gep", cl::init(false), cl::Hidden,
89     cl::desc("Try hoisting constant gep expressions"));
90 
91 static cl::opt<unsigned>
92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93     cl::desc("Do not rebase if number of dependent constants of a Base is less "
94              "than this number."),
95     cl::init(0), cl::Hidden);
96 
97 namespace {
98 
99 /// The constant hoisting pass.
100 class ConstantHoistingLegacyPass : public FunctionPass {
101 public:
102   static char ID; // Pass identification, replacement for typeid
103 
104   ConstantHoistingLegacyPass() : FunctionPass(ID) {
105     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106   }
107 
108   bool runOnFunction(Function &Fn) override;
109 
110   StringRef getPassName() const override { return "Constant Hoisting"; }
111 
112   void getAnalysisUsage(AnalysisUsage &AU) const override {
113     AU.setPreservesCFG();
114     if (ConstHoistWithBlockFrequency)
115       AU.addRequired<BlockFrequencyInfoWrapperPass>();
116     AU.addRequired<DominatorTreeWrapperPass>();
117     AU.addRequired<ProfileSummaryInfoWrapperPass>();
118     AU.addRequired<TargetTransformInfoWrapperPass>();
119   }
120 
121 private:
122   ConstantHoistingPass Impl;
123 };
124 
125 } // end anonymous namespace
126 
127 char ConstantHoistingLegacyPass::ID = 0;
128 
129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130                       "Constant Hoisting", false, false)
131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136                     "Constant Hoisting", false, false)
137 
138 FunctionPass *llvm::createConstantHoistingPass() {
139   return new ConstantHoistingLegacyPass();
140 }
141 
142 /// Perform the constant hoisting optimization for the given function.
143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144   if (skipFunction(Fn))
145     return false;
146 
147   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149 
150   bool MadeChange =
151       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153                    ConstHoistWithBlockFrequency
154                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155                        : nullptr,
156                    Fn.getEntryBlock(),
157                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158 
159   if (MadeChange) {
160     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161                       << Fn.getName() << '\n');
162     LLVM_DEBUG(dbgs() << Fn);
163   }
164   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165 
166   return MadeChange;
167 }
168 
169 /// Find the constant materialization insertion point.
170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171                                                    unsigned Idx) const {
172   // If the operand is a cast instruction, then we have to materialize the
173   // constant before the cast instruction.
174   if (Idx != ~0U) {
175     Value *Opnd = Inst->getOperand(Idx);
176     if (auto CastInst = dyn_cast<Instruction>(Opnd))
177       if (CastInst->isCast())
178         return CastInst;
179   }
180 
181   // The simple and common case. This also includes constant expressions.
182   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183     return Inst;
184 
185   // We can't insert directly before a phi node or an eh pad. Insert before
186   // the terminator of the incoming or dominating block.
187   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188   if (Idx != ~0U && isa<PHINode>(Inst))
189     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
190 
191   // This must be an EH pad. Iterate over immediate dominators until we find a
192   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
193   // and terminators.
194   auto IDom = DT->getNode(Inst->getParent())->getIDom();
195   while (IDom->getBlock()->isEHPad()) {
196     assert(Entry != IDom->getBlock() && "eh pad in entry block");
197     IDom = IDom->getIDom();
198   }
199 
200   return IDom->getBlock()->getTerminator();
201 }
202 
203 /// Given \p BBs as input, find another set of BBs which collectively
204 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
205 /// set found in \p BBs.
206 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
207                                  BasicBlock *Entry,
208                                  SetVector<BasicBlock *> &BBs) {
209   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
210   // Nodes on the current path to the root.
211   SmallPtrSet<BasicBlock *, 8> Path;
212   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
213   // dominated by any other blocks in set 'BBs', and all nodes in the path
214   // in the dominator tree from Entry to 'BB'.
215   SmallPtrSet<BasicBlock *, 16> Candidates;
216   for (auto BB : BBs) {
217     // Ignore unreachable basic blocks.
218     if (!DT.isReachableFromEntry(BB))
219       continue;
220     Path.clear();
221     // Walk up the dominator tree until Entry or another BB in BBs
222     // is reached. Insert the nodes on the way to the Path.
223     BasicBlock *Node = BB;
224     // The "Path" is a candidate path to be added into Candidates set.
225     bool isCandidate = false;
226     do {
227       Path.insert(Node);
228       if (Node == Entry || Candidates.count(Node)) {
229         isCandidate = true;
230         break;
231       }
232       assert(DT.getNode(Node)->getIDom() &&
233              "Entry doens't dominate current Node");
234       Node = DT.getNode(Node)->getIDom()->getBlock();
235     } while (!BBs.count(Node));
236 
237     // If isCandidate is false, Node is another Block in BBs dominating
238     // current 'BB'. Drop the nodes on the Path.
239     if (!isCandidate)
240       continue;
241 
242     // Add nodes on the Path into Candidates.
243     Candidates.insert(Path.begin(), Path.end());
244   }
245 
246   // Sort the nodes in Candidates in top-down order and save the nodes
247   // in Orders.
248   unsigned Idx = 0;
249   SmallVector<BasicBlock *, 16> Orders;
250   Orders.push_back(Entry);
251   while (Idx != Orders.size()) {
252     BasicBlock *Node = Orders[Idx++];
253     for (auto ChildDomNode : DT.getNode(Node)->children()) {
254       if (Candidates.count(ChildDomNode->getBlock()))
255         Orders.push_back(ChildDomNode->getBlock());
256     }
257   }
258 
259   // Visit Orders in bottom-up order.
260   using InsertPtsCostPair =
261       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
262 
263   // InsertPtsMap is a map from a BB to the best insertion points for the
264   // subtree of BB (subtree not including the BB itself).
265   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
266   InsertPtsMap.reserve(Orders.size() + 1);
267   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
268     BasicBlock *Node = *RIt;
269     bool NodeInBBs = BBs.count(Node);
270     auto &InsertPts = InsertPtsMap[Node].first;
271     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
272 
273     // Return the optimal insert points in BBs.
274     if (Node == Entry) {
275       BBs.clear();
276       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
277           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
278         BBs.insert(Entry);
279       else
280         BBs.insert(InsertPts.begin(), InsertPts.end());
281       break;
282     }
283 
284     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
285     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
286     // will update its parent's ParentInsertPts and ParentPtsFreq.
287     auto &ParentInsertPts = InsertPtsMap[Parent].first;
288     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
289     // Choose to insert in Node or in subtree of Node.
290     // Don't hoist to EHPad because we may not find a proper place to insert
291     // in EHPad.
292     // If the total frequency of InsertPts is the same as the frequency of the
293     // target Node, and InsertPts contains more than one nodes, choose hoisting
294     // to reduce code size.
295     if (NodeInBBs ||
296         (!Node->isEHPad() &&
297          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
298           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
299       ParentInsertPts.insert(Node);
300       ParentPtsFreq += BFI.getBlockFreq(Node);
301     } else {
302       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
303       ParentPtsFreq += InsertPtsFreq;
304     }
305   }
306 }
307 
308 /// Find an insertion point that dominates all uses.
309 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
310     const ConstantInfo &ConstInfo) const {
311   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
312   // Collect all basic blocks.
313   SetVector<BasicBlock *> BBs;
314   SetVector<Instruction *> InsertPts;
315   for (auto const &RCI : ConstInfo.RebasedConstants)
316     for (auto const &U : RCI.Uses)
317       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
318 
319   if (BBs.count(Entry)) {
320     InsertPts.insert(&Entry->front());
321     return InsertPts;
322   }
323 
324   if (BFI) {
325     findBestInsertionSet(*DT, *BFI, Entry, BBs);
326     for (auto BB : BBs) {
327       BasicBlock::iterator InsertPt = BB->begin();
328       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
329         ;
330       InsertPts.insert(&*InsertPt);
331     }
332     return InsertPts;
333   }
334 
335   while (BBs.size() >= 2) {
336     BasicBlock *BB, *BB1, *BB2;
337     BB1 = BBs.pop_back_val();
338     BB2 = BBs.pop_back_val();
339     BB = DT->findNearestCommonDominator(BB1, BB2);
340     if (BB == Entry) {
341       InsertPts.insert(&Entry->front());
342       return InsertPts;
343     }
344     BBs.insert(BB);
345   }
346   assert((BBs.size() == 1) && "Expected only one element.");
347   Instruction &FirstInst = (*BBs.begin())->front();
348   InsertPts.insert(findMatInsertPt(&FirstInst));
349   return InsertPts;
350 }
351 
352 /// Record constant integer ConstInt for instruction Inst at operand
353 /// index Idx.
354 ///
355 /// The operand at index Idx is not necessarily the constant integer itself. It
356 /// could also be a cast instruction or a constant expression that uses the
357 /// constant integer.
358 void ConstantHoistingPass::collectConstantCandidates(
359     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
360     ConstantInt *ConstInt) {
361   unsigned Cost;
362   // Ask the target about the cost of materializing the constant for the given
363   // instruction and operand index.
364   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
365     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
366                                     ConstInt->getValue(), ConstInt->getType(),
367                                     TargetTransformInfo::TCK_SizeAndLatency);
368   else
369     Cost = TTI->getIntImmCostInst(Inst->getOpcode(), Idx, ConstInt->getValue(),
370                                   ConstInt->getType(),
371                                   TargetTransformInfo::TCK_SizeAndLatency);
372 
373   // Ignore cheap integer constants.
374   if (Cost > TargetTransformInfo::TCC_Basic) {
375     ConstCandMapType::iterator Itr;
376     bool Inserted;
377     ConstPtrUnionType Cand = ConstInt;
378     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
379     if (Inserted) {
380       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
381       Itr->second = ConstIntCandVec.size() - 1;
382     }
383     ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
384     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
385                    << "Collect constant " << *ConstInt << " from " << *Inst
386                    << " with cost " << Cost << '\n';
387                else dbgs() << "Collect constant " << *ConstInt
388                            << " indirectly from " << *Inst << " via "
389                            << *Inst->getOperand(Idx) << " with cost " << Cost
390                            << '\n';);
391   }
392 }
393 
394 /// Record constant GEP expression for instruction Inst at operand index Idx.
395 void ConstantHoistingPass::collectConstantCandidates(
396     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
397     ConstantExpr *ConstExpr) {
398   // TODO: Handle vector GEPs
399   if (ConstExpr->getType()->isVectorTy())
400     return;
401 
402   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
403   if (!BaseGV)
404     return;
405 
406   // Get offset from the base GV.
407   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
408   IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
409   APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
410   auto *GEPO = cast<GEPOperator>(ConstExpr);
411   if (!GEPO->accumulateConstantOffset(*DL, Offset))
412     return;
413 
414   if (!Offset.isIntN(32))
415     return;
416 
417   // A constant GEP expression that has a GlobalVariable as base pointer is
418   // usually lowered to a load from constant pool. Such operation is unlikely
419   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
420   // an ADD instruction or folded into Load/Store instruction.
421   int Cost = TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
422                                     TargetTransformInfo::TCK_SizeAndLatency);
423   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
424   ConstCandMapType::iterator Itr;
425   bool Inserted;
426   ConstPtrUnionType Cand = ConstExpr;
427   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
428   if (Inserted) {
429     ExprCandVec.push_back(ConstantCandidate(
430         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
431         ConstExpr));
432     Itr->second = ExprCandVec.size() - 1;
433   }
434   ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
435 }
436 
437 /// Check the operand for instruction Inst at index Idx.
438 void ConstantHoistingPass::collectConstantCandidates(
439     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
440   Value *Opnd = Inst->getOperand(Idx);
441 
442   // Visit constant integers.
443   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
444     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
445     return;
446   }
447 
448   // Visit cast instructions that have constant integers.
449   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
450     // Only visit cast instructions, which have been skipped. All other
451     // instructions should have already been visited.
452     if (!CastInst->isCast())
453       return;
454 
455     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
456       // Pretend the constant is directly used by the instruction and ignore
457       // the cast instruction.
458       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
459       return;
460     }
461   }
462 
463   // Visit constant expressions that have constant integers.
464   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
465     // Handle constant gep expressions.
466     if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
467       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
468 
469     // Only visit constant cast expressions.
470     if (!ConstExpr->isCast())
471       return;
472 
473     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
474       // Pretend the constant is directly used by the instruction and ignore
475       // the constant expression.
476       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
477       return;
478     }
479   }
480 }
481 
482 /// Scan the instruction for expensive integer constants and record them
483 /// in the constant candidate vector.
484 void ConstantHoistingPass::collectConstantCandidates(
485     ConstCandMapType &ConstCandMap, Instruction *Inst) {
486   // Skip all cast instructions. They are visited indirectly later on.
487   if (Inst->isCast())
488     return;
489 
490   // Scan all operands.
491   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
492     // The cost of materializing the constants (defined in
493     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
494     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
495     // So it's safe for us to collect constant candidates from all
496     // IntrinsicInsts.
497     if (canReplaceOperandWithVariable(Inst, Idx)) {
498       collectConstantCandidates(ConstCandMap, Inst, Idx);
499     }
500   } // end of for all operands
501 }
502 
503 /// Collect all integer constants in the function that cannot be folded
504 /// into an instruction itself.
505 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
506   ConstCandMapType ConstCandMap;
507   for (BasicBlock &BB : Fn) {
508     // Ignore unreachable basic blocks.
509     if (!DT->isReachableFromEntry(&BB))
510       continue;
511     for (Instruction &Inst : BB)
512       collectConstantCandidates(ConstCandMap, &Inst);
513   }
514 }
515 
516 // This helper function is necessary to deal with values that have different
517 // bit widths (APInt Operator- does not like that). If the value cannot be
518 // represented in uint64 we return an "empty" APInt. This is then interpreted
519 // as the value is not in range.
520 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
521   Optional<APInt> Res = None;
522   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
523                 V1.getBitWidth() : V2.getBitWidth();
524   uint64_t LimVal1 = V1.getLimitedValue();
525   uint64_t LimVal2 = V2.getLimitedValue();
526 
527   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
528     return Res;
529 
530   uint64_t Diff = LimVal1 - LimVal2;
531   return APInt(BW, Diff, true);
532 }
533 
534 // From a list of constants, one needs to picked as the base and the other
535 // constants will be transformed into an offset from that base constant. The
536 // question is which we can pick best? For example, consider these constants
537 // and their number of uses:
538 //
539 //  Constants| 2 | 4 | 12 | 42 |
540 //  NumUses  | 3 | 2 |  8 |  7 |
541 //
542 // Selecting constant 12 because it has the most uses will generate negative
543 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
544 // offsets lead to less optimal code generation, then there might be better
545 // solutions. Suppose immediates in the range of 0..35 are most optimally
546 // supported by the architecture, then selecting constant 2 is most optimal
547 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
548 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
549 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
550 // selecting the base constant the range of the offsets is a very important
551 // factor too that we take into account here. This algorithm calculates a total
552 // costs for selecting a constant as the base and substract the costs if
553 // immediates are out of range. It has quadratic complexity, so we call this
554 // function only when we're optimising for size and there are less than 100
555 // constants, we fall back to the straightforward algorithm otherwise
556 // which does not do all the offset calculations.
557 unsigned
558 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
559                                            ConstCandVecType::iterator E,
560                                            ConstCandVecType::iterator &MaxCostItr) {
561   unsigned NumUses = 0;
562 
563   bool OptForSize = Entry->getParent()->hasOptSize() ||
564                     llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
565                                                 PGSOQueryType::IRPass);
566   if (!OptForSize || std::distance(S,E) > 100) {
567     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
568       NumUses += ConstCand->Uses.size();
569       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
570         MaxCostItr = ConstCand;
571     }
572     return NumUses;
573   }
574 
575   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
576   int MaxCost = -1;
577   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
578     auto Value = ConstCand->ConstInt->getValue();
579     Type *Ty = ConstCand->ConstInt->getType();
580     int Cost = 0;
581     NumUses += ConstCand->Uses.size();
582     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
583                       << "\n");
584 
585     for (auto User : ConstCand->Uses) {
586       unsigned Opcode = User.Inst->getOpcode();
587       unsigned OpndIdx = User.OpndIdx;
588       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
589                                      TargetTransformInfo::TCK_SizeAndLatency);
590       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
591 
592       for (auto C2 = S; C2 != E; ++C2) {
593         Optional<APInt> Diff = calculateOffsetDiff(
594                                    C2->ConstInt->getValue(),
595                                    ConstCand->ConstInt->getValue());
596         if (Diff) {
597           const int ImmCosts =
598             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
599           Cost -= ImmCosts;
600           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
601                             << "has penalty: " << ImmCosts << "\n"
602                             << "Adjusted cost: " << Cost << "\n");
603         }
604       }
605     }
606     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
607     if (Cost > MaxCost) {
608       MaxCost = Cost;
609       MaxCostItr = ConstCand;
610       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
611                         << "\n");
612     }
613   }
614   return NumUses;
615 }
616 
617 /// Find the base constant within the given range and rebase all other
618 /// constants with respect to the base constant.
619 void ConstantHoistingPass::findAndMakeBaseConstant(
620     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
621     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
622   auto MaxCostItr = S;
623   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
624 
625   // Don't hoist constants that have only one use.
626   if (NumUses <= 1)
627     return;
628 
629   ConstantInt *ConstInt = MaxCostItr->ConstInt;
630   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
631   ConstantInfo ConstInfo;
632   ConstInfo.BaseInt = ConstInt;
633   ConstInfo.BaseExpr = ConstExpr;
634   Type *Ty = ConstInt->getType();
635 
636   // Rebase the constants with respect to the base constant.
637   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
638     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
639     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
640     Type *ConstTy =
641         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
642     ConstInfo.RebasedConstants.push_back(
643       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
644   }
645   ConstInfoVec.push_back(std::move(ConstInfo));
646 }
647 
648 /// Finds and combines constant candidates that can be easily
649 /// rematerialized with an add from a common base constant.
650 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
651   // If BaseGV is nullptr, find base among candidate constant integers;
652   // Otherwise find base among constant GEPs that share the same BaseGV.
653   ConstCandVecType &ConstCandVec = BaseGV ?
654       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
655   ConstInfoVecType &ConstInfoVec = BaseGV ?
656       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
657 
658   // Sort the constants by value and type. This invalidates the mapping!
659   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
660                                      const ConstantCandidate &RHS) {
661     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
662       return LHS.ConstInt->getType()->getBitWidth() <
663              RHS.ConstInt->getType()->getBitWidth();
664     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
665   });
666 
667   // Simple linear scan through the sorted constant candidate vector for viable
668   // merge candidates.
669   auto MinValItr = ConstCandVec.begin();
670   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
671        CC != E; ++CC) {
672     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
673       Type *MemUseValTy = nullptr;
674       for (auto &U : CC->Uses) {
675         auto *UI = U.Inst;
676         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
677           MemUseValTy = LI->getType();
678           break;
679         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
680           // Make sure the constant is used as pointer operand of the StoreInst.
681           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
682             MemUseValTy = SI->getValueOperand()->getType();
683             break;
684           }
685         }
686       }
687 
688       // Check if the constant is in range of an add with immediate.
689       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
690       if ((Diff.getBitWidth() <= 64) &&
691           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
692           // Check if Diff can be used as offset in addressing mode of the user
693           // memory instruction.
694           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
695            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
696            /*HasBaseReg*/true, /*Scale*/0)))
697         continue;
698     }
699     // We either have now a different constant type or the constant is not in
700     // range of an add with immediate anymore.
701     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
702     // Start a new base constant search.
703     MinValItr = CC;
704   }
705   // Finalize the last base constant search.
706   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
707 }
708 
709 /// Updates the operand at Idx in instruction Inst with the result of
710 ///        instruction Mat. If the instruction is a PHI node then special
711 ///        handling for duplicate values form the same incoming basic block is
712 ///        required.
713 /// \return The update will always succeed, but the return value indicated if
714 ///         Mat was used for the update or not.
715 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
716   if (auto PHI = dyn_cast<PHINode>(Inst)) {
717     // Check if any previous operand of the PHI node has the same incoming basic
718     // block. This is a very odd case that happens when the incoming basic block
719     // has a switch statement. In this case use the same value as the previous
720     // operand(s), otherwise we will fail verification due to different values.
721     // The values are actually the same, but the variable names are different
722     // and the verifier doesn't like that.
723     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
724     for (unsigned i = 0; i < Idx; ++i) {
725       if (PHI->getIncomingBlock(i) == IncomingBB) {
726         Value *IncomingVal = PHI->getIncomingValue(i);
727         Inst->setOperand(Idx, IncomingVal);
728         return false;
729       }
730     }
731   }
732 
733   Inst->setOperand(Idx, Mat);
734   return true;
735 }
736 
737 /// Emit materialization code for all rebased constants and update their
738 /// users.
739 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
740                                              Constant *Offset,
741                                              Type *Ty,
742                                              const ConstantUser &ConstUser) {
743   Instruction *Mat = Base;
744 
745   // The same offset can be dereferenced to different types in nested struct.
746   if (!Offset && Ty && Ty != Base->getType())
747     Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
748 
749   if (Offset) {
750     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
751                                                ConstUser.OpndIdx);
752     if (Ty) {
753       // Constant being rebased is a ConstantExpr.
754       PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
755           cast<PointerType>(Ty)->getAddressSpace());
756       Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
757       Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
758           Offset, "mat_gep", InsertionPt);
759       Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
760     } else
761       // Constant being rebased is a ConstantInt.
762       Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
763                                  "const_mat", InsertionPt);
764 
765     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
766                       << " + " << *Offset << ") in BB "
767                       << Mat->getParent()->getName() << '\n'
768                       << *Mat << '\n');
769     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
770   }
771   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
772 
773   // Visit constant integer.
774   if (isa<ConstantInt>(Opnd)) {
775     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
776     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
777       Mat->eraseFromParent();
778     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
779     return;
780   }
781 
782   // Visit cast instruction.
783   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
784     assert(CastInst->isCast() && "Expected an cast instruction!");
785     // Check if we already have visited this cast instruction before to avoid
786     // unnecessary cloning.
787     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
788     if (!ClonedCastInst) {
789       ClonedCastInst = CastInst->clone();
790       ClonedCastInst->setOperand(0, Mat);
791       ClonedCastInst->insertAfter(CastInst);
792       // Use the same debug location as the original cast instruction.
793       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
794       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
795                         << "To               : " << *ClonedCastInst << '\n');
796     }
797 
798     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
799     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
800     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
801     return;
802   }
803 
804   // Visit constant expression.
805   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
806     if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
807       // Operand is a ConstantGEP, replace it.
808       updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
809       return;
810     }
811 
812     // Aside from constant GEPs, only constant cast expressions are collected.
813     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
814     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
815     ConstExprInst->setOperand(0, Mat);
816     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
817                                                 ConstUser.OpndIdx));
818 
819     // Use the same debug location as the instruction we are about to update.
820     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
821 
822     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
823                       << "From              : " << *ConstExpr << '\n');
824     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
825     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
826       ConstExprInst->eraseFromParent();
827       if (Offset)
828         Mat->eraseFromParent();
829     }
830     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
831     return;
832   }
833 }
834 
835 /// Hoist and hide the base constant behind a bitcast and emit
836 /// materialization code for derived constants.
837 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
838   bool MadeChange = false;
839   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
840       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
841   for (auto const &ConstInfo : ConstInfoVec) {
842     SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
843     // We can have an empty set if the function contains unreachable blocks.
844     if (IPSet.empty())
845       continue;
846 
847     unsigned UsesNum = 0;
848     unsigned ReBasesNum = 0;
849     unsigned NotRebasedNum = 0;
850     for (Instruction *IP : IPSet) {
851       // First, collect constants depending on this IP of the base.
852       unsigned Uses = 0;
853       using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
854       SmallVector<RebasedUse, 4> ToBeRebased;
855       for (auto const &RCI : ConstInfo.RebasedConstants) {
856         for (auto const &U : RCI.Uses) {
857           Uses++;
858           BasicBlock *OrigMatInsertBB =
859               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
860           // If Base constant is to be inserted in multiple places,
861           // generate rebase for U using the Base dominating U.
862           if (IPSet.size() == 1 ||
863               DT->dominates(IP->getParent(), OrigMatInsertBB))
864             ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
865         }
866       }
867       UsesNum = Uses;
868 
869       // If only few constants depend on this IP of base, skip rebasing,
870       // assuming the base and the rebased have the same materialization cost.
871       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
872         NotRebasedNum += ToBeRebased.size();
873         continue;
874       }
875 
876       // Emit an instance of the base at this IP.
877       Instruction *Base = nullptr;
878       // Hoist and hide the base constant behind a bitcast.
879       if (ConstInfo.BaseExpr) {
880         assert(BaseGV && "A base constant expression must have an base GV");
881         Type *Ty = ConstInfo.BaseExpr->getType();
882         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
883       } else {
884         IntegerType *Ty = ConstInfo.BaseInt->getType();
885         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
886       }
887 
888       Base->setDebugLoc(IP->getDebugLoc());
889 
890       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
891                         << ") to BB " << IP->getParent()->getName() << '\n'
892                         << *Base << '\n');
893 
894       // Emit materialization code for rebased constants depending on this IP.
895       for (auto const &R : ToBeRebased) {
896         Constant *Off = std::get<0>(R);
897         Type *Ty = std::get<1>(R);
898         ConstantUser U = std::get<2>(R);
899         emitBaseConstants(Base, Off, Ty, U);
900         ReBasesNum++;
901         // Use the same debug location as the last user of the constant.
902         Base->setDebugLoc(DILocation::getMergedLocation(
903             Base->getDebugLoc(), U.Inst->getDebugLoc()));
904       }
905       assert(!Base->use_empty() && "The use list is empty!?");
906       assert(isa<Instruction>(Base->user_back()) &&
907              "All uses should be instructions.");
908     }
909     (void)UsesNum;
910     (void)ReBasesNum;
911     (void)NotRebasedNum;
912     // Expect all uses are rebased after rebase is done.
913     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
914            "Not all uses are rebased");
915 
916     NumConstantsHoisted++;
917 
918     // Base constant is also included in ConstInfo.RebasedConstants, so
919     // deduct 1 from ConstInfo.RebasedConstants.size().
920     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
921 
922     MadeChange = true;
923   }
924   return MadeChange;
925 }
926 
927 /// Check all cast instructions we made a copy of and remove them if they
928 /// have no more users.
929 void ConstantHoistingPass::deleteDeadCastInst() const {
930   for (auto const &I : ClonedCastMap)
931     if (I.first->use_empty())
932       I.first->eraseFromParent();
933 }
934 
935 /// Optimize expensive integer constants in the given function.
936 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
937                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
938                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
939   this->TTI = &TTI;
940   this->DT = &DT;
941   this->BFI = BFI;
942   this->DL = &Fn.getParent()->getDataLayout();
943   this->Ctx = &Fn.getContext();
944   this->Entry = &Entry;
945   this->PSI = PSI;
946   // Collect all constant candidates.
947   collectConstantCandidates(Fn);
948 
949   // Combine constants that can be easily materialized with an add from a common
950   // base constant.
951   if (!ConstIntCandVec.empty())
952     findBaseConstants(nullptr);
953   for (auto &MapEntry : ConstGEPCandMap)
954     if (!MapEntry.second.empty())
955       findBaseConstants(MapEntry.first);
956 
957   // Finally hoist the base constant and emit materialization code for dependent
958   // constants.
959   bool MadeChange = false;
960   if (!ConstIntInfoVec.empty())
961     MadeChange = emitBaseConstants(nullptr);
962   for (auto MapEntry : ConstGEPInfoMap)
963     if (!MapEntry.second.empty())
964       MadeChange |= emitBaseConstants(MapEntry.first);
965 
966 
967   // Cleanup dead instructions.
968   deleteDeadCastInst();
969 
970   cleanup();
971 
972   return MadeChange;
973 }
974 
975 PreservedAnalyses ConstantHoistingPass::run(Function &F,
976                                             FunctionAnalysisManager &AM) {
977   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
978   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
979   auto BFI = ConstHoistWithBlockFrequency
980                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
981                  : nullptr;
982   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
983   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
984   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
985     return PreservedAnalyses::all();
986 
987   PreservedAnalyses PA;
988   PA.preserveSet<CFGAnalyses>();
989   return PA;
990 }
991