1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/None.h" 39 #include "llvm/ADT/Optional.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/BlockFrequencyInfo.h" 44 #include "llvm/Analysis/ProfileSummaryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/SizeOpts.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <tuple> 71 #include <utility> 72 73 using namespace llvm; 74 using namespace consthoist; 75 76 #define DEBUG_TYPE "consthoist" 77 78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 79 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 80 81 static cl::opt<bool> ConstHoistWithBlockFrequency( 82 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 83 cl::desc("Enable the use of the block frequency analysis to reduce the " 84 "chance to execute const materialization more frequently than " 85 "without hoisting.")); 86 87 static cl::opt<bool> ConstHoistGEP( 88 "consthoist-gep", cl::init(false), cl::Hidden, 89 cl::desc("Try hoisting constant gep expressions")); 90 91 static cl::opt<unsigned> 92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 93 cl::desc("Do not rebase if number of dependent constants of a Base is less " 94 "than this number."), 95 cl::init(0), cl::Hidden); 96 97 namespace { 98 99 /// The constant hoisting pass. 100 class ConstantHoistingLegacyPass : public FunctionPass { 101 public: 102 static char ID; // Pass identification, replacement for typeid 103 104 ConstantHoistingLegacyPass() : FunctionPass(ID) { 105 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnFunction(Function &Fn) override; 109 110 StringRef getPassName() const override { return "Constant Hoisting"; } 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.setPreservesCFG(); 114 if (ConstHoistWithBlockFrequency) 115 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 116 AU.addRequired<DominatorTreeWrapperPass>(); 117 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 118 AU.addRequired<TargetTransformInfoWrapperPass>(); 119 } 120 121 private: 122 ConstantHoistingPass Impl; 123 }; 124 125 } // end anonymous namespace 126 127 char ConstantHoistingLegacyPass::ID = 0; 128 129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 130 "Constant Hoisting", false, false) 131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 136 "Constant Hoisting", false, false) 137 138 FunctionPass *llvm::createConstantHoistingPass() { 139 return new ConstantHoistingLegacyPass(); 140 } 141 142 /// Perform the constant hoisting optimization for the given function. 143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 144 if (skipFunction(Fn)) 145 return false; 146 147 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 148 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 149 150 bool MadeChange = 151 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 152 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 153 ConstHoistWithBlockFrequency 154 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 155 : nullptr, 156 Fn.getEntryBlock(), 157 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 158 159 if (MadeChange) { 160 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " 161 << Fn.getName() << '\n'); 162 LLVM_DEBUG(dbgs() << Fn); 163 } 164 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 165 166 return MadeChange; 167 } 168 169 /// Find the constant materialization insertion point. 170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 171 unsigned Idx) const { 172 // If the operand is a cast instruction, then we have to materialize the 173 // constant before the cast instruction. 174 if (Idx != ~0U) { 175 Value *Opnd = Inst->getOperand(Idx); 176 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 177 if (CastInst->isCast()) 178 return CastInst; 179 } 180 181 // The simple and common case. This also includes constant expressions. 182 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 183 return Inst; 184 185 // We can't insert directly before a phi node or an eh pad. Insert before 186 // the terminator of the incoming or dominating block. 187 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 188 if (Idx != ~0U && isa<PHINode>(Inst)) 189 return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator(); 190 191 // This must be an EH pad. Iterate over immediate dominators until we find a 192 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 193 // and terminators. 194 auto IDom = DT->getNode(Inst->getParent())->getIDom(); 195 while (IDom->getBlock()->isEHPad()) { 196 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 197 IDom = IDom->getIDom(); 198 } 199 200 return IDom->getBlock()->getTerminator(); 201 } 202 203 /// Given \p BBs as input, find another set of BBs which collectively 204 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 205 /// set found in \p BBs. 206 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 207 BasicBlock *Entry, 208 SetVector<BasicBlock *> &BBs) { 209 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 210 // Nodes on the current path to the root. 211 SmallPtrSet<BasicBlock *, 8> Path; 212 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 213 // dominated by any other blocks in set 'BBs', and all nodes in the path 214 // in the dominator tree from Entry to 'BB'. 215 SmallPtrSet<BasicBlock *, 16> Candidates; 216 for (auto BB : BBs) { 217 // Ignore unreachable basic blocks. 218 if (!DT.isReachableFromEntry(BB)) 219 continue; 220 Path.clear(); 221 // Walk up the dominator tree until Entry or another BB in BBs 222 // is reached. Insert the nodes on the way to the Path. 223 BasicBlock *Node = BB; 224 // The "Path" is a candidate path to be added into Candidates set. 225 bool isCandidate = false; 226 do { 227 Path.insert(Node); 228 if (Node == Entry || Candidates.count(Node)) { 229 isCandidate = true; 230 break; 231 } 232 assert(DT.getNode(Node)->getIDom() && 233 "Entry doens't dominate current Node"); 234 Node = DT.getNode(Node)->getIDom()->getBlock(); 235 } while (!BBs.count(Node)); 236 237 // If isCandidate is false, Node is another Block in BBs dominating 238 // current 'BB'. Drop the nodes on the Path. 239 if (!isCandidate) 240 continue; 241 242 // Add nodes on the Path into Candidates. 243 Candidates.insert(Path.begin(), Path.end()); 244 } 245 246 // Sort the nodes in Candidates in top-down order and save the nodes 247 // in Orders. 248 unsigned Idx = 0; 249 SmallVector<BasicBlock *, 16> Orders; 250 Orders.push_back(Entry); 251 while (Idx != Orders.size()) { 252 BasicBlock *Node = Orders[Idx++]; 253 for (auto ChildDomNode : DT.getNode(Node)->children()) { 254 if (Candidates.count(ChildDomNode->getBlock())) 255 Orders.push_back(ChildDomNode->getBlock()); 256 } 257 } 258 259 // Visit Orders in bottom-up order. 260 using InsertPtsCostPair = 261 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 262 263 // InsertPtsMap is a map from a BB to the best insertion points for the 264 // subtree of BB (subtree not including the BB itself). 265 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 266 InsertPtsMap.reserve(Orders.size() + 1); 267 for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { 268 BasicBlock *Node = *RIt; 269 bool NodeInBBs = BBs.count(Node); 270 auto &InsertPts = InsertPtsMap[Node].first; 271 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 272 273 // Return the optimal insert points in BBs. 274 if (Node == Entry) { 275 BBs.clear(); 276 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 277 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 278 BBs.insert(Entry); 279 else 280 BBs.insert(InsertPts.begin(), InsertPts.end()); 281 break; 282 } 283 284 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 285 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 286 // will update its parent's ParentInsertPts and ParentPtsFreq. 287 auto &ParentInsertPts = InsertPtsMap[Parent].first; 288 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 289 // Choose to insert in Node or in subtree of Node. 290 // Don't hoist to EHPad because we may not find a proper place to insert 291 // in EHPad. 292 // If the total frequency of InsertPts is the same as the frequency of the 293 // target Node, and InsertPts contains more than one nodes, choose hoisting 294 // to reduce code size. 295 if (NodeInBBs || 296 (!Node->isEHPad() && 297 (InsertPtsFreq > BFI.getBlockFreq(Node) || 298 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 299 ParentInsertPts.insert(Node); 300 ParentPtsFreq += BFI.getBlockFreq(Node); 301 } else { 302 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 303 ParentPtsFreq += InsertPtsFreq; 304 } 305 } 306 } 307 308 /// Find an insertion point that dominates all uses. 309 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( 310 const ConstantInfo &ConstInfo) const { 311 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 312 // Collect all basic blocks. 313 SetVector<BasicBlock *> BBs; 314 SetVector<Instruction *> InsertPts; 315 for (auto const &RCI : ConstInfo.RebasedConstants) 316 for (auto const &U : RCI.Uses) 317 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); 318 319 if (BBs.count(Entry)) { 320 InsertPts.insert(&Entry->front()); 321 return InsertPts; 322 } 323 324 if (BFI) { 325 findBestInsertionSet(*DT, *BFI, Entry, BBs); 326 for (auto BB : BBs) { 327 BasicBlock::iterator InsertPt = BB->begin(); 328 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 329 ; 330 InsertPts.insert(&*InsertPt); 331 } 332 return InsertPts; 333 } 334 335 while (BBs.size() >= 2) { 336 BasicBlock *BB, *BB1, *BB2; 337 BB1 = BBs.pop_back_val(); 338 BB2 = BBs.pop_back_val(); 339 BB = DT->findNearestCommonDominator(BB1, BB2); 340 if (BB == Entry) { 341 InsertPts.insert(&Entry->front()); 342 return InsertPts; 343 } 344 BBs.insert(BB); 345 } 346 assert((BBs.size() == 1) && "Expected only one element."); 347 Instruction &FirstInst = (*BBs.begin())->front(); 348 InsertPts.insert(findMatInsertPt(&FirstInst)); 349 return InsertPts; 350 } 351 352 /// Record constant integer ConstInt for instruction Inst at operand 353 /// index Idx. 354 /// 355 /// The operand at index Idx is not necessarily the constant integer itself. It 356 /// could also be a cast instruction or a constant expression that uses the 357 /// constant integer. 358 void ConstantHoistingPass::collectConstantCandidates( 359 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 360 ConstantInt *ConstInt) { 361 unsigned Cost; 362 // Ask the target about the cost of materializing the constant for the given 363 // instruction and operand index. 364 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 365 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 366 ConstInt->getValue(), ConstInt->getType(), 367 TargetTransformInfo::TCK_SizeAndLatency); 368 else 369 Cost = TTI->getIntImmCostInst( 370 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 371 TargetTransformInfo::TCK_SizeAndLatency, Inst); 372 373 // Ignore cheap integer constants. 374 if (Cost > TargetTransformInfo::TCC_Basic) { 375 ConstCandMapType::iterator Itr; 376 bool Inserted; 377 ConstPtrUnionType Cand = ConstInt; 378 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 379 if (Inserted) { 380 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 381 Itr->second = ConstIntCandVec.size() - 1; 382 } 383 ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost); 384 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 385 << "Collect constant " << *ConstInt << " from " << *Inst 386 << " with cost " << Cost << '\n'; 387 else dbgs() << "Collect constant " << *ConstInt 388 << " indirectly from " << *Inst << " via " 389 << *Inst->getOperand(Idx) << " with cost " << Cost 390 << '\n';); 391 } 392 } 393 394 /// Record constant GEP expression for instruction Inst at operand index Idx. 395 void ConstantHoistingPass::collectConstantCandidates( 396 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 397 ConstantExpr *ConstExpr) { 398 // TODO: Handle vector GEPs 399 if (ConstExpr->getType()->isVectorTy()) 400 return; 401 402 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 403 if (!BaseGV) 404 return; 405 406 // Get offset from the base GV. 407 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 408 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); 409 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); 410 auto *GEPO = cast<GEPOperator>(ConstExpr); 411 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 412 return; 413 414 if (!Offset.isIntN(32)) 415 return; 416 417 // A constant GEP expression that has a GlobalVariable as base pointer is 418 // usually lowered to a load from constant pool. Such operation is unlikely 419 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 420 // an ADD instruction or folded into Load/Store instruction. 421 int Cost = 422 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, 423 TargetTransformInfo::TCK_SizeAndLatency, Inst); 424 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 425 ConstCandMapType::iterator Itr; 426 bool Inserted; 427 ConstPtrUnionType Cand = ConstExpr; 428 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 429 if (Inserted) { 430 ExprCandVec.push_back(ConstantCandidate( 431 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 432 ConstExpr)); 433 Itr->second = ExprCandVec.size() - 1; 434 } 435 ExprCandVec[Itr->second].addUser(Inst, Idx, Cost); 436 } 437 438 /// Check the operand for instruction Inst at index Idx. 439 void ConstantHoistingPass::collectConstantCandidates( 440 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 441 Value *Opnd = Inst->getOperand(Idx); 442 443 // Visit constant integers. 444 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 445 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 446 return; 447 } 448 449 // Visit cast instructions that have constant integers. 450 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 451 // Only visit cast instructions, which have been skipped. All other 452 // instructions should have already been visited. 453 if (!CastInst->isCast()) 454 return; 455 456 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 457 // Pretend the constant is directly used by the instruction and ignore 458 // the cast instruction. 459 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 460 return; 461 } 462 } 463 464 // Visit constant expressions that have constant integers. 465 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 466 // Handle constant gep expressions. 467 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) 468 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 469 470 // Only visit constant cast expressions. 471 if (!ConstExpr->isCast()) 472 return; 473 474 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 475 // Pretend the constant is directly used by the instruction and ignore 476 // the constant expression. 477 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 478 return; 479 } 480 } 481 } 482 483 /// Scan the instruction for expensive integer constants and record them 484 /// in the constant candidate vector. 485 void ConstantHoistingPass::collectConstantCandidates( 486 ConstCandMapType &ConstCandMap, Instruction *Inst) { 487 // Skip all cast instructions. They are visited indirectly later on. 488 if (Inst->isCast()) 489 return; 490 491 // Scan all operands. 492 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 493 // The cost of materializing the constants (defined in 494 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 495 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 496 // So it's safe for us to collect constant candidates from all 497 // IntrinsicInsts. 498 if (canReplaceOperandWithVariable(Inst, Idx)) { 499 collectConstantCandidates(ConstCandMap, Inst, Idx); 500 } 501 } // end of for all operands 502 } 503 504 /// Collect all integer constants in the function that cannot be folded 505 /// into an instruction itself. 506 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 507 ConstCandMapType ConstCandMap; 508 for (BasicBlock &BB : Fn) { 509 // Ignore unreachable basic blocks. 510 if (!DT->isReachableFromEntry(&BB)) 511 continue; 512 for (Instruction &Inst : BB) 513 collectConstantCandidates(ConstCandMap, &Inst); 514 } 515 } 516 517 // This helper function is necessary to deal with values that have different 518 // bit widths (APInt Operator- does not like that). If the value cannot be 519 // represented in uint64 we return an "empty" APInt. This is then interpreted 520 // as the value is not in range. 521 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { 522 Optional<APInt> Res = None; 523 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 524 V1.getBitWidth() : V2.getBitWidth(); 525 uint64_t LimVal1 = V1.getLimitedValue(); 526 uint64_t LimVal2 = V2.getLimitedValue(); 527 528 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 529 return Res; 530 531 uint64_t Diff = LimVal1 - LimVal2; 532 return APInt(BW, Diff, true); 533 } 534 535 // From a list of constants, one needs to picked as the base and the other 536 // constants will be transformed into an offset from that base constant. The 537 // question is which we can pick best? For example, consider these constants 538 // and their number of uses: 539 // 540 // Constants| 2 | 4 | 12 | 42 | 541 // NumUses | 3 | 2 | 8 | 7 | 542 // 543 // Selecting constant 12 because it has the most uses will generate negative 544 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 545 // offsets lead to less optimal code generation, then there might be better 546 // solutions. Suppose immediates in the range of 0..35 are most optimally 547 // supported by the architecture, then selecting constant 2 is most optimal 548 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 549 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 550 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 551 // selecting the base constant the range of the offsets is a very important 552 // factor too that we take into account here. This algorithm calculates a total 553 // costs for selecting a constant as the base and substract the costs if 554 // immediates are out of range. It has quadratic complexity, so we call this 555 // function only when we're optimising for size and there are less than 100 556 // constants, we fall back to the straightforward algorithm otherwise 557 // which does not do all the offset calculations. 558 unsigned 559 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 560 ConstCandVecType::iterator E, 561 ConstCandVecType::iterator &MaxCostItr) { 562 unsigned NumUses = 0; 563 564 bool OptForSize = Entry->getParent()->hasOptSize() || 565 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, 566 PGSOQueryType::IRPass); 567 if (!OptForSize || std::distance(S,E) > 100) { 568 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 569 NumUses += ConstCand->Uses.size(); 570 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 571 MaxCostItr = ConstCand; 572 } 573 return NumUses; 574 } 575 576 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 577 int MaxCost = -1; 578 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 579 auto Value = ConstCand->ConstInt->getValue(); 580 Type *Ty = ConstCand->ConstInt->getType(); 581 int Cost = 0; 582 NumUses += ConstCand->Uses.size(); 583 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 584 << "\n"); 585 586 for (auto User : ConstCand->Uses) { 587 unsigned Opcode = User.Inst->getOpcode(); 588 unsigned OpndIdx = User.OpndIdx; 589 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 590 TargetTransformInfo::TCK_SizeAndLatency); 591 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 592 593 for (auto C2 = S; C2 != E; ++C2) { 594 Optional<APInt> Diff = calculateOffsetDiff( 595 C2->ConstInt->getValue(), 596 ConstCand->ConstInt->getValue()); 597 if (Diff) { 598 const int ImmCosts = 599 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); 600 Cost -= ImmCosts; 601 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " 602 << "has penalty: " << ImmCosts << "\n" 603 << "Adjusted cost: " << Cost << "\n"); 604 } 605 } 606 } 607 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 608 if (Cost > MaxCost) { 609 MaxCost = Cost; 610 MaxCostItr = ConstCand; 611 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 612 << "\n"); 613 } 614 } 615 return NumUses; 616 } 617 618 /// Find the base constant within the given range and rebase all other 619 /// constants with respect to the base constant. 620 void ConstantHoistingPass::findAndMakeBaseConstant( 621 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 622 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 623 auto MaxCostItr = S; 624 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 625 626 // Don't hoist constants that have only one use. 627 if (NumUses <= 1) 628 return; 629 630 ConstantInt *ConstInt = MaxCostItr->ConstInt; 631 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 632 ConstantInfo ConstInfo; 633 ConstInfo.BaseInt = ConstInt; 634 ConstInfo.BaseExpr = ConstExpr; 635 Type *Ty = ConstInt->getType(); 636 637 // Rebase the constants with respect to the base constant. 638 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 639 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 640 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 641 Type *ConstTy = 642 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 643 ConstInfo.RebasedConstants.push_back( 644 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 645 } 646 ConstInfoVec.push_back(std::move(ConstInfo)); 647 } 648 649 /// Finds and combines constant candidates that can be easily 650 /// rematerialized with an add from a common base constant. 651 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 652 // If BaseGV is nullptr, find base among candidate constant integers; 653 // Otherwise find base among constant GEPs that share the same BaseGV. 654 ConstCandVecType &ConstCandVec = BaseGV ? 655 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 656 ConstInfoVecType &ConstInfoVec = BaseGV ? 657 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 658 659 // Sort the constants by value and type. This invalidates the mapping! 660 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 661 const ConstantCandidate &RHS) { 662 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 663 return LHS.ConstInt->getType()->getBitWidth() < 664 RHS.ConstInt->getType()->getBitWidth(); 665 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 666 }); 667 668 // Simple linear scan through the sorted constant candidate vector for viable 669 // merge candidates. 670 auto MinValItr = ConstCandVec.begin(); 671 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 672 CC != E; ++CC) { 673 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 674 Type *MemUseValTy = nullptr; 675 for (auto &U : CC->Uses) { 676 auto *UI = U.Inst; 677 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 678 MemUseValTy = LI->getType(); 679 break; 680 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 681 // Make sure the constant is used as pointer operand of the StoreInst. 682 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 683 MemUseValTy = SI->getValueOperand()->getType(); 684 break; 685 } 686 } 687 } 688 689 // Check if the constant is in range of an add with immediate. 690 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 691 if ((Diff.getBitWidth() <= 64) && 692 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 693 // Check if Diff can be used as offset in addressing mode of the user 694 // memory instruction. 695 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 696 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 697 /*HasBaseReg*/true, /*Scale*/0))) 698 continue; 699 } 700 // We either have now a different constant type or the constant is not in 701 // range of an add with immediate anymore. 702 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 703 // Start a new base constant search. 704 MinValItr = CC; 705 } 706 // Finalize the last base constant search. 707 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 708 } 709 710 /// Updates the operand at Idx in instruction Inst with the result of 711 /// instruction Mat. If the instruction is a PHI node then special 712 /// handling for duplicate values form the same incoming basic block is 713 /// required. 714 /// \return The update will always succeed, but the return value indicated if 715 /// Mat was used for the update or not. 716 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 717 if (auto PHI = dyn_cast<PHINode>(Inst)) { 718 // Check if any previous operand of the PHI node has the same incoming basic 719 // block. This is a very odd case that happens when the incoming basic block 720 // has a switch statement. In this case use the same value as the previous 721 // operand(s), otherwise we will fail verification due to different values. 722 // The values are actually the same, but the variable names are different 723 // and the verifier doesn't like that. 724 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 725 for (unsigned i = 0; i < Idx; ++i) { 726 if (PHI->getIncomingBlock(i) == IncomingBB) { 727 Value *IncomingVal = PHI->getIncomingValue(i); 728 Inst->setOperand(Idx, IncomingVal); 729 return false; 730 } 731 } 732 } 733 734 Inst->setOperand(Idx, Mat); 735 return true; 736 } 737 738 /// Emit materialization code for all rebased constants and update their 739 /// users. 740 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 741 Constant *Offset, 742 Type *Ty, 743 const ConstantUser &ConstUser) { 744 Instruction *Mat = Base; 745 746 // The same offset can be dereferenced to different types in nested struct. 747 if (!Offset && Ty && Ty != Base->getType()) 748 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 749 750 if (Offset) { 751 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, 752 ConstUser.OpndIdx); 753 if (Ty) { 754 // Constant being rebased is a ConstantExpr. 755 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, 756 cast<PointerType>(Ty)->getAddressSpace()); 757 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); 758 Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, 759 Offset, "mat_gep", InsertionPt); 760 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); 761 } else 762 // Constant being rebased is a ConstantInt. 763 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, 764 "const_mat", InsertionPt); 765 766 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 767 << " + " << *Offset << ") in BB " 768 << Mat->getParent()->getName() << '\n' 769 << *Mat << '\n'); 770 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); 771 } 772 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); 773 774 // Visit constant integer. 775 if (isa<ConstantInt>(Opnd)) { 776 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 777 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) 778 Mat->eraseFromParent(); 779 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 780 return; 781 } 782 783 // Visit cast instruction. 784 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 785 assert(CastInst->isCast() && "Expected an cast instruction!"); 786 // Check if we already have visited this cast instruction before to avoid 787 // unnecessary cloning. 788 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 789 if (!ClonedCastInst) { 790 ClonedCastInst = CastInst->clone(); 791 ClonedCastInst->setOperand(0, Mat); 792 ClonedCastInst->insertAfter(CastInst); 793 // Use the same debug location as the original cast instruction. 794 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 795 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 796 << "To : " << *ClonedCastInst << '\n'); 797 } 798 799 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 800 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); 801 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 802 return; 803 } 804 805 // Visit constant expression. 806 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 807 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { 808 // Operand is a ConstantGEP, replace it. 809 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); 810 return; 811 } 812 813 // Aside from constant GEPs, only constant cast expressions are collected. 814 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 815 Instruction *ConstExprInst = ConstExpr->getAsInstruction(); 816 ConstExprInst->setOperand(0, Mat); 817 ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, 818 ConstUser.OpndIdx)); 819 820 // Use the same debug location as the instruction we are about to update. 821 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); 822 823 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 824 << "From : " << *ConstExpr << '\n'); 825 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 826 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { 827 ConstExprInst->eraseFromParent(); 828 if (Offset) 829 Mat->eraseFromParent(); 830 } 831 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 832 return; 833 } 834 } 835 836 /// Hoist and hide the base constant behind a bitcast and emit 837 /// materialization code for derived constants. 838 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 839 bool MadeChange = false; 840 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 841 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 842 for (auto const &ConstInfo : ConstInfoVec) { 843 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); 844 // We can have an empty set if the function contains unreachable blocks. 845 if (IPSet.empty()) 846 continue; 847 848 unsigned UsesNum = 0; 849 unsigned ReBasesNum = 0; 850 unsigned NotRebasedNum = 0; 851 for (Instruction *IP : IPSet) { 852 // First, collect constants depending on this IP of the base. 853 unsigned Uses = 0; 854 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; 855 SmallVector<RebasedUse, 4> ToBeRebased; 856 for (auto const &RCI : ConstInfo.RebasedConstants) { 857 for (auto const &U : RCI.Uses) { 858 Uses++; 859 BasicBlock *OrigMatInsertBB = 860 findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); 861 // If Base constant is to be inserted in multiple places, 862 // generate rebase for U using the Base dominating U. 863 if (IPSet.size() == 1 || 864 DT->dominates(IP->getParent(), OrigMatInsertBB)) 865 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); 866 } 867 } 868 UsesNum = Uses; 869 870 // If only few constants depend on this IP of base, skip rebasing, 871 // assuming the base and the rebased have the same materialization cost. 872 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 873 NotRebasedNum += ToBeRebased.size(); 874 continue; 875 } 876 877 // Emit an instance of the base at this IP. 878 Instruction *Base = nullptr; 879 // Hoist and hide the base constant behind a bitcast. 880 if (ConstInfo.BaseExpr) { 881 assert(BaseGV && "A base constant expression must have an base GV"); 882 Type *Ty = ConstInfo.BaseExpr->getType(); 883 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 884 } else { 885 IntegerType *Ty = ConstInfo.BaseInt->getType(); 886 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 887 } 888 889 Base->setDebugLoc(IP->getDebugLoc()); 890 891 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 892 << ") to BB " << IP->getParent()->getName() << '\n' 893 << *Base << '\n'); 894 895 // Emit materialization code for rebased constants depending on this IP. 896 for (auto const &R : ToBeRebased) { 897 Constant *Off = std::get<0>(R); 898 Type *Ty = std::get<1>(R); 899 ConstantUser U = std::get<2>(R); 900 emitBaseConstants(Base, Off, Ty, U); 901 ReBasesNum++; 902 // Use the same debug location as the last user of the constant. 903 Base->setDebugLoc(DILocation::getMergedLocation( 904 Base->getDebugLoc(), U.Inst->getDebugLoc())); 905 } 906 assert(!Base->use_empty() && "The use list is empty!?"); 907 assert(isa<Instruction>(Base->user_back()) && 908 "All uses should be instructions."); 909 } 910 (void)UsesNum; 911 (void)ReBasesNum; 912 (void)NotRebasedNum; 913 // Expect all uses are rebased after rebase is done. 914 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 915 "Not all uses are rebased"); 916 917 NumConstantsHoisted++; 918 919 // Base constant is also included in ConstInfo.RebasedConstants, so 920 // deduct 1 from ConstInfo.RebasedConstants.size(). 921 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 922 923 MadeChange = true; 924 } 925 return MadeChange; 926 } 927 928 /// Check all cast instructions we made a copy of and remove them if they 929 /// have no more users. 930 void ConstantHoistingPass::deleteDeadCastInst() const { 931 for (auto const &I : ClonedCastMap) 932 if (I.first->use_empty()) 933 I.first->eraseFromParent(); 934 } 935 936 /// Optimize expensive integer constants in the given function. 937 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 938 DominatorTree &DT, BlockFrequencyInfo *BFI, 939 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 940 this->TTI = &TTI; 941 this->DT = &DT; 942 this->BFI = BFI; 943 this->DL = &Fn.getParent()->getDataLayout(); 944 this->Ctx = &Fn.getContext(); 945 this->Entry = &Entry; 946 this->PSI = PSI; 947 // Collect all constant candidates. 948 collectConstantCandidates(Fn); 949 950 // Combine constants that can be easily materialized with an add from a common 951 // base constant. 952 if (!ConstIntCandVec.empty()) 953 findBaseConstants(nullptr); 954 for (const auto &MapEntry : ConstGEPCandMap) 955 if (!MapEntry.second.empty()) 956 findBaseConstants(MapEntry.first); 957 958 // Finally hoist the base constant and emit materialization code for dependent 959 // constants. 960 bool MadeChange = false; 961 if (!ConstIntInfoVec.empty()) 962 MadeChange = emitBaseConstants(nullptr); 963 for (const auto &MapEntry : ConstGEPInfoMap) 964 if (!MapEntry.second.empty()) 965 MadeChange |= emitBaseConstants(MapEntry.first); 966 967 968 // Cleanup dead instructions. 969 deleteDeadCastInst(); 970 971 cleanup(); 972 973 return MadeChange; 974 } 975 976 PreservedAnalyses ConstantHoistingPass::run(Function &F, 977 FunctionAnalysisManager &AM) { 978 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 979 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 980 auto BFI = ConstHoistWithBlockFrequency 981 ? &AM.getResult<BlockFrequencyAnalysis>(F) 982 : nullptr; 983 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 984 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 985 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 986 return PreservedAnalyses::all(); 987 988 PreservedAnalyses PA; 989 PA.preserveSet<CFGAnalyses>(); 990 return PA; 991 } 992