1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/Analysis/BlockFrequencyInfo.h" 42 #include "llvm/Analysis/ProfileSummaryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/SizeOpts.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 using namespace consthoist; 74 75 #define DEBUG_TYPE "consthoist" 76 77 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 78 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 79 80 static cl::opt<bool> ConstHoistWithBlockFrequency( 81 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 82 cl::desc("Enable the use of the block frequency analysis to reduce the " 83 "chance to execute const materialization more frequently than " 84 "without hoisting.")); 85 86 static cl::opt<bool> ConstHoistGEP( 87 "consthoist-gep", cl::init(false), cl::Hidden, 88 cl::desc("Try hoisting constant gep expressions")); 89 90 static cl::opt<unsigned> 91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 92 cl::desc("Do not rebase if number of dependent constants of a Base is less " 93 "than this number."), 94 cl::init(0), cl::Hidden); 95 96 namespace { 97 98 /// The constant hoisting pass. 99 class ConstantHoistingLegacyPass : public FunctionPass { 100 public: 101 static char ID; // Pass identification, replacement for typeid 102 103 ConstantHoistingLegacyPass() : FunctionPass(ID) { 104 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnFunction(Function &Fn) override; 108 109 StringRef getPassName() const override { return "Constant Hoisting"; } 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 AU.setPreservesCFG(); 113 if (ConstHoistWithBlockFrequency) 114 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 115 AU.addRequired<DominatorTreeWrapperPass>(); 116 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 117 AU.addRequired<TargetTransformInfoWrapperPass>(); 118 } 119 120 private: 121 ConstantHoistingPass Impl; 122 }; 123 124 } // end anonymous namespace 125 126 char ConstantHoistingLegacyPass::ID = 0; 127 128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 129 "Constant Hoisting", false, false) 130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 135 "Constant Hoisting", false, false) 136 137 FunctionPass *llvm::createConstantHoistingPass() { 138 return new ConstantHoistingLegacyPass(); 139 } 140 141 /// Perform the constant hoisting optimization for the given function. 142 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 143 if (skipFunction(Fn)) 144 return false; 145 146 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 147 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 148 149 bool MadeChange = 150 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 151 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 152 ConstHoistWithBlockFrequency 153 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 154 : nullptr, 155 Fn.getEntryBlock(), 156 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 157 158 if (MadeChange) { 159 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " 160 << Fn.getName() << '\n'); 161 LLVM_DEBUG(dbgs() << Fn); 162 } 163 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 164 165 return MadeChange; 166 } 167 168 /// Find the constant materialization insertion point. 169 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 170 unsigned Idx) const { 171 // If the operand is a cast instruction, then we have to materialize the 172 // constant before the cast instruction. 173 if (Idx != ~0U) { 174 Value *Opnd = Inst->getOperand(Idx); 175 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 176 if (CastInst->isCast()) 177 return CastInst; 178 } 179 180 // The simple and common case. This also includes constant expressions. 181 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 182 return Inst; 183 184 // We can't insert directly before a phi node or an eh pad. Insert before 185 // the terminator of the incoming or dominating block. 186 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 187 BasicBlock *InsertionBlock = nullptr; 188 if (Idx != ~0U && isa<PHINode>(Inst)) { 189 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx); 190 if (!InsertionBlock->isEHPad()) { 191 return InsertionBlock->getTerminator(); 192 } 193 } else { 194 InsertionBlock = Inst->getParent(); 195 } 196 197 // This must be an EH pad. Iterate over immediate dominators until we find a 198 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 199 // and terminators. 200 auto *IDom = DT->getNode(InsertionBlock)->getIDom(); 201 while (IDom->getBlock()->isEHPad()) { 202 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 203 IDom = IDom->getIDom(); 204 } 205 206 return IDom->getBlock()->getTerminator(); 207 } 208 209 /// Given \p BBs as input, find another set of BBs which collectively 210 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 211 /// set found in \p BBs. 212 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 213 BasicBlock *Entry, 214 SetVector<BasicBlock *> &BBs) { 215 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 216 // Nodes on the current path to the root. 217 SmallPtrSet<BasicBlock *, 8> Path; 218 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 219 // dominated by any other blocks in set 'BBs', and all nodes in the path 220 // in the dominator tree from Entry to 'BB'. 221 SmallPtrSet<BasicBlock *, 16> Candidates; 222 for (auto *BB : BBs) { 223 // Ignore unreachable basic blocks. 224 if (!DT.isReachableFromEntry(BB)) 225 continue; 226 Path.clear(); 227 // Walk up the dominator tree until Entry or another BB in BBs 228 // is reached. Insert the nodes on the way to the Path. 229 BasicBlock *Node = BB; 230 // The "Path" is a candidate path to be added into Candidates set. 231 bool isCandidate = false; 232 do { 233 Path.insert(Node); 234 if (Node == Entry || Candidates.count(Node)) { 235 isCandidate = true; 236 break; 237 } 238 assert(DT.getNode(Node)->getIDom() && 239 "Entry doens't dominate current Node"); 240 Node = DT.getNode(Node)->getIDom()->getBlock(); 241 } while (!BBs.count(Node)); 242 243 // If isCandidate is false, Node is another Block in BBs dominating 244 // current 'BB'. Drop the nodes on the Path. 245 if (!isCandidate) 246 continue; 247 248 // Add nodes on the Path into Candidates. 249 Candidates.insert(Path.begin(), Path.end()); 250 } 251 252 // Sort the nodes in Candidates in top-down order and save the nodes 253 // in Orders. 254 unsigned Idx = 0; 255 SmallVector<BasicBlock *, 16> Orders; 256 Orders.push_back(Entry); 257 while (Idx != Orders.size()) { 258 BasicBlock *Node = Orders[Idx++]; 259 for (auto *ChildDomNode : DT.getNode(Node)->children()) { 260 if (Candidates.count(ChildDomNode->getBlock())) 261 Orders.push_back(ChildDomNode->getBlock()); 262 } 263 } 264 265 // Visit Orders in bottom-up order. 266 using InsertPtsCostPair = 267 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 268 269 // InsertPtsMap is a map from a BB to the best insertion points for the 270 // subtree of BB (subtree not including the BB itself). 271 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 272 InsertPtsMap.reserve(Orders.size() + 1); 273 for (BasicBlock *Node : llvm::reverse(Orders)) { 274 bool NodeInBBs = BBs.count(Node); 275 auto &InsertPts = InsertPtsMap[Node].first; 276 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 277 278 // Return the optimal insert points in BBs. 279 if (Node == Entry) { 280 BBs.clear(); 281 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 282 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 283 BBs.insert(Entry); 284 else 285 BBs.insert(InsertPts.begin(), InsertPts.end()); 286 break; 287 } 288 289 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 290 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 291 // will update its parent's ParentInsertPts and ParentPtsFreq. 292 auto &ParentInsertPts = InsertPtsMap[Parent].first; 293 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 294 // Choose to insert in Node or in subtree of Node. 295 // Don't hoist to EHPad because we may not find a proper place to insert 296 // in EHPad. 297 // If the total frequency of InsertPts is the same as the frequency of the 298 // target Node, and InsertPts contains more than one nodes, choose hoisting 299 // to reduce code size. 300 if (NodeInBBs || 301 (!Node->isEHPad() && 302 (InsertPtsFreq > BFI.getBlockFreq(Node) || 303 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 304 ParentInsertPts.insert(Node); 305 ParentPtsFreq += BFI.getBlockFreq(Node); 306 } else { 307 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 308 ParentPtsFreq += InsertPtsFreq; 309 } 310 } 311 } 312 313 /// Find an insertion point that dominates all uses. 314 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( 315 const ConstantInfo &ConstInfo) const { 316 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 317 // Collect all basic blocks. 318 SetVector<BasicBlock *> BBs; 319 SetVector<Instruction *> InsertPts; 320 for (auto const &RCI : ConstInfo.RebasedConstants) 321 for (auto const &U : RCI.Uses) 322 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); 323 324 if (BBs.count(Entry)) { 325 InsertPts.insert(&Entry->front()); 326 return InsertPts; 327 } 328 329 if (BFI) { 330 findBestInsertionSet(*DT, *BFI, Entry, BBs); 331 for (auto *BB : BBs) { 332 BasicBlock::iterator InsertPt = BB->begin(); 333 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 334 ; 335 InsertPts.insert(&*InsertPt); 336 } 337 return InsertPts; 338 } 339 340 while (BBs.size() >= 2) { 341 BasicBlock *BB, *BB1, *BB2; 342 BB1 = BBs.pop_back_val(); 343 BB2 = BBs.pop_back_val(); 344 BB = DT->findNearestCommonDominator(BB1, BB2); 345 if (BB == Entry) { 346 InsertPts.insert(&Entry->front()); 347 return InsertPts; 348 } 349 BBs.insert(BB); 350 } 351 assert((BBs.size() == 1) && "Expected only one element."); 352 Instruction &FirstInst = (*BBs.begin())->front(); 353 InsertPts.insert(findMatInsertPt(&FirstInst)); 354 return InsertPts; 355 } 356 357 /// Record constant integer ConstInt for instruction Inst at operand 358 /// index Idx. 359 /// 360 /// The operand at index Idx is not necessarily the constant integer itself. It 361 /// could also be a cast instruction or a constant expression that uses the 362 /// constant integer. 363 void ConstantHoistingPass::collectConstantCandidates( 364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 365 ConstantInt *ConstInt) { 366 InstructionCost Cost; 367 // Ask the target about the cost of materializing the constant for the given 368 // instruction and operand index. 369 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 370 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 371 ConstInt->getValue(), ConstInt->getType(), 372 TargetTransformInfo::TCK_SizeAndLatency); 373 else 374 Cost = TTI->getIntImmCostInst( 375 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 376 TargetTransformInfo::TCK_SizeAndLatency, Inst); 377 378 // Ignore cheap integer constants. 379 if (Cost > TargetTransformInfo::TCC_Basic) { 380 ConstCandMapType::iterator Itr; 381 bool Inserted; 382 ConstPtrUnionType Cand = ConstInt; 383 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 384 if (Inserted) { 385 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 386 Itr->second = ConstIntCandVec.size() - 1; 387 } 388 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 389 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 390 << "Collect constant " << *ConstInt << " from " << *Inst 391 << " with cost " << Cost << '\n'; 392 else dbgs() << "Collect constant " << *ConstInt 393 << " indirectly from " << *Inst << " via " 394 << *Inst->getOperand(Idx) << " with cost " << Cost 395 << '\n';); 396 } 397 } 398 399 /// Record constant GEP expression for instruction Inst at operand index Idx. 400 void ConstantHoistingPass::collectConstantCandidates( 401 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 402 ConstantExpr *ConstExpr) { 403 // TODO: Handle vector GEPs 404 if (ConstExpr->getType()->isVectorTy()) 405 return; 406 407 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 408 if (!BaseGV) 409 return; 410 411 // Get offset from the base GV. 412 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 413 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); 414 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); 415 auto *GEPO = cast<GEPOperator>(ConstExpr); 416 417 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a 418 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to 419 // inbounds GEP for now -- alternatively, we could drop inbounds from the 420 // constant expression, 421 if (!GEPO->isInBounds()) 422 return; 423 424 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 425 return; 426 427 if (!Offset.isIntN(32)) 428 return; 429 430 // A constant GEP expression that has a GlobalVariable as base pointer is 431 // usually lowered to a load from constant pool. Such operation is unlikely 432 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 433 // an ADD instruction or folded into Load/Store instruction. 434 InstructionCost Cost = 435 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, 436 TargetTransformInfo::TCK_SizeAndLatency, Inst); 437 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 438 ConstCandMapType::iterator Itr; 439 bool Inserted; 440 ConstPtrUnionType Cand = ConstExpr; 441 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 442 if (Inserted) { 443 ExprCandVec.push_back(ConstantCandidate( 444 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 445 ConstExpr)); 446 Itr->second = ExprCandVec.size() - 1; 447 } 448 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 449 } 450 451 /// Check the operand for instruction Inst at index Idx. 452 void ConstantHoistingPass::collectConstantCandidates( 453 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 454 Value *Opnd = Inst->getOperand(Idx); 455 456 // Visit constant integers. 457 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 458 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 459 return; 460 } 461 462 // Visit cast instructions that have constant integers. 463 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 464 // Only visit cast instructions, which have been skipped. All other 465 // instructions should have already been visited. 466 if (!CastInst->isCast()) 467 return; 468 469 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 470 // Pretend the constant is directly used by the instruction and ignore 471 // the cast instruction. 472 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 473 return; 474 } 475 } 476 477 // Visit constant expressions that have constant integers. 478 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 479 // Handle constant gep expressions. 480 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr)) 481 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 482 483 // Only visit constant cast expressions. 484 if (!ConstExpr->isCast()) 485 return; 486 487 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 488 // Pretend the constant is directly used by the instruction and ignore 489 // the constant expression. 490 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 491 return; 492 } 493 } 494 } 495 496 /// Scan the instruction for expensive integer constants and record them 497 /// in the constant candidate vector. 498 void ConstantHoistingPass::collectConstantCandidates( 499 ConstCandMapType &ConstCandMap, Instruction *Inst) { 500 // Skip all cast instructions. They are visited indirectly later on. 501 if (Inst->isCast()) 502 return; 503 504 // Scan all operands. 505 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 506 // The cost of materializing the constants (defined in 507 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 508 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 509 // So it's safe for us to collect constant candidates from all 510 // IntrinsicInsts. 511 if (canReplaceOperandWithVariable(Inst, Idx)) { 512 collectConstantCandidates(ConstCandMap, Inst, Idx); 513 } 514 } // end of for all operands 515 } 516 517 /// Collect all integer constants in the function that cannot be folded 518 /// into an instruction itself. 519 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 520 ConstCandMapType ConstCandMap; 521 for (BasicBlock &BB : Fn) { 522 // Ignore unreachable basic blocks. 523 if (!DT->isReachableFromEntry(&BB)) 524 continue; 525 for (Instruction &Inst : BB) 526 collectConstantCandidates(ConstCandMap, &Inst); 527 } 528 } 529 530 // This helper function is necessary to deal with values that have different 531 // bit widths (APInt Operator- does not like that). If the value cannot be 532 // represented in uint64 we return an "empty" APInt. This is then interpreted 533 // as the value is not in range. 534 static std::optional<APInt> calculateOffsetDiff(const APInt &V1, 535 const APInt &V2) { 536 std::optional<APInt> Res; 537 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 538 V1.getBitWidth() : V2.getBitWidth(); 539 uint64_t LimVal1 = V1.getLimitedValue(); 540 uint64_t LimVal2 = V2.getLimitedValue(); 541 542 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 543 return Res; 544 545 uint64_t Diff = LimVal1 - LimVal2; 546 return APInt(BW, Diff, true); 547 } 548 549 // From a list of constants, one needs to picked as the base and the other 550 // constants will be transformed into an offset from that base constant. The 551 // question is which we can pick best? For example, consider these constants 552 // and their number of uses: 553 // 554 // Constants| 2 | 4 | 12 | 42 | 555 // NumUses | 3 | 2 | 8 | 7 | 556 // 557 // Selecting constant 12 because it has the most uses will generate negative 558 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 559 // offsets lead to less optimal code generation, then there might be better 560 // solutions. Suppose immediates in the range of 0..35 are most optimally 561 // supported by the architecture, then selecting constant 2 is most optimal 562 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 563 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 564 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 565 // selecting the base constant the range of the offsets is a very important 566 // factor too that we take into account here. This algorithm calculates a total 567 // costs for selecting a constant as the base and substract the costs if 568 // immediates are out of range. It has quadratic complexity, so we call this 569 // function only when we're optimising for size and there are less than 100 570 // constants, we fall back to the straightforward algorithm otherwise 571 // which does not do all the offset calculations. 572 unsigned 573 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 574 ConstCandVecType::iterator E, 575 ConstCandVecType::iterator &MaxCostItr) { 576 unsigned NumUses = 0; 577 578 bool OptForSize = Entry->getParent()->hasOptSize() || 579 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, 580 PGSOQueryType::IRPass); 581 if (!OptForSize || std::distance(S,E) > 100) { 582 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 583 NumUses += ConstCand->Uses.size(); 584 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 585 MaxCostItr = ConstCand; 586 } 587 return NumUses; 588 } 589 590 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 591 InstructionCost MaxCost = -1; 592 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 593 auto Value = ConstCand->ConstInt->getValue(); 594 Type *Ty = ConstCand->ConstInt->getType(); 595 InstructionCost Cost = 0; 596 NumUses += ConstCand->Uses.size(); 597 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 598 << "\n"); 599 600 for (auto User : ConstCand->Uses) { 601 unsigned Opcode = User.Inst->getOpcode(); 602 unsigned OpndIdx = User.OpndIdx; 603 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 604 TargetTransformInfo::TCK_SizeAndLatency); 605 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 606 607 for (auto C2 = S; C2 != E; ++C2) { 608 std::optional<APInt> Diff = calculateOffsetDiff( 609 C2->ConstInt->getValue(), ConstCand->ConstInt->getValue()); 610 if (Diff) { 611 const InstructionCost ImmCosts = 612 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty); 613 Cost -= ImmCosts; 614 LLVM_DEBUG(dbgs() << "Offset " << *Diff << " " 615 << "has penalty: " << ImmCosts << "\n" 616 << "Adjusted cost: " << Cost << "\n"); 617 } 618 } 619 } 620 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 621 if (Cost > MaxCost) { 622 MaxCost = Cost; 623 MaxCostItr = ConstCand; 624 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 625 << "\n"); 626 } 627 } 628 return NumUses; 629 } 630 631 /// Find the base constant within the given range and rebase all other 632 /// constants with respect to the base constant. 633 void ConstantHoistingPass::findAndMakeBaseConstant( 634 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 635 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 636 auto MaxCostItr = S; 637 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 638 639 // Don't hoist constants that have only one use. 640 if (NumUses <= 1) 641 return; 642 643 ConstantInt *ConstInt = MaxCostItr->ConstInt; 644 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 645 ConstantInfo ConstInfo; 646 ConstInfo.BaseInt = ConstInt; 647 ConstInfo.BaseExpr = ConstExpr; 648 Type *Ty = ConstInt->getType(); 649 650 // Rebase the constants with respect to the base constant. 651 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 652 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 653 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 654 Type *ConstTy = 655 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 656 ConstInfo.RebasedConstants.push_back( 657 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 658 } 659 ConstInfoVec.push_back(std::move(ConstInfo)); 660 } 661 662 /// Finds and combines constant candidates that can be easily 663 /// rematerialized with an add from a common base constant. 664 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 665 // If BaseGV is nullptr, find base among candidate constant integers; 666 // Otherwise find base among constant GEPs that share the same BaseGV. 667 ConstCandVecType &ConstCandVec = BaseGV ? 668 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 669 ConstInfoVecType &ConstInfoVec = BaseGV ? 670 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 671 672 // Sort the constants by value and type. This invalidates the mapping! 673 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 674 const ConstantCandidate &RHS) { 675 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 676 return LHS.ConstInt->getType()->getBitWidth() < 677 RHS.ConstInt->getType()->getBitWidth(); 678 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 679 }); 680 681 // Simple linear scan through the sorted constant candidate vector for viable 682 // merge candidates. 683 auto MinValItr = ConstCandVec.begin(); 684 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 685 CC != E; ++CC) { 686 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 687 Type *MemUseValTy = nullptr; 688 for (auto &U : CC->Uses) { 689 auto *UI = U.Inst; 690 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 691 MemUseValTy = LI->getType(); 692 break; 693 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 694 // Make sure the constant is used as pointer operand of the StoreInst. 695 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 696 MemUseValTy = SI->getValueOperand()->getType(); 697 break; 698 } 699 } 700 } 701 702 // Check if the constant is in range of an add with immediate. 703 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 704 if ((Diff.getBitWidth() <= 64) && 705 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 706 // Check if Diff can be used as offset in addressing mode of the user 707 // memory instruction. 708 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 709 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 710 /*HasBaseReg*/true, /*Scale*/0))) 711 continue; 712 } 713 // We either have now a different constant type or the constant is not in 714 // range of an add with immediate anymore. 715 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 716 // Start a new base constant search. 717 MinValItr = CC; 718 } 719 // Finalize the last base constant search. 720 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 721 } 722 723 /// Updates the operand at Idx in instruction Inst with the result of 724 /// instruction Mat. If the instruction is a PHI node then special 725 /// handling for duplicate values from the same incoming basic block is 726 /// required. 727 /// \return The update will always succeed, but the return value indicated if 728 /// Mat was used for the update or not. 729 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 730 if (auto PHI = dyn_cast<PHINode>(Inst)) { 731 // Check if any previous operand of the PHI node has the same incoming basic 732 // block. This is a very odd case that happens when the incoming basic block 733 // has a switch statement. In this case use the same value as the previous 734 // operand(s), otherwise we will fail verification due to different values. 735 // The values are actually the same, but the variable names are different 736 // and the verifier doesn't like that. 737 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 738 for (unsigned i = 0; i < Idx; ++i) { 739 if (PHI->getIncomingBlock(i) == IncomingBB) { 740 Value *IncomingVal = PHI->getIncomingValue(i); 741 Inst->setOperand(Idx, IncomingVal); 742 return false; 743 } 744 } 745 } 746 747 Inst->setOperand(Idx, Mat); 748 return true; 749 } 750 751 /// Emit materialization code for all rebased constants and update their 752 /// users. 753 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 754 Constant *Offset, 755 Type *Ty, 756 const ConstantUser &ConstUser) { 757 Instruction *Mat = Base; 758 759 // The same offset can be dereferenced to different types in nested struct. 760 if (!Offset && Ty && Ty != Base->getType()) 761 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 762 763 if (Offset) { 764 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, 765 ConstUser.OpndIdx); 766 if (Ty) { 767 // Constant being rebased is a ConstantExpr. 768 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, 769 cast<PointerType>(Ty)->getAddressSpace()); 770 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); 771 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, 772 Offset, "mat_gep", InsertionPt); 773 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); 774 } else 775 // Constant being rebased is a ConstantInt. 776 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, 777 "const_mat", InsertionPt); 778 779 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 780 << " + " << *Offset << ") in BB " 781 << Mat->getParent()->getName() << '\n' 782 << *Mat << '\n'); 783 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); 784 } 785 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); 786 787 // Visit constant integer. 788 if (isa<ConstantInt>(Opnd)) { 789 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 790 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) 791 Mat->eraseFromParent(); 792 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 793 return; 794 } 795 796 // Visit cast instruction. 797 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 798 assert(CastInst->isCast() && "Expected an cast instruction!"); 799 // Check if we already have visited this cast instruction before to avoid 800 // unnecessary cloning. 801 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 802 if (!ClonedCastInst) { 803 ClonedCastInst = CastInst->clone(); 804 ClonedCastInst->setOperand(0, Mat); 805 ClonedCastInst->insertAfter(CastInst); 806 // Use the same debug location as the original cast instruction. 807 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 808 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 809 << "To : " << *ClonedCastInst << '\n'); 810 } 811 812 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 813 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); 814 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 815 return; 816 } 817 818 // Visit constant expression. 819 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 820 if (isa<GEPOperator>(ConstExpr)) { 821 // Operand is a ConstantGEP, replace it. 822 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); 823 return; 824 } 825 826 // Aside from constant GEPs, only constant cast expressions are collected. 827 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 828 Instruction *ConstExprInst = ConstExpr->getAsInstruction( 829 findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx)); 830 ConstExprInst->setOperand(0, Mat); 831 832 // Use the same debug location as the instruction we are about to update. 833 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); 834 835 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 836 << "From : " << *ConstExpr << '\n'); 837 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 838 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { 839 ConstExprInst->eraseFromParent(); 840 if (Offset) 841 Mat->eraseFromParent(); 842 } 843 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 844 return; 845 } 846 } 847 848 /// Hoist and hide the base constant behind a bitcast and emit 849 /// materialization code for derived constants. 850 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 851 bool MadeChange = false; 852 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 853 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 854 for (auto const &ConstInfo : ConstInfoVec) { 855 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); 856 // We can have an empty set if the function contains unreachable blocks. 857 if (IPSet.empty()) 858 continue; 859 860 unsigned UsesNum = 0; 861 unsigned ReBasesNum = 0; 862 unsigned NotRebasedNum = 0; 863 for (Instruction *IP : IPSet) { 864 // First, collect constants depending on this IP of the base. 865 unsigned Uses = 0; 866 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; 867 SmallVector<RebasedUse, 4> ToBeRebased; 868 for (auto const &RCI : ConstInfo.RebasedConstants) { 869 for (auto const &U : RCI.Uses) { 870 Uses++; 871 BasicBlock *OrigMatInsertBB = 872 findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); 873 // If Base constant is to be inserted in multiple places, 874 // generate rebase for U using the Base dominating U. 875 if (IPSet.size() == 1 || 876 DT->dominates(IP->getParent(), OrigMatInsertBB)) 877 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); 878 } 879 } 880 UsesNum = Uses; 881 882 // If only few constants depend on this IP of base, skip rebasing, 883 // assuming the base and the rebased have the same materialization cost. 884 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 885 NotRebasedNum += ToBeRebased.size(); 886 continue; 887 } 888 889 // Emit an instance of the base at this IP. 890 Instruction *Base = nullptr; 891 // Hoist and hide the base constant behind a bitcast. 892 if (ConstInfo.BaseExpr) { 893 assert(BaseGV && "A base constant expression must have an base GV"); 894 Type *Ty = ConstInfo.BaseExpr->getType(); 895 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 896 } else { 897 IntegerType *Ty = ConstInfo.BaseInt->getType(); 898 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 899 } 900 901 Base->setDebugLoc(IP->getDebugLoc()); 902 903 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 904 << ") to BB " << IP->getParent()->getName() << '\n' 905 << *Base << '\n'); 906 907 // Emit materialization code for rebased constants depending on this IP. 908 for (auto const &R : ToBeRebased) { 909 Constant *Off = std::get<0>(R); 910 Type *Ty = std::get<1>(R); 911 ConstantUser U = std::get<2>(R); 912 emitBaseConstants(Base, Off, Ty, U); 913 ReBasesNum++; 914 // Use the same debug location as the last user of the constant. 915 Base->setDebugLoc(DILocation::getMergedLocation( 916 Base->getDebugLoc(), U.Inst->getDebugLoc())); 917 } 918 assert(!Base->use_empty() && "The use list is empty!?"); 919 assert(isa<Instruction>(Base->user_back()) && 920 "All uses should be instructions."); 921 } 922 (void)UsesNum; 923 (void)ReBasesNum; 924 (void)NotRebasedNum; 925 // Expect all uses are rebased after rebase is done. 926 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 927 "Not all uses are rebased"); 928 929 NumConstantsHoisted++; 930 931 // Base constant is also included in ConstInfo.RebasedConstants, so 932 // deduct 1 from ConstInfo.RebasedConstants.size(). 933 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 934 935 MadeChange = true; 936 } 937 return MadeChange; 938 } 939 940 /// Check all cast instructions we made a copy of and remove them if they 941 /// have no more users. 942 void ConstantHoistingPass::deleteDeadCastInst() const { 943 for (auto const &I : ClonedCastMap) 944 if (I.first->use_empty()) 945 I.first->eraseFromParent(); 946 } 947 948 /// Optimize expensive integer constants in the given function. 949 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 950 DominatorTree &DT, BlockFrequencyInfo *BFI, 951 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 952 this->TTI = &TTI; 953 this->DT = &DT; 954 this->BFI = BFI; 955 this->DL = &Fn.getParent()->getDataLayout(); 956 this->Ctx = &Fn.getContext(); 957 this->Entry = &Entry; 958 this->PSI = PSI; 959 // Collect all constant candidates. 960 collectConstantCandidates(Fn); 961 962 // Combine constants that can be easily materialized with an add from a common 963 // base constant. 964 if (!ConstIntCandVec.empty()) 965 findBaseConstants(nullptr); 966 for (const auto &MapEntry : ConstGEPCandMap) 967 if (!MapEntry.second.empty()) 968 findBaseConstants(MapEntry.first); 969 970 // Finally hoist the base constant and emit materialization code for dependent 971 // constants. 972 bool MadeChange = false; 973 if (!ConstIntInfoVec.empty()) 974 MadeChange = emitBaseConstants(nullptr); 975 for (const auto &MapEntry : ConstGEPInfoMap) 976 if (!MapEntry.second.empty()) 977 MadeChange |= emitBaseConstants(MapEntry.first); 978 979 980 // Cleanup dead instructions. 981 deleteDeadCastInst(); 982 983 cleanup(); 984 985 return MadeChange; 986 } 987 988 PreservedAnalyses ConstantHoistingPass::run(Function &F, 989 FunctionAnalysisManager &AM) { 990 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 991 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 992 auto BFI = ConstHoistWithBlockFrequency 993 ? &AM.getResult<BlockFrequencyAnalysis>(F) 994 : nullptr; 995 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 996 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 997 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 998 return PreservedAnalyses::all(); 999 1000 PreservedAnalyses PA; 1001 PA.preserveSet<CFGAnalyses>(); 1002 return PA; 1003 } 1004