1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/None.h" 39 #include "llvm/ADT/Optional.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/BlockFrequencyInfo.h" 44 #include "llvm/Analysis/ProfileSummaryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/SizeOpts.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <tuple> 71 #include <utility> 72 73 using namespace llvm; 74 using namespace consthoist; 75 76 #define DEBUG_TYPE "consthoist" 77 78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 79 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 80 81 static cl::opt<bool> ConstHoistWithBlockFrequency( 82 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 83 cl::desc("Enable the use of the block frequency analysis to reduce the " 84 "chance to execute const materialization more frequently than " 85 "without hoisting.")); 86 87 static cl::opt<bool> ConstHoistGEP( 88 "consthoist-gep", cl::init(false), cl::Hidden, 89 cl::desc("Try hoisting constant gep expressions")); 90 91 static cl::opt<unsigned> 92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 93 cl::desc("Do not rebase if number of dependent constants of a Base is less " 94 "than this number."), 95 cl::init(0), cl::Hidden); 96 97 namespace { 98 99 /// The constant hoisting pass. 100 class ConstantHoistingLegacyPass : public FunctionPass { 101 public: 102 static char ID; // Pass identification, replacement for typeid 103 104 ConstantHoistingLegacyPass() : FunctionPass(ID) { 105 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnFunction(Function &Fn) override; 109 110 StringRef getPassName() const override { return "Constant Hoisting"; } 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.setPreservesCFG(); 114 if (ConstHoistWithBlockFrequency) 115 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 116 AU.addRequired<DominatorTreeWrapperPass>(); 117 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 118 AU.addRequired<TargetTransformInfoWrapperPass>(); 119 } 120 121 private: 122 ConstantHoistingPass Impl; 123 }; 124 125 } // end anonymous namespace 126 127 char ConstantHoistingLegacyPass::ID = 0; 128 129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 130 "Constant Hoisting", false, false) 131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 136 "Constant Hoisting", false, false) 137 138 FunctionPass *llvm::createConstantHoistingPass() { 139 return new ConstantHoistingLegacyPass(); 140 } 141 142 /// Perform the constant hoisting optimization for the given function. 143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 144 if (skipFunction(Fn)) 145 return false; 146 147 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 148 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 149 150 bool MadeChange = 151 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 152 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 153 ConstHoistWithBlockFrequency 154 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 155 : nullptr, 156 Fn.getEntryBlock(), 157 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 158 159 if (MadeChange) { 160 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " 161 << Fn.getName() << '\n'); 162 LLVM_DEBUG(dbgs() << Fn); 163 } 164 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 165 166 return MadeChange; 167 } 168 169 /// Find the constant materialization insertion point. 170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 171 unsigned Idx) const { 172 // If the operand is a cast instruction, then we have to materialize the 173 // constant before the cast instruction. 174 if (Idx != ~0U) { 175 Value *Opnd = Inst->getOperand(Idx); 176 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 177 if (CastInst->isCast()) 178 return CastInst; 179 } 180 181 // The simple and common case. This also includes constant expressions. 182 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 183 return Inst; 184 185 // We can't insert directly before a phi node or an eh pad. Insert before 186 // the terminator of the incoming or dominating block. 187 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 188 BasicBlock *InsertionBlock = nullptr; 189 if (Idx != ~0U && isa<PHINode>(Inst)) { 190 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx); 191 if (!InsertionBlock->isEHPad()) { 192 return InsertionBlock->getTerminator(); 193 } 194 } else { 195 InsertionBlock = Inst->getParent(); 196 } 197 198 // This must be an EH pad. Iterate over immediate dominators until we find a 199 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 200 // and terminators. 201 auto *IDom = DT->getNode(InsertionBlock)->getIDom(); 202 while (IDom->getBlock()->isEHPad()) { 203 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 204 IDom = IDom->getIDom(); 205 } 206 207 return IDom->getBlock()->getTerminator(); 208 } 209 210 /// Given \p BBs as input, find another set of BBs which collectively 211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 212 /// set found in \p BBs. 213 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 214 BasicBlock *Entry, 215 SetVector<BasicBlock *> &BBs) { 216 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 217 // Nodes on the current path to the root. 218 SmallPtrSet<BasicBlock *, 8> Path; 219 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 220 // dominated by any other blocks in set 'BBs', and all nodes in the path 221 // in the dominator tree from Entry to 'BB'. 222 SmallPtrSet<BasicBlock *, 16> Candidates; 223 for (auto BB : BBs) { 224 // Ignore unreachable basic blocks. 225 if (!DT.isReachableFromEntry(BB)) 226 continue; 227 Path.clear(); 228 // Walk up the dominator tree until Entry or another BB in BBs 229 // is reached. Insert the nodes on the way to the Path. 230 BasicBlock *Node = BB; 231 // The "Path" is a candidate path to be added into Candidates set. 232 bool isCandidate = false; 233 do { 234 Path.insert(Node); 235 if (Node == Entry || Candidates.count(Node)) { 236 isCandidate = true; 237 break; 238 } 239 assert(DT.getNode(Node)->getIDom() && 240 "Entry doens't dominate current Node"); 241 Node = DT.getNode(Node)->getIDom()->getBlock(); 242 } while (!BBs.count(Node)); 243 244 // If isCandidate is false, Node is another Block in BBs dominating 245 // current 'BB'. Drop the nodes on the Path. 246 if (!isCandidate) 247 continue; 248 249 // Add nodes on the Path into Candidates. 250 Candidates.insert(Path.begin(), Path.end()); 251 } 252 253 // Sort the nodes in Candidates in top-down order and save the nodes 254 // in Orders. 255 unsigned Idx = 0; 256 SmallVector<BasicBlock *, 16> Orders; 257 Orders.push_back(Entry); 258 while (Idx != Orders.size()) { 259 BasicBlock *Node = Orders[Idx++]; 260 for (auto ChildDomNode : DT.getNode(Node)->children()) { 261 if (Candidates.count(ChildDomNode->getBlock())) 262 Orders.push_back(ChildDomNode->getBlock()); 263 } 264 } 265 266 // Visit Orders in bottom-up order. 267 using InsertPtsCostPair = 268 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 269 270 // InsertPtsMap is a map from a BB to the best insertion points for the 271 // subtree of BB (subtree not including the BB itself). 272 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 273 InsertPtsMap.reserve(Orders.size() + 1); 274 for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { 275 BasicBlock *Node = *RIt; 276 bool NodeInBBs = BBs.count(Node); 277 auto &InsertPts = InsertPtsMap[Node].first; 278 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 279 280 // Return the optimal insert points in BBs. 281 if (Node == Entry) { 282 BBs.clear(); 283 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 284 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 285 BBs.insert(Entry); 286 else 287 BBs.insert(InsertPts.begin(), InsertPts.end()); 288 break; 289 } 290 291 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 293 // will update its parent's ParentInsertPts and ParentPtsFreq. 294 auto &ParentInsertPts = InsertPtsMap[Parent].first; 295 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 296 // Choose to insert in Node or in subtree of Node. 297 // Don't hoist to EHPad because we may not find a proper place to insert 298 // in EHPad. 299 // If the total frequency of InsertPts is the same as the frequency of the 300 // target Node, and InsertPts contains more than one nodes, choose hoisting 301 // to reduce code size. 302 if (NodeInBBs || 303 (!Node->isEHPad() && 304 (InsertPtsFreq > BFI.getBlockFreq(Node) || 305 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 306 ParentInsertPts.insert(Node); 307 ParentPtsFreq += BFI.getBlockFreq(Node); 308 } else { 309 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 310 ParentPtsFreq += InsertPtsFreq; 311 } 312 } 313 } 314 315 /// Find an insertion point that dominates all uses. 316 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( 317 const ConstantInfo &ConstInfo) const { 318 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 319 // Collect all basic blocks. 320 SetVector<BasicBlock *> BBs; 321 SetVector<Instruction *> InsertPts; 322 for (auto const &RCI : ConstInfo.RebasedConstants) 323 for (auto const &U : RCI.Uses) 324 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); 325 326 if (BBs.count(Entry)) { 327 InsertPts.insert(&Entry->front()); 328 return InsertPts; 329 } 330 331 if (BFI) { 332 findBestInsertionSet(*DT, *BFI, Entry, BBs); 333 for (auto BB : BBs) { 334 BasicBlock::iterator InsertPt = BB->begin(); 335 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 336 ; 337 InsertPts.insert(&*InsertPt); 338 } 339 return InsertPts; 340 } 341 342 while (BBs.size() >= 2) { 343 BasicBlock *BB, *BB1, *BB2; 344 BB1 = BBs.pop_back_val(); 345 BB2 = BBs.pop_back_val(); 346 BB = DT->findNearestCommonDominator(BB1, BB2); 347 if (BB == Entry) { 348 InsertPts.insert(&Entry->front()); 349 return InsertPts; 350 } 351 BBs.insert(BB); 352 } 353 assert((BBs.size() == 1) && "Expected only one element."); 354 Instruction &FirstInst = (*BBs.begin())->front(); 355 InsertPts.insert(findMatInsertPt(&FirstInst)); 356 return InsertPts; 357 } 358 359 /// Record constant integer ConstInt for instruction Inst at operand 360 /// index Idx. 361 /// 362 /// The operand at index Idx is not necessarily the constant integer itself. It 363 /// could also be a cast instruction or a constant expression that uses the 364 /// constant integer. 365 void ConstantHoistingPass::collectConstantCandidates( 366 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 367 ConstantInt *ConstInt) { 368 InstructionCost Cost; 369 // Ask the target about the cost of materializing the constant for the given 370 // instruction and operand index. 371 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 372 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 373 ConstInt->getValue(), ConstInt->getType(), 374 TargetTransformInfo::TCK_SizeAndLatency); 375 else 376 Cost = TTI->getIntImmCostInst( 377 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 378 TargetTransformInfo::TCK_SizeAndLatency, Inst); 379 380 // Ignore cheap integer constants. 381 if (Cost > TargetTransformInfo::TCC_Basic) { 382 ConstCandMapType::iterator Itr; 383 bool Inserted; 384 ConstPtrUnionType Cand = ConstInt; 385 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 386 if (Inserted) { 387 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 388 Itr->second = ConstIntCandVec.size() - 1; 389 } 390 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 391 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 392 << "Collect constant " << *ConstInt << " from " << *Inst 393 << " with cost " << Cost << '\n'; 394 else dbgs() << "Collect constant " << *ConstInt 395 << " indirectly from " << *Inst << " via " 396 << *Inst->getOperand(Idx) << " with cost " << Cost 397 << '\n';); 398 } 399 } 400 401 /// Record constant GEP expression for instruction Inst at operand index Idx. 402 void ConstantHoistingPass::collectConstantCandidates( 403 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 404 ConstantExpr *ConstExpr) { 405 // TODO: Handle vector GEPs 406 if (ConstExpr->getType()->isVectorTy()) 407 return; 408 409 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 410 if (!BaseGV) 411 return; 412 413 // Get offset from the base GV. 414 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 415 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); 416 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); 417 auto *GEPO = cast<GEPOperator>(ConstExpr); 418 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 419 return; 420 421 if (!Offset.isIntN(32)) 422 return; 423 424 // A constant GEP expression that has a GlobalVariable as base pointer is 425 // usually lowered to a load from constant pool. Such operation is unlikely 426 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 427 // an ADD instruction or folded into Load/Store instruction. 428 InstructionCost Cost = 429 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, 430 TargetTransformInfo::TCK_SizeAndLatency, Inst); 431 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 432 ConstCandMapType::iterator Itr; 433 bool Inserted; 434 ConstPtrUnionType Cand = ConstExpr; 435 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 436 if (Inserted) { 437 ExprCandVec.push_back(ConstantCandidate( 438 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 439 ConstExpr)); 440 Itr->second = ExprCandVec.size() - 1; 441 } 442 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 443 } 444 445 /// Check the operand for instruction Inst at index Idx. 446 void ConstantHoistingPass::collectConstantCandidates( 447 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 448 Value *Opnd = Inst->getOperand(Idx); 449 450 // Visit constant integers. 451 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 452 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 453 return; 454 } 455 456 // Visit cast instructions that have constant integers. 457 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 458 // Only visit cast instructions, which have been skipped. All other 459 // instructions should have already been visited. 460 if (!CastInst->isCast()) 461 return; 462 463 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 464 // Pretend the constant is directly used by the instruction and ignore 465 // the cast instruction. 466 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 467 return; 468 } 469 } 470 471 // Visit constant expressions that have constant integers. 472 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 473 // Handle constant gep expressions. 474 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) 475 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 476 477 // Only visit constant cast expressions. 478 if (!ConstExpr->isCast()) 479 return; 480 481 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 482 // Pretend the constant is directly used by the instruction and ignore 483 // the constant expression. 484 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 485 return; 486 } 487 } 488 } 489 490 /// Scan the instruction for expensive integer constants and record them 491 /// in the constant candidate vector. 492 void ConstantHoistingPass::collectConstantCandidates( 493 ConstCandMapType &ConstCandMap, Instruction *Inst) { 494 // Skip all cast instructions. They are visited indirectly later on. 495 if (Inst->isCast()) 496 return; 497 498 // Scan all operands. 499 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 500 // The cost of materializing the constants (defined in 501 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 502 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 503 // So it's safe for us to collect constant candidates from all 504 // IntrinsicInsts. 505 if (canReplaceOperandWithVariable(Inst, Idx)) { 506 collectConstantCandidates(ConstCandMap, Inst, Idx); 507 } 508 } // end of for all operands 509 } 510 511 /// Collect all integer constants in the function that cannot be folded 512 /// into an instruction itself. 513 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 514 ConstCandMapType ConstCandMap; 515 for (BasicBlock &BB : Fn) { 516 // Ignore unreachable basic blocks. 517 if (!DT->isReachableFromEntry(&BB)) 518 continue; 519 for (Instruction &Inst : BB) 520 collectConstantCandidates(ConstCandMap, &Inst); 521 } 522 } 523 524 // This helper function is necessary to deal with values that have different 525 // bit widths (APInt Operator- does not like that). If the value cannot be 526 // represented in uint64 we return an "empty" APInt. This is then interpreted 527 // as the value is not in range. 528 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { 529 Optional<APInt> Res = None; 530 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 531 V1.getBitWidth() : V2.getBitWidth(); 532 uint64_t LimVal1 = V1.getLimitedValue(); 533 uint64_t LimVal2 = V2.getLimitedValue(); 534 535 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 536 return Res; 537 538 uint64_t Diff = LimVal1 - LimVal2; 539 return APInt(BW, Diff, true); 540 } 541 542 // From a list of constants, one needs to picked as the base and the other 543 // constants will be transformed into an offset from that base constant. The 544 // question is which we can pick best? For example, consider these constants 545 // and their number of uses: 546 // 547 // Constants| 2 | 4 | 12 | 42 | 548 // NumUses | 3 | 2 | 8 | 7 | 549 // 550 // Selecting constant 12 because it has the most uses will generate negative 551 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 552 // offsets lead to less optimal code generation, then there might be better 553 // solutions. Suppose immediates in the range of 0..35 are most optimally 554 // supported by the architecture, then selecting constant 2 is most optimal 555 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 556 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 557 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 558 // selecting the base constant the range of the offsets is a very important 559 // factor too that we take into account here. This algorithm calculates a total 560 // costs for selecting a constant as the base and substract the costs if 561 // immediates are out of range. It has quadratic complexity, so we call this 562 // function only when we're optimising for size and there are less than 100 563 // constants, we fall back to the straightforward algorithm otherwise 564 // which does not do all the offset calculations. 565 unsigned 566 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 567 ConstCandVecType::iterator E, 568 ConstCandVecType::iterator &MaxCostItr) { 569 unsigned NumUses = 0; 570 571 bool OptForSize = Entry->getParent()->hasOptSize() || 572 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, 573 PGSOQueryType::IRPass); 574 if (!OptForSize || std::distance(S,E) > 100) { 575 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 576 NumUses += ConstCand->Uses.size(); 577 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 578 MaxCostItr = ConstCand; 579 } 580 return NumUses; 581 } 582 583 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 584 InstructionCost MaxCost = -1; 585 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 586 auto Value = ConstCand->ConstInt->getValue(); 587 Type *Ty = ConstCand->ConstInt->getType(); 588 InstructionCost Cost = 0; 589 NumUses += ConstCand->Uses.size(); 590 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 591 << "\n"); 592 593 for (auto User : ConstCand->Uses) { 594 unsigned Opcode = User.Inst->getOpcode(); 595 unsigned OpndIdx = User.OpndIdx; 596 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 597 TargetTransformInfo::TCK_SizeAndLatency); 598 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 599 600 for (auto C2 = S; C2 != E; ++C2) { 601 Optional<APInt> Diff = calculateOffsetDiff( 602 C2->ConstInt->getValue(), 603 ConstCand->ConstInt->getValue()); 604 if (Diff) { 605 const InstructionCost ImmCosts = 606 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); 607 Cost -= ImmCosts; 608 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " 609 << "has penalty: " << ImmCosts << "\n" 610 << "Adjusted cost: " << Cost << "\n"); 611 } 612 } 613 } 614 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 615 if (Cost > MaxCost) { 616 MaxCost = Cost; 617 MaxCostItr = ConstCand; 618 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 619 << "\n"); 620 } 621 } 622 return NumUses; 623 } 624 625 /// Find the base constant within the given range and rebase all other 626 /// constants with respect to the base constant. 627 void ConstantHoistingPass::findAndMakeBaseConstant( 628 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 629 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 630 auto MaxCostItr = S; 631 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 632 633 // Don't hoist constants that have only one use. 634 if (NumUses <= 1) 635 return; 636 637 ConstantInt *ConstInt = MaxCostItr->ConstInt; 638 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 639 ConstantInfo ConstInfo; 640 ConstInfo.BaseInt = ConstInt; 641 ConstInfo.BaseExpr = ConstExpr; 642 Type *Ty = ConstInt->getType(); 643 644 // Rebase the constants with respect to the base constant. 645 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 646 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 647 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 648 Type *ConstTy = 649 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 650 ConstInfo.RebasedConstants.push_back( 651 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 652 } 653 ConstInfoVec.push_back(std::move(ConstInfo)); 654 } 655 656 /// Finds and combines constant candidates that can be easily 657 /// rematerialized with an add from a common base constant. 658 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 659 // If BaseGV is nullptr, find base among candidate constant integers; 660 // Otherwise find base among constant GEPs that share the same BaseGV. 661 ConstCandVecType &ConstCandVec = BaseGV ? 662 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 663 ConstInfoVecType &ConstInfoVec = BaseGV ? 664 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 665 666 // Sort the constants by value and type. This invalidates the mapping! 667 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 668 const ConstantCandidate &RHS) { 669 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 670 return LHS.ConstInt->getType()->getBitWidth() < 671 RHS.ConstInt->getType()->getBitWidth(); 672 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 673 }); 674 675 // Simple linear scan through the sorted constant candidate vector for viable 676 // merge candidates. 677 auto MinValItr = ConstCandVec.begin(); 678 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 679 CC != E; ++CC) { 680 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 681 Type *MemUseValTy = nullptr; 682 for (auto &U : CC->Uses) { 683 auto *UI = U.Inst; 684 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 685 MemUseValTy = LI->getType(); 686 break; 687 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 688 // Make sure the constant is used as pointer operand of the StoreInst. 689 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 690 MemUseValTy = SI->getValueOperand()->getType(); 691 break; 692 } 693 } 694 } 695 696 // Check if the constant is in range of an add with immediate. 697 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 698 if ((Diff.getBitWidth() <= 64) && 699 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 700 // Check if Diff can be used as offset in addressing mode of the user 701 // memory instruction. 702 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 703 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 704 /*HasBaseReg*/true, /*Scale*/0))) 705 continue; 706 } 707 // We either have now a different constant type or the constant is not in 708 // range of an add with immediate anymore. 709 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 710 // Start a new base constant search. 711 MinValItr = CC; 712 } 713 // Finalize the last base constant search. 714 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 715 } 716 717 /// Updates the operand at Idx in instruction Inst with the result of 718 /// instruction Mat. If the instruction is a PHI node then special 719 /// handling for duplicate values form the same incoming basic block is 720 /// required. 721 /// \return The update will always succeed, but the return value indicated if 722 /// Mat was used for the update or not. 723 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 724 if (auto PHI = dyn_cast<PHINode>(Inst)) { 725 // Check if any previous operand of the PHI node has the same incoming basic 726 // block. This is a very odd case that happens when the incoming basic block 727 // has a switch statement. In this case use the same value as the previous 728 // operand(s), otherwise we will fail verification due to different values. 729 // The values are actually the same, but the variable names are different 730 // and the verifier doesn't like that. 731 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 732 for (unsigned i = 0; i < Idx; ++i) { 733 if (PHI->getIncomingBlock(i) == IncomingBB) { 734 Value *IncomingVal = PHI->getIncomingValue(i); 735 Inst->setOperand(Idx, IncomingVal); 736 return false; 737 } 738 } 739 } 740 741 Inst->setOperand(Idx, Mat); 742 return true; 743 } 744 745 /// Emit materialization code for all rebased constants and update their 746 /// users. 747 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 748 Constant *Offset, 749 Type *Ty, 750 const ConstantUser &ConstUser) { 751 Instruction *Mat = Base; 752 753 // The same offset can be dereferenced to different types in nested struct. 754 if (!Offset && Ty && Ty != Base->getType()) 755 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 756 757 if (Offset) { 758 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, 759 ConstUser.OpndIdx); 760 if (Ty) { 761 // Constant being rebased is a ConstantExpr. 762 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, 763 cast<PointerType>(Ty)->getAddressSpace()); 764 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); 765 Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, 766 Offset, "mat_gep", InsertionPt); 767 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); 768 } else 769 // Constant being rebased is a ConstantInt. 770 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, 771 "const_mat", InsertionPt); 772 773 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 774 << " + " << *Offset << ") in BB " 775 << Mat->getParent()->getName() << '\n' 776 << *Mat << '\n'); 777 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); 778 } 779 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); 780 781 // Visit constant integer. 782 if (isa<ConstantInt>(Opnd)) { 783 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 784 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) 785 Mat->eraseFromParent(); 786 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 787 return; 788 } 789 790 // Visit cast instruction. 791 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 792 assert(CastInst->isCast() && "Expected an cast instruction!"); 793 // Check if we already have visited this cast instruction before to avoid 794 // unnecessary cloning. 795 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 796 if (!ClonedCastInst) { 797 ClonedCastInst = CastInst->clone(); 798 ClonedCastInst->setOperand(0, Mat); 799 ClonedCastInst->insertAfter(CastInst); 800 // Use the same debug location as the original cast instruction. 801 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 802 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 803 << "To : " << *ClonedCastInst << '\n'); 804 } 805 806 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 807 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); 808 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 809 return; 810 } 811 812 // Visit constant expression. 813 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 814 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { 815 // Operand is a ConstantGEP, replace it. 816 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); 817 return; 818 } 819 820 // Aside from constant GEPs, only constant cast expressions are collected. 821 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 822 Instruction *ConstExprInst = ConstExpr->getAsInstruction(); 823 ConstExprInst->setOperand(0, Mat); 824 ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, 825 ConstUser.OpndIdx)); 826 827 // Use the same debug location as the instruction we are about to update. 828 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); 829 830 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 831 << "From : " << *ConstExpr << '\n'); 832 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 833 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { 834 ConstExprInst->eraseFromParent(); 835 if (Offset) 836 Mat->eraseFromParent(); 837 } 838 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 839 return; 840 } 841 } 842 843 /// Hoist and hide the base constant behind a bitcast and emit 844 /// materialization code for derived constants. 845 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 846 bool MadeChange = false; 847 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 848 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 849 for (auto const &ConstInfo : ConstInfoVec) { 850 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); 851 // We can have an empty set if the function contains unreachable blocks. 852 if (IPSet.empty()) 853 continue; 854 855 unsigned UsesNum = 0; 856 unsigned ReBasesNum = 0; 857 unsigned NotRebasedNum = 0; 858 for (Instruction *IP : IPSet) { 859 // First, collect constants depending on this IP of the base. 860 unsigned Uses = 0; 861 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; 862 SmallVector<RebasedUse, 4> ToBeRebased; 863 for (auto const &RCI : ConstInfo.RebasedConstants) { 864 for (auto const &U : RCI.Uses) { 865 Uses++; 866 BasicBlock *OrigMatInsertBB = 867 findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); 868 // If Base constant is to be inserted in multiple places, 869 // generate rebase for U using the Base dominating U. 870 if (IPSet.size() == 1 || 871 DT->dominates(IP->getParent(), OrigMatInsertBB)) 872 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); 873 } 874 } 875 UsesNum = Uses; 876 877 // If only few constants depend on this IP of base, skip rebasing, 878 // assuming the base and the rebased have the same materialization cost. 879 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 880 NotRebasedNum += ToBeRebased.size(); 881 continue; 882 } 883 884 // Emit an instance of the base at this IP. 885 Instruction *Base = nullptr; 886 // Hoist and hide the base constant behind a bitcast. 887 if (ConstInfo.BaseExpr) { 888 assert(BaseGV && "A base constant expression must have an base GV"); 889 Type *Ty = ConstInfo.BaseExpr->getType(); 890 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 891 } else { 892 IntegerType *Ty = ConstInfo.BaseInt->getType(); 893 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 894 } 895 896 Base->setDebugLoc(IP->getDebugLoc()); 897 898 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 899 << ") to BB " << IP->getParent()->getName() << '\n' 900 << *Base << '\n'); 901 902 // Emit materialization code for rebased constants depending on this IP. 903 for (auto const &R : ToBeRebased) { 904 Constant *Off = std::get<0>(R); 905 Type *Ty = std::get<1>(R); 906 ConstantUser U = std::get<2>(R); 907 emitBaseConstants(Base, Off, Ty, U); 908 ReBasesNum++; 909 // Use the same debug location as the last user of the constant. 910 Base->setDebugLoc(DILocation::getMergedLocation( 911 Base->getDebugLoc(), U.Inst->getDebugLoc())); 912 } 913 assert(!Base->use_empty() && "The use list is empty!?"); 914 assert(isa<Instruction>(Base->user_back()) && 915 "All uses should be instructions."); 916 } 917 (void)UsesNum; 918 (void)ReBasesNum; 919 (void)NotRebasedNum; 920 // Expect all uses are rebased after rebase is done. 921 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 922 "Not all uses are rebased"); 923 924 NumConstantsHoisted++; 925 926 // Base constant is also included in ConstInfo.RebasedConstants, so 927 // deduct 1 from ConstInfo.RebasedConstants.size(). 928 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 929 930 MadeChange = true; 931 } 932 return MadeChange; 933 } 934 935 /// Check all cast instructions we made a copy of and remove them if they 936 /// have no more users. 937 void ConstantHoistingPass::deleteDeadCastInst() const { 938 for (auto const &I : ClonedCastMap) 939 if (I.first->use_empty()) 940 I.first->eraseFromParent(); 941 } 942 943 /// Optimize expensive integer constants in the given function. 944 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 945 DominatorTree &DT, BlockFrequencyInfo *BFI, 946 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 947 this->TTI = &TTI; 948 this->DT = &DT; 949 this->BFI = BFI; 950 this->DL = &Fn.getParent()->getDataLayout(); 951 this->Ctx = &Fn.getContext(); 952 this->Entry = &Entry; 953 this->PSI = PSI; 954 // Collect all constant candidates. 955 collectConstantCandidates(Fn); 956 957 // Combine constants that can be easily materialized with an add from a common 958 // base constant. 959 if (!ConstIntCandVec.empty()) 960 findBaseConstants(nullptr); 961 for (const auto &MapEntry : ConstGEPCandMap) 962 if (!MapEntry.second.empty()) 963 findBaseConstants(MapEntry.first); 964 965 // Finally hoist the base constant and emit materialization code for dependent 966 // constants. 967 bool MadeChange = false; 968 if (!ConstIntInfoVec.empty()) 969 MadeChange = emitBaseConstants(nullptr); 970 for (const auto &MapEntry : ConstGEPInfoMap) 971 if (!MapEntry.second.empty()) 972 MadeChange |= emitBaseConstants(MapEntry.first); 973 974 975 // Cleanup dead instructions. 976 deleteDeadCastInst(); 977 978 cleanup(); 979 980 return MadeChange; 981 } 982 983 PreservedAnalyses ConstantHoistingPass::run(Function &F, 984 FunctionAnalysisManager &AM) { 985 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 986 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 987 auto BFI = ConstHoistWithBlockFrequency 988 ? &AM.getResult<BlockFrequencyAnalysis>(F) 989 : nullptr; 990 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 991 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 992 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 993 return PreservedAnalyses::all(); 994 995 PreservedAnalyses PA; 996 PA.preserveSet<CFGAnalyses>(); 997 return PA; 998 } 999