xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <tuple>
71 #include <utility>
72 
73 using namespace llvm;
74 using namespace consthoist;
75 
76 #define DEBUG_TYPE "consthoist"
77 
78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79 STATISTIC(NumConstantsRebased, "Number of constants rebased");
80 
81 static cl::opt<bool> ConstHoistWithBlockFrequency(
82     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83     cl::desc("Enable the use of the block frequency analysis to reduce the "
84              "chance to execute const materialization more frequently than "
85              "without hoisting."));
86 
87 static cl::opt<bool> ConstHoistGEP(
88     "consthoist-gep", cl::init(false), cl::Hidden,
89     cl::desc("Try hoisting constant gep expressions"));
90 
91 static cl::opt<unsigned>
92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93     cl::desc("Do not rebase if number of dependent constants of a Base is less "
94              "than this number."),
95     cl::init(0), cl::Hidden);
96 
97 namespace {
98 
99 /// The constant hoisting pass.
100 class ConstantHoistingLegacyPass : public FunctionPass {
101 public:
102   static char ID; // Pass identification, replacement for typeid
103 
104   ConstantHoistingLegacyPass() : FunctionPass(ID) {
105     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106   }
107 
108   bool runOnFunction(Function &Fn) override;
109 
110   StringRef getPassName() const override { return "Constant Hoisting"; }
111 
112   void getAnalysisUsage(AnalysisUsage &AU) const override {
113     AU.setPreservesCFG();
114     if (ConstHoistWithBlockFrequency)
115       AU.addRequired<BlockFrequencyInfoWrapperPass>();
116     AU.addRequired<DominatorTreeWrapperPass>();
117     AU.addRequired<ProfileSummaryInfoWrapperPass>();
118     AU.addRequired<TargetTransformInfoWrapperPass>();
119   }
120 
121 private:
122   ConstantHoistingPass Impl;
123 };
124 
125 } // end anonymous namespace
126 
127 char ConstantHoistingLegacyPass::ID = 0;
128 
129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130                       "Constant Hoisting", false, false)
131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136                     "Constant Hoisting", false, false)
137 
138 FunctionPass *llvm::createConstantHoistingPass() {
139   return new ConstantHoistingLegacyPass();
140 }
141 
142 /// Perform the constant hoisting optimization for the given function.
143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144   if (skipFunction(Fn))
145     return false;
146 
147   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149 
150   bool MadeChange =
151       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153                    ConstHoistWithBlockFrequency
154                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155                        : nullptr,
156                    Fn.getEntryBlock(),
157                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158 
159   if (MadeChange) {
160     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161                       << Fn.getName() << '\n');
162     LLVM_DEBUG(dbgs() << Fn);
163   }
164   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165 
166   return MadeChange;
167 }
168 
169 /// Find the constant materialization insertion point.
170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171                                                    unsigned Idx) const {
172   // If the operand is a cast instruction, then we have to materialize the
173   // constant before the cast instruction.
174   if (Idx != ~0U) {
175     Value *Opnd = Inst->getOperand(Idx);
176     if (auto CastInst = dyn_cast<Instruction>(Opnd))
177       if (CastInst->isCast())
178         return CastInst;
179   }
180 
181   // The simple and common case. This also includes constant expressions.
182   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183     return Inst;
184 
185   // We can't insert directly before a phi node or an eh pad. Insert before
186   // the terminator of the incoming or dominating block.
187   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188   BasicBlock *InsertionBlock = nullptr;
189   if (Idx != ~0U && isa<PHINode>(Inst)) {
190     InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
191     if (!InsertionBlock->isEHPad()) {
192       return InsertionBlock->getTerminator();
193     }
194   } else {
195     InsertionBlock = Inst->getParent();
196   }
197 
198   // This must be an EH pad. Iterate over immediate dominators until we find a
199   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
200   // and terminators.
201   auto *IDom = DT->getNode(InsertionBlock)->getIDom();
202   while (IDom->getBlock()->isEHPad()) {
203     assert(Entry != IDom->getBlock() && "eh pad in entry block");
204     IDom = IDom->getIDom();
205   }
206 
207   return IDom->getBlock()->getTerminator();
208 }
209 
210 /// Given \p BBs as input, find another set of BBs which collectively
211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
212 /// set found in \p BBs.
213 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
214                                  BasicBlock *Entry,
215                                  SetVector<BasicBlock *> &BBs) {
216   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
217   // Nodes on the current path to the root.
218   SmallPtrSet<BasicBlock *, 8> Path;
219   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
220   // dominated by any other blocks in set 'BBs', and all nodes in the path
221   // in the dominator tree from Entry to 'BB'.
222   SmallPtrSet<BasicBlock *, 16> Candidates;
223   for (auto BB : BBs) {
224     // Ignore unreachable basic blocks.
225     if (!DT.isReachableFromEntry(BB))
226       continue;
227     Path.clear();
228     // Walk up the dominator tree until Entry or another BB in BBs
229     // is reached. Insert the nodes on the way to the Path.
230     BasicBlock *Node = BB;
231     // The "Path" is a candidate path to be added into Candidates set.
232     bool isCandidate = false;
233     do {
234       Path.insert(Node);
235       if (Node == Entry || Candidates.count(Node)) {
236         isCandidate = true;
237         break;
238       }
239       assert(DT.getNode(Node)->getIDom() &&
240              "Entry doens't dominate current Node");
241       Node = DT.getNode(Node)->getIDom()->getBlock();
242     } while (!BBs.count(Node));
243 
244     // If isCandidate is false, Node is another Block in BBs dominating
245     // current 'BB'. Drop the nodes on the Path.
246     if (!isCandidate)
247       continue;
248 
249     // Add nodes on the Path into Candidates.
250     Candidates.insert(Path.begin(), Path.end());
251   }
252 
253   // Sort the nodes in Candidates in top-down order and save the nodes
254   // in Orders.
255   unsigned Idx = 0;
256   SmallVector<BasicBlock *, 16> Orders;
257   Orders.push_back(Entry);
258   while (Idx != Orders.size()) {
259     BasicBlock *Node = Orders[Idx++];
260     for (auto ChildDomNode : DT.getNode(Node)->children()) {
261       if (Candidates.count(ChildDomNode->getBlock()))
262         Orders.push_back(ChildDomNode->getBlock());
263     }
264   }
265 
266   // Visit Orders in bottom-up order.
267   using InsertPtsCostPair =
268       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
269 
270   // InsertPtsMap is a map from a BB to the best insertion points for the
271   // subtree of BB (subtree not including the BB itself).
272   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
273   InsertPtsMap.reserve(Orders.size() + 1);
274   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
275     BasicBlock *Node = *RIt;
276     bool NodeInBBs = BBs.count(Node);
277     auto &InsertPts = InsertPtsMap[Node].first;
278     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
279 
280     // Return the optimal insert points in BBs.
281     if (Node == Entry) {
282       BBs.clear();
283       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285         BBs.insert(Entry);
286       else
287         BBs.insert(InsertPts.begin(), InsertPts.end());
288       break;
289     }
290 
291     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293     // will update its parent's ParentInsertPts and ParentPtsFreq.
294     auto &ParentInsertPts = InsertPtsMap[Parent].first;
295     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296     // Choose to insert in Node or in subtree of Node.
297     // Don't hoist to EHPad because we may not find a proper place to insert
298     // in EHPad.
299     // If the total frequency of InsertPts is the same as the frequency of the
300     // target Node, and InsertPts contains more than one nodes, choose hoisting
301     // to reduce code size.
302     if (NodeInBBs ||
303         (!Node->isEHPad() &&
304          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306       ParentInsertPts.insert(Node);
307       ParentPtsFreq += BFI.getBlockFreq(Node);
308     } else {
309       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310       ParentPtsFreq += InsertPtsFreq;
311     }
312   }
313 }
314 
315 /// Find an insertion point that dominates all uses.
316 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
317     const ConstantInfo &ConstInfo) const {
318   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
319   // Collect all basic blocks.
320   SetVector<BasicBlock *> BBs;
321   SetVector<Instruction *> InsertPts;
322   for (auto const &RCI : ConstInfo.RebasedConstants)
323     for (auto const &U : RCI.Uses)
324       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
325 
326   if (BBs.count(Entry)) {
327     InsertPts.insert(&Entry->front());
328     return InsertPts;
329   }
330 
331   if (BFI) {
332     findBestInsertionSet(*DT, *BFI, Entry, BBs);
333     for (auto BB : BBs) {
334       BasicBlock::iterator InsertPt = BB->begin();
335       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
336         ;
337       InsertPts.insert(&*InsertPt);
338     }
339     return InsertPts;
340   }
341 
342   while (BBs.size() >= 2) {
343     BasicBlock *BB, *BB1, *BB2;
344     BB1 = BBs.pop_back_val();
345     BB2 = BBs.pop_back_val();
346     BB = DT->findNearestCommonDominator(BB1, BB2);
347     if (BB == Entry) {
348       InsertPts.insert(&Entry->front());
349       return InsertPts;
350     }
351     BBs.insert(BB);
352   }
353   assert((BBs.size() == 1) && "Expected only one element.");
354   Instruction &FirstInst = (*BBs.begin())->front();
355   InsertPts.insert(findMatInsertPt(&FirstInst));
356   return InsertPts;
357 }
358 
359 /// Record constant integer ConstInt for instruction Inst at operand
360 /// index Idx.
361 ///
362 /// The operand at index Idx is not necessarily the constant integer itself. It
363 /// could also be a cast instruction or a constant expression that uses the
364 /// constant integer.
365 void ConstantHoistingPass::collectConstantCandidates(
366     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367     ConstantInt *ConstInt) {
368   InstructionCost Cost;
369   // Ask the target about the cost of materializing the constant for the given
370   // instruction and operand index.
371   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
372     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
373                                     ConstInt->getValue(), ConstInt->getType(),
374                                     TargetTransformInfo::TCK_SizeAndLatency);
375   else
376     Cost = TTI->getIntImmCostInst(
377         Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
378         TargetTransformInfo::TCK_SizeAndLatency, Inst);
379 
380   // Ignore cheap integer constants.
381   if (Cost > TargetTransformInfo::TCC_Basic) {
382     ConstCandMapType::iterator Itr;
383     bool Inserted;
384     ConstPtrUnionType Cand = ConstInt;
385     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
386     if (Inserted) {
387       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
388       Itr->second = ConstIntCandVec.size() - 1;
389     }
390     ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
391     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
392                    << "Collect constant " << *ConstInt << " from " << *Inst
393                    << " with cost " << Cost << '\n';
394                else dbgs() << "Collect constant " << *ConstInt
395                            << " indirectly from " << *Inst << " via "
396                            << *Inst->getOperand(Idx) << " with cost " << Cost
397                            << '\n';);
398   }
399 }
400 
401 /// Record constant GEP expression for instruction Inst at operand index Idx.
402 void ConstantHoistingPass::collectConstantCandidates(
403     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
404     ConstantExpr *ConstExpr) {
405   // TODO: Handle vector GEPs
406   if (ConstExpr->getType()->isVectorTy())
407     return;
408 
409   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
410   if (!BaseGV)
411     return;
412 
413   // Get offset from the base GV.
414   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
415   IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
416   APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
417   auto *GEPO = cast<GEPOperator>(ConstExpr);
418   if (!GEPO->accumulateConstantOffset(*DL, Offset))
419     return;
420 
421   if (!Offset.isIntN(32))
422     return;
423 
424   // A constant GEP expression that has a GlobalVariable as base pointer is
425   // usually lowered to a load from constant pool. Such operation is unlikely
426   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
427   // an ADD instruction or folded into Load/Store instruction.
428   InstructionCost Cost =
429       TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
430                              TargetTransformInfo::TCK_SizeAndLatency, Inst);
431   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
432   ConstCandMapType::iterator Itr;
433   bool Inserted;
434   ConstPtrUnionType Cand = ConstExpr;
435   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
436   if (Inserted) {
437     ExprCandVec.push_back(ConstantCandidate(
438         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
439         ConstExpr));
440     Itr->second = ExprCandVec.size() - 1;
441   }
442   ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
443 }
444 
445 /// Check the operand for instruction Inst at index Idx.
446 void ConstantHoistingPass::collectConstantCandidates(
447     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
448   Value *Opnd = Inst->getOperand(Idx);
449 
450   // Visit constant integers.
451   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
452     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
453     return;
454   }
455 
456   // Visit cast instructions that have constant integers.
457   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
458     // Only visit cast instructions, which have been skipped. All other
459     // instructions should have already been visited.
460     if (!CastInst->isCast())
461       return;
462 
463     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
464       // Pretend the constant is directly used by the instruction and ignore
465       // the cast instruction.
466       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
467       return;
468     }
469   }
470 
471   // Visit constant expressions that have constant integers.
472   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
473     // Handle constant gep expressions.
474     if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
475       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
476 
477     // Only visit constant cast expressions.
478     if (!ConstExpr->isCast())
479       return;
480 
481     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
482       // Pretend the constant is directly used by the instruction and ignore
483       // the constant expression.
484       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
485       return;
486     }
487   }
488 }
489 
490 /// Scan the instruction for expensive integer constants and record them
491 /// in the constant candidate vector.
492 void ConstantHoistingPass::collectConstantCandidates(
493     ConstCandMapType &ConstCandMap, Instruction *Inst) {
494   // Skip all cast instructions. They are visited indirectly later on.
495   if (Inst->isCast())
496     return;
497 
498   // Scan all operands.
499   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
500     // The cost of materializing the constants (defined in
501     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
502     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
503     // So it's safe for us to collect constant candidates from all
504     // IntrinsicInsts.
505     if (canReplaceOperandWithVariable(Inst, Idx)) {
506       collectConstantCandidates(ConstCandMap, Inst, Idx);
507     }
508   } // end of for all operands
509 }
510 
511 /// Collect all integer constants in the function that cannot be folded
512 /// into an instruction itself.
513 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
514   ConstCandMapType ConstCandMap;
515   for (BasicBlock &BB : Fn) {
516     // Ignore unreachable basic blocks.
517     if (!DT->isReachableFromEntry(&BB))
518       continue;
519     for (Instruction &Inst : BB)
520       collectConstantCandidates(ConstCandMap, &Inst);
521   }
522 }
523 
524 // This helper function is necessary to deal with values that have different
525 // bit widths (APInt Operator- does not like that). If the value cannot be
526 // represented in uint64 we return an "empty" APInt. This is then interpreted
527 // as the value is not in range.
528 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
529   Optional<APInt> Res = None;
530   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
531                 V1.getBitWidth() : V2.getBitWidth();
532   uint64_t LimVal1 = V1.getLimitedValue();
533   uint64_t LimVal2 = V2.getLimitedValue();
534 
535   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
536     return Res;
537 
538   uint64_t Diff = LimVal1 - LimVal2;
539   return APInt(BW, Diff, true);
540 }
541 
542 // From a list of constants, one needs to picked as the base and the other
543 // constants will be transformed into an offset from that base constant. The
544 // question is which we can pick best? For example, consider these constants
545 // and their number of uses:
546 //
547 //  Constants| 2 | 4 | 12 | 42 |
548 //  NumUses  | 3 | 2 |  8 |  7 |
549 //
550 // Selecting constant 12 because it has the most uses will generate negative
551 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
552 // offsets lead to less optimal code generation, then there might be better
553 // solutions. Suppose immediates in the range of 0..35 are most optimally
554 // supported by the architecture, then selecting constant 2 is most optimal
555 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
556 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
557 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
558 // selecting the base constant the range of the offsets is a very important
559 // factor too that we take into account here. This algorithm calculates a total
560 // costs for selecting a constant as the base and substract the costs if
561 // immediates are out of range. It has quadratic complexity, so we call this
562 // function only when we're optimising for size and there are less than 100
563 // constants, we fall back to the straightforward algorithm otherwise
564 // which does not do all the offset calculations.
565 unsigned
566 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
567                                            ConstCandVecType::iterator E,
568                                            ConstCandVecType::iterator &MaxCostItr) {
569   unsigned NumUses = 0;
570 
571   bool OptForSize = Entry->getParent()->hasOptSize() ||
572                     llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
573                                                 PGSOQueryType::IRPass);
574   if (!OptForSize || std::distance(S,E) > 100) {
575     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
576       NumUses += ConstCand->Uses.size();
577       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
578         MaxCostItr = ConstCand;
579     }
580     return NumUses;
581   }
582 
583   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
584   InstructionCost MaxCost = -1;
585   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
586     auto Value = ConstCand->ConstInt->getValue();
587     Type *Ty = ConstCand->ConstInt->getType();
588     InstructionCost Cost = 0;
589     NumUses += ConstCand->Uses.size();
590     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
591                       << "\n");
592 
593     for (auto User : ConstCand->Uses) {
594       unsigned Opcode = User.Inst->getOpcode();
595       unsigned OpndIdx = User.OpndIdx;
596       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
597                                      TargetTransformInfo::TCK_SizeAndLatency);
598       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
599 
600       for (auto C2 = S; C2 != E; ++C2) {
601         Optional<APInt> Diff = calculateOffsetDiff(
602                                    C2->ConstInt->getValue(),
603                                    ConstCand->ConstInt->getValue());
604         if (Diff) {
605           const InstructionCost ImmCosts =
606               TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
607           Cost -= ImmCosts;
608           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
609                             << "has penalty: " << ImmCosts << "\n"
610                             << "Adjusted cost: " << Cost << "\n");
611         }
612       }
613     }
614     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
615     if (Cost > MaxCost) {
616       MaxCost = Cost;
617       MaxCostItr = ConstCand;
618       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
619                         << "\n");
620     }
621   }
622   return NumUses;
623 }
624 
625 /// Find the base constant within the given range and rebase all other
626 /// constants with respect to the base constant.
627 void ConstantHoistingPass::findAndMakeBaseConstant(
628     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
629     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
630   auto MaxCostItr = S;
631   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
632 
633   // Don't hoist constants that have only one use.
634   if (NumUses <= 1)
635     return;
636 
637   ConstantInt *ConstInt = MaxCostItr->ConstInt;
638   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
639   ConstantInfo ConstInfo;
640   ConstInfo.BaseInt = ConstInt;
641   ConstInfo.BaseExpr = ConstExpr;
642   Type *Ty = ConstInt->getType();
643 
644   // Rebase the constants with respect to the base constant.
645   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
646     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
647     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
648     Type *ConstTy =
649         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
650     ConstInfo.RebasedConstants.push_back(
651       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
652   }
653   ConstInfoVec.push_back(std::move(ConstInfo));
654 }
655 
656 /// Finds and combines constant candidates that can be easily
657 /// rematerialized with an add from a common base constant.
658 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
659   // If BaseGV is nullptr, find base among candidate constant integers;
660   // Otherwise find base among constant GEPs that share the same BaseGV.
661   ConstCandVecType &ConstCandVec = BaseGV ?
662       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
663   ConstInfoVecType &ConstInfoVec = BaseGV ?
664       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
665 
666   // Sort the constants by value and type. This invalidates the mapping!
667   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
668                                      const ConstantCandidate &RHS) {
669     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
670       return LHS.ConstInt->getType()->getBitWidth() <
671              RHS.ConstInt->getType()->getBitWidth();
672     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
673   });
674 
675   // Simple linear scan through the sorted constant candidate vector for viable
676   // merge candidates.
677   auto MinValItr = ConstCandVec.begin();
678   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
679        CC != E; ++CC) {
680     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
681       Type *MemUseValTy = nullptr;
682       for (auto &U : CC->Uses) {
683         auto *UI = U.Inst;
684         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
685           MemUseValTy = LI->getType();
686           break;
687         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
688           // Make sure the constant is used as pointer operand of the StoreInst.
689           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
690             MemUseValTy = SI->getValueOperand()->getType();
691             break;
692           }
693         }
694       }
695 
696       // Check if the constant is in range of an add with immediate.
697       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
698       if ((Diff.getBitWidth() <= 64) &&
699           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
700           // Check if Diff can be used as offset in addressing mode of the user
701           // memory instruction.
702           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
703            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
704            /*HasBaseReg*/true, /*Scale*/0)))
705         continue;
706     }
707     // We either have now a different constant type or the constant is not in
708     // range of an add with immediate anymore.
709     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
710     // Start a new base constant search.
711     MinValItr = CC;
712   }
713   // Finalize the last base constant search.
714   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
715 }
716 
717 /// Updates the operand at Idx in instruction Inst with the result of
718 ///        instruction Mat. If the instruction is a PHI node then special
719 ///        handling for duplicate values form the same incoming basic block is
720 ///        required.
721 /// \return The update will always succeed, but the return value indicated if
722 ///         Mat was used for the update or not.
723 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
724   if (auto PHI = dyn_cast<PHINode>(Inst)) {
725     // Check if any previous operand of the PHI node has the same incoming basic
726     // block. This is a very odd case that happens when the incoming basic block
727     // has a switch statement. In this case use the same value as the previous
728     // operand(s), otherwise we will fail verification due to different values.
729     // The values are actually the same, but the variable names are different
730     // and the verifier doesn't like that.
731     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
732     for (unsigned i = 0; i < Idx; ++i) {
733       if (PHI->getIncomingBlock(i) == IncomingBB) {
734         Value *IncomingVal = PHI->getIncomingValue(i);
735         Inst->setOperand(Idx, IncomingVal);
736         return false;
737       }
738     }
739   }
740 
741   Inst->setOperand(Idx, Mat);
742   return true;
743 }
744 
745 /// Emit materialization code for all rebased constants and update their
746 /// users.
747 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
748                                              Constant *Offset,
749                                              Type *Ty,
750                                              const ConstantUser &ConstUser) {
751   Instruction *Mat = Base;
752 
753   // The same offset can be dereferenced to different types in nested struct.
754   if (!Offset && Ty && Ty != Base->getType())
755     Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
756 
757   if (Offset) {
758     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
759                                                ConstUser.OpndIdx);
760     if (Ty) {
761       // Constant being rebased is a ConstantExpr.
762       PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
763           cast<PointerType>(Ty)->getAddressSpace());
764       Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
765       Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
766           Offset, "mat_gep", InsertionPt);
767       Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
768     } else
769       // Constant being rebased is a ConstantInt.
770       Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
771                                  "const_mat", InsertionPt);
772 
773     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
774                       << " + " << *Offset << ") in BB "
775                       << Mat->getParent()->getName() << '\n'
776                       << *Mat << '\n');
777     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
778   }
779   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
780 
781   // Visit constant integer.
782   if (isa<ConstantInt>(Opnd)) {
783     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
784     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
785       Mat->eraseFromParent();
786     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
787     return;
788   }
789 
790   // Visit cast instruction.
791   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
792     assert(CastInst->isCast() && "Expected an cast instruction!");
793     // Check if we already have visited this cast instruction before to avoid
794     // unnecessary cloning.
795     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
796     if (!ClonedCastInst) {
797       ClonedCastInst = CastInst->clone();
798       ClonedCastInst->setOperand(0, Mat);
799       ClonedCastInst->insertAfter(CastInst);
800       // Use the same debug location as the original cast instruction.
801       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
802       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
803                         << "To               : " << *ClonedCastInst << '\n');
804     }
805 
806     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
807     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
808     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
809     return;
810   }
811 
812   // Visit constant expression.
813   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
814     if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
815       // Operand is a ConstantGEP, replace it.
816       updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
817       return;
818     }
819 
820     // Aside from constant GEPs, only constant cast expressions are collected.
821     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
822     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
823     ConstExprInst->setOperand(0, Mat);
824     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
825                                                 ConstUser.OpndIdx));
826 
827     // Use the same debug location as the instruction we are about to update.
828     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
829 
830     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
831                       << "From              : " << *ConstExpr << '\n');
832     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
833     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
834       ConstExprInst->eraseFromParent();
835       if (Offset)
836         Mat->eraseFromParent();
837     }
838     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
839     return;
840   }
841 }
842 
843 /// Hoist and hide the base constant behind a bitcast and emit
844 /// materialization code for derived constants.
845 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
846   bool MadeChange = false;
847   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
848       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
849   for (auto const &ConstInfo : ConstInfoVec) {
850     SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
851     // We can have an empty set if the function contains unreachable blocks.
852     if (IPSet.empty())
853       continue;
854 
855     unsigned UsesNum = 0;
856     unsigned ReBasesNum = 0;
857     unsigned NotRebasedNum = 0;
858     for (Instruction *IP : IPSet) {
859       // First, collect constants depending on this IP of the base.
860       unsigned Uses = 0;
861       using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
862       SmallVector<RebasedUse, 4> ToBeRebased;
863       for (auto const &RCI : ConstInfo.RebasedConstants) {
864         for (auto const &U : RCI.Uses) {
865           Uses++;
866           BasicBlock *OrigMatInsertBB =
867               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
868           // If Base constant is to be inserted in multiple places,
869           // generate rebase for U using the Base dominating U.
870           if (IPSet.size() == 1 ||
871               DT->dominates(IP->getParent(), OrigMatInsertBB))
872             ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
873         }
874       }
875       UsesNum = Uses;
876 
877       // If only few constants depend on this IP of base, skip rebasing,
878       // assuming the base and the rebased have the same materialization cost.
879       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
880         NotRebasedNum += ToBeRebased.size();
881         continue;
882       }
883 
884       // Emit an instance of the base at this IP.
885       Instruction *Base = nullptr;
886       // Hoist and hide the base constant behind a bitcast.
887       if (ConstInfo.BaseExpr) {
888         assert(BaseGV && "A base constant expression must have an base GV");
889         Type *Ty = ConstInfo.BaseExpr->getType();
890         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
891       } else {
892         IntegerType *Ty = ConstInfo.BaseInt->getType();
893         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
894       }
895 
896       Base->setDebugLoc(IP->getDebugLoc());
897 
898       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
899                         << ") to BB " << IP->getParent()->getName() << '\n'
900                         << *Base << '\n');
901 
902       // Emit materialization code for rebased constants depending on this IP.
903       for (auto const &R : ToBeRebased) {
904         Constant *Off = std::get<0>(R);
905         Type *Ty = std::get<1>(R);
906         ConstantUser U = std::get<2>(R);
907         emitBaseConstants(Base, Off, Ty, U);
908         ReBasesNum++;
909         // Use the same debug location as the last user of the constant.
910         Base->setDebugLoc(DILocation::getMergedLocation(
911             Base->getDebugLoc(), U.Inst->getDebugLoc()));
912       }
913       assert(!Base->use_empty() && "The use list is empty!?");
914       assert(isa<Instruction>(Base->user_back()) &&
915              "All uses should be instructions.");
916     }
917     (void)UsesNum;
918     (void)ReBasesNum;
919     (void)NotRebasedNum;
920     // Expect all uses are rebased after rebase is done.
921     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
922            "Not all uses are rebased");
923 
924     NumConstantsHoisted++;
925 
926     // Base constant is also included in ConstInfo.RebasedConstants, so
927     // deduct 1 from ConstInfo.RebasedConstants.size().
928     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
929 
930     MadeChange = true;
931   }
932   return MadeChange;
933 }
934 
935 /// Check all cast instructions we made a copy of and remove them if they
936 /// have no more users.
937 void ConstantHoistingPass::deleteDeadCastInst() const {
938   for (auto const &I : ClonedCastMap)
939     if (I.first->use_empty())
940       I.first->eraseFromParent();
941 }
942 
943 /// Optimize expensive integer constants in the given function.
944 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
945                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
946                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
947   this->TTI = &TTI;
948   this->DT = &DT;
949   this->BFI = BFI;
950   this->DL = &Fn.getParent()->getDataLayout();
951   this->Ctx = &Fn.getContext();
952   this->Entry = &Entry;
953   this->PSI = PSI;
954   // Collect all constant candidates.
955   collectConstantCandidates(Fn);
956 
957   // Combine constants that can be easily materialized with an add from a common
958   // base constant.
959   if (!ConstIntCandVec.empty())
960     findBaseConstants(nullptr);
961   for (const auto &MapEntry : ConstGEPCandMap)
962     if (!MapEntry.second.empty())
963       findBaseConstants(MapEntry.first);
964 
965   // Finally hoist the base constant and emit materialization code for dependent
966   // constants.
967   bool MadeChange = false;
968   if (!ConstIntInfoVec.empty())
969     MadeChange = emitBaseConstants(nullptr);
970   for (const auto &MapEntry : ConstGEPInfoMap)
971     if (!MapEntry.second.empty())
972       MadeChange |= emitBaseConstants(MapEntry.first);
973 
974 
975   // Cleanup dead instructions.
976   deleteDeadCastInst();
977 
978   cleanup();
979 
980   return MadeChange;
981 }
982 
983 PreservedAnalyses ConstantHoistingPass::run(Function &F,
984                                             FunctionAnalysisManager &AM) {
985   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
986   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
987   auto BFI = ConstHoistWithBlockFrequency
988                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
989                  : nullptr;
990   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
991   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
992   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
993     return PreservedAnalyses::all();
994 
995   PreservedAnalyses PA;
996   PA.preserveSet<CFGAnalyses>();
997   return PA;
998 }
999