xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that tries to split a call-site to pass
10 // more constrained arguments if its argument is predicated in the control flow
11 // so that we can expose better context to the later passes (e.g, inliner, jump
12 // threading, or IPA-CP based function cloning, etc.).
13 // As of now we support two cases :
14 //
15 // 1) Try to a split call-site with constrained arguments, if any constraints
16 // on any argument can be found by following the single predecessors of the
17 // all site's predecessors. Currently this pass only handles call-sites with 2
18 // predecessors. For example, in the code below, we try to split the call-site
19 // since we can predicate the argument(ptr) based on the OR condition.
20 //
21 // Split from :
22 //   if (!ptr || c)
23 //     callee(ptr);
24 // to :
25 //   if (!ptr)
26 //     callee(null)         // set the known constant value
27 //   else if (c)
28 //     callee(nonnull ptr)  // set non-null attribute in the argument
29 //
30 // 2) We can also split a call-site based on constant incoming values of a PHI
31 // For example,
32 // from :
33 //   Header:
34 //    %c = icmp eq i32 %i1, %i2
35 //    br i1 %c, label %Tail, label %TBB
36 //   TBB:
37 //    br label Tail%
38 //   Tail:
39 //    %p = phi i32 [ 0, %Header], [ 1, %TBB]
40 //    call void @bar(i32 %p)
41 // to
42 //   Header:
43 //    %c = icmp eq i32 %i1, %i2
44 //    br i1 %c, label %Tail-split0, label %TBB
45 //   TBB:
46 //    br label %Tail-split1
47 //   Tail-split0:
48 //    call void @bar(i32 0)
49 //    br label %Tail
50 //   Tail-split1:
51 //    call void @bar(i32 1)
52 //    br label %Tail
53 //   Tail:
54 //    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
55 //
56 //===----------------------------------------------------------------------===//
57 
58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/Analysis/DomTreeUpdater.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 
70 using namespace llvm;
71 using namespace PatternMatch;
72 
73 #define DEBUG_TYPE "callsite-splitting"
74 
75 STATISTIC(NumCallSiteSplit, "Number of call-site split");
76 
77 /// Only allow instructions before a call, if their CodeSize cost is below
78 /// DuplicationThreshold. Those instructions need to be duplicated in all
79 /// split blocks.
80 static cl::opt<unsigned>
81     DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
82                          cl::desc("Only allow instructions before a call, if "
83                                   "their cost is below DuplicationThreshold"),
84                          cl::init(5));
85 
86 static void addNonNullAttribute(CallBase &CB, Value *Op) {
87   unsigned ArgNo = 0;
88   for (auto &I : CB.args()) {
89     if (&*I == Op)
90       CB.addParamAttr(ArgNo, Attribute::NonNull);
91     ++ArgNo;
92   }
93 }
94 
95 static void setConstantInArgument(CallBase &CB, Value *Op,
96                                   Constant *ConstValue) {
97   unsigned ArgNo = 0;
98   for (auto &I : CB.args()) {
99     if (&*I == Op) {
100       // It is possible we have already added the non-null attribute to the
101       // parameter by using an earlier constraining condition.
102       CB.removeParamAttr(ArgNo, Attribute::NonNull);
103       CB.setArgOperand(ArgNo, ConstValue);
104     }
105     ++ArgNo;
106   }
107 }
108 
109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) {
110   assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
111   Value *Op0 = Cmp->getOperand(0);
112   unsigned ArgNo = 0;
113   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) {
114     // Don't consider constant or arguments that are already known non-null.
115     if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull))
116       continue;
117 
118     if (*I == Op0)
119       return true;
120   }
121   return false;
122 }
123 
124 using ConditionTy = std::pair<ICmpInst *, unsigned>;
125 using ConditionsTy = SmallVector<ConditionTy, 2>;
126 
127 /// If From has a conditional jump to To, add the condition to Conditions,
128 /// if it is relevant to any argument at CB.
129 static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To,
130                             ConditionsTy &Conditions) {
131   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
132   if (!BI || !BI->isConditional())
133     return;
134 
135   CmpInst::Predicate Pred;
136   Value *Cond = BI->getCondition();
137   if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
138     return;
139 
140   ICmpInst *Cmp = cast<ICmpInst>(Cond);
141   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
142     if (isCondRelevantToAnyCallArgument(Cmp, CB))
143       Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
144                                      ? Pred
145                                      : Cmp->getInversePredicate()});
146 }
147 
148 /// Record ICmp conditions relevant to any argument in CB following Pred's
149 /// single predecessors. If there are conflicting conditions along a path, like
150 /// x == 1 and x == 0, the first condition will be used. We stop once we reach
151 /// an edge to StopAt.
152 static void recordConditions(CallBase &CB, BasicBlock *Pred,
153                              ConditionsTy &Conditions, BasicBlock *StopAt) {
154   BasicBlock *From = Pred;
155   BasicBlock *To = Pred;
156   SmallPtrSet<BasicBlock *, 4> Visited;
157   while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
158          (From = From->getSinglePredecessor())) {
159     recordCondition(CB, From, To, Conditions);
160     Visited.insert(From);
161     To = From;
162   }
163 }
164 
165 static void addConditions(CallBase &CB, const ConditionsTy &Conditions) {
166   for (const auto &Cond : Conditions) {
167     Value *Arg = Cond.first->getOperand(0);
168     Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
169     if (Cond.second == ICmpInst::ICMP_EQ)
170       setConstantInArgument(CB, Arg, ConstVal);
171     else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
172       assert(Cond.second == ICmpInst::ICMP_NE);
173       addNonNullAttribute(CB, Arg);
174     }
175   }
176 }
177 
178 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
179   SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
180   assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
181   return Preds;
182 }
183 
184 static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) {
185   if (CB.isConvergent() || CB.cannotDuplicate())
186     return false;
187 
188   // FIXME: As of now we handle only CallInst. InvokeInst could be handled
189   // without too much effort.
190   if (!isa<CallInst>(CB))
191     return false;
192 
193   BasicBlock *CallSiteBB = CB.getParent();
194   // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
195   SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
196   if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
197       isa<IndirectBrInst>(Preds[1]->getTerminator()))
198     return false;
199 
200   // BasicBlock::canSplitPredecessors is more aggressive, so checking for
201   // BasicBlock::isEHPad as well.
202   if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
203     return false;
204 
205   // Allow splitting a call-site only when the CodeSize cost of the
206   // instructions before the call is less then DuplicationThreshold. The
207   // instructions before the call will be duplicated in the split blocks and
208   // corresponding uses will be updated.
209   InstructionCost Cost = 0;
210   for (auto &InstBeforeCall :
211        llvm::make_range(CallSiteBB->begin(), CB.getIterator())) {
212     Cost += TTI.getInstructionCost(&InstBeforeCall,
213                                    TargetTransformInfo::TCK_CodeSize);
214     if (Cost >= DuplicationThreshold)
215       return false;
216   }
217 
218   return true;
219 }
220 
221 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
222                                          Value *V) {
223   Instruction *Copy = I->clone();
224   Copy->setName(I->getName());
225   Copy->insertBefore(Before);
226   if (V)
227     Copy->setOperand(0, V);
228   return Copy;
229 }
230 
231 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
232 /// link it up to `NewCI` value instead:
233 ///
234 ///   * (optional) `bitcast NewCI to ...`
235 ///   * `ret bitcast or NewCI`
236 ///
237 /// Insert this sequence right before `SplitBB`'s terminator, which will be
238 /// cleaned up later in `splitCallSite` below.
239 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
240                                Instruction *NewCI) {
241   bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
242   auto II = std::next(CI->getIterator());
243 
244   BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
245   if (BCI)
246     ++II;
247 
248   ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
249   assert(RI && "`musttail` call must be followed by `ret` instruction");
250 
251   Instruction *TI = SplitBB->getTerminator();
252   Value *V = NewCI;
253   if (BCI)
254     V = cloneInstForMustTail(BCI, TI, V);
255   cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
256 
257   // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
258   // that prevents doing this now.
259 }
260 
261 /// For each (predecessor, conditions from predecessors) pair, it will split the
262 /// basic block containing the call site, hook it up to the predecessor and
263 /// replace the call instruction with new call instructions, which contain
264 /// constraints based on the conditions from their predecessors.
265 /// For example, in the IR below with an OR condition, the call-site can
266 /// be split. In this case, Preds for Tail is [(Header, a == null),
267 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
268 /// CallInst1, which has constraints based on the conditions from Head and
269 /// CallInst2, which has constraints based on the conditions coming from TBB.
270 ///
271 /// From :
272 ///
273 ///   Header:
274 ///     %c = icmp eq i32* %a, null
275 ///     br i1 %c %Tail, %TBB
276 ///   TBB:
277 ///     %c2 = icmp eq i32* %b, null
278 ///     br i1 %c %Tail, %End
279 ///   Tail:
280 ///     %ca = call i1  @callee (i32* %a, i32* %b)
281 ///
282 ///  to :
283 ///
284 ///   Header:                          // PredBB1 is Header
285 ///     %c = icmp eq i32* %a, null
286 ///     br i1 %c %Tail-split1, %TBB
287 ///   TBB:                             // PredBB2 is TBB
288 ///     %c2 = icmp eq i32* %b, null
289 ///     br i1 %c %Tail-split2, %End
290 ///   Tail-split1:
291 ///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
292 ///    br %Tail
293 ///   Tail-split2:
294 ///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
295 ///    br %Tail
296 ///   Tail:
297 ///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
298 ///
299 /// Note that in case any arguments at the call-site are constrained by its
300 /// predecessors, new call-sites with more constrained arguments will be
301 /// created in createCallSitesOnPredicatedArgument().
302 static void splitCallSite(CallBase &CB,
303                           ArrayRef<std::pair<BasicBlock *, ConditionsTy>> Preds,
304                           DomTreeUpdater &DTU) {
305   BasicBlock *TailBB = CB.getParent();
306   bool IsMustTailCall = CB.isMustTailCall();
307 
308   PHINode *CallPN = nullptr;
309 
310   // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
311   // split blocks will be terminated right after that so there're no users for
312   // this phi in a `TailBB`.
313   if (!IsMustTailCall && !CB.use_empty()) {
314     CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call");
315     CallPN->setDebugLoc(CB.getDebugLoc());
316   }
317 
318   LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n");
319 
320   assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
321   // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
322   // here.
323   ValueToValueMapTy ValueToValueMaps[2];
324   for (unsigned i = 0; i < Preds.size(); i++) {
325     BasicBlock *PredBB = Preds[i].first;
326     BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
327         TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i],
328         DTU);
329     assert(SplitBlock && "Unexpected new basic block split.");
330 
331     auto *NewCI =
332         cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator()));
333     addConditions(*NewCI, Preds[i].second);
334 
335     // Handle PHIs used as arguments in the call-site.
336     for (PHINode &PN : TailBB->phis()) {
337       unsigned ArgNo = 0;
338       for (auto &CI : CB.args()) {
339         if (&*CI == &PN) {
340           NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
341         }
342         ++ArgNo;
343       }
344     }
345     LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
346                       << "\n");
347     if (CallPN)
348       CallPN->addIncoming(NewCI, SplitBlock);
349 
350     // Clone and place bitcast and return instructions before `TI`
351     if (IsMustTailCall)
352       copyMustTailReturn(SplitBlock, &CB, NewCI);
353   }
354 
355   NumCallSiteSplit++;
356 
357   // FIXME: remove TI in `copyMustTailReturn`
358   if (IsMustTailCall) {
359     // Remove superfluous `br` terminators from the end of the Split blocks
360     // NOTE: Removing terminator removes the SplitBlock from the TailBB's
361     // predecessors. Therefore we must get complete list of Splits before
362     // attempting removal.
363     SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
364     assert(Splits.size() == 2 && "Expected exactly 2 splits!");
365     for (BasicBlock *BB : Splits) {
366       BB->getTerminator()->eraseFromParent();
367       DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, TailBB}});
368     }
369 
370     // Erase the tail block once done with musttail patching
371     DTU.deleteBB(TailBB);
372     return;
373   }
374 
375   BasicBlock::iterator OriginalBegin = TailBB->begin();
376   // Replace users of the original call with a PHI mering call-sites split.
377   if (CallPN) {
378     CallPN->insertBefore(*TailBB, OriginalBegin);
379     CB.replaceAllUsesWith(CallPN);
380   }
381 
382   // Remove instructions moved to split blocks from TailBB, from the duplicated
383   // call instruction to the beginning of the basic block. If an instruction
384   // has any uses, add a new PHI node to combine the values coming from the
385   // split blocks. The new PHI nodes are placed before the first original
386   // instruction, so we do not end up deleting them. By using reverse-order, we
387   // do not introduce unnecessary PHI nodes for def-use chains from the call
388   // instruction to the beginning of the block.
389   auto I = CB.getReverseIterator();
390   Instruction *OriginalBeginInst = &*OriginalBegin;
391   while (I != TailBB->rend()) {
392     Instruction *CurrentI = &*I++;
393     if (!CurrentI->use_empty()) {
394       // If an existing PHI has users after the call, there is no need to create
395       // a new one.
396       if (isa<PHINode>(CurrentI))
397         continue;
398       PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
399       NewPN->setDebugLoc(CurrentI->getDebugLoc());
400       for (auto &Mapping : ValueToValueMaps)
401         NewPN->addIncoming(Mapping[CurrentI],
402                            cast<Instruction>(Mapping[CurrentI])->getParent());
403       NewPN->insertBefore(*TailBB, TailBB->begin());
404       CurrentI->replaceAllUsesWith(NewPN);
405     }
406     CurrentI->dropDbgValues();
407     CurrentI->eraseFromParent();
408     // We are done once we handled the first original instruction in TailBB.
409     if (CurrentI == OriginalBeginInst)
410       break;
411   }
412 }
413 
414 // Return true if the call-site has an argument which is a PHI with only
415 // constant incoming values.
416 static bool isPredicatedOnPHI(CallBase &CB) {
417   BasicBlock *Parent = CB.getParent();
418   if (&CB != Parent->getFirstNonPHIOrDbg())
419     return false;
420 
421   for (auto &PN : Parent->phis()) {
422     for (auto &Arg : CB.args()) {
423       if (&*Arg != &PN)
424         continue;
425       assert(PN.getNumIncomingValues() == 2 &&
426              "Unexpected number of incoming values");
427       if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1))
428         return false;
429       if (PN.getIncomingValue(0) == PN.getIncomingValue(1))
430         continue;
431       if (isa<Constant>(PN.getIncomingValue(0)) &&
432           isa<Constant>(PN.getIncomingValue(1)))
433         return true;
434     }
435   }
436   return false;
437 }
438 
439 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
440 
441 // Check if any of the arguments in CS are predicated on a PHI node and return
442 // the set of predecessors we should use for splitting.
443 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) {
444   if (!isPredicatedOnPHI(CB))
445     return {};
446 
447   auto Preds = getTwoPredecessors(CB.getParent());
448   return {{Preds[0], {}}, {Preds[1], {}}};
449 }
450 
451 // Checks if any of the arguments in CS are predicated in a predecessor and
452 // returns a list of predecessors with the conditions that hold on their edges
453 // to CS.
454 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB,
455                                                         DomTreeUpdater &DTU) {
456   auto Preds = getTwoPredecessors(CB.getParent());
457   if (Preds[0] == Preds[1])
458     return {};
459 
460   // We can stop recording conditions once we reached the immediate dominator
461   // for the block containing the call site. Conditions in predecessors of the
462   // that node will be the same for all paths to the call site and splitting
463   // is not beneficial.
464   assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
465   auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent());
466   BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
467 
468   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
469   for (auto *Pred : llvm::reverse(Preds)) {
470     ConditionsTy Conditions;
471     // Record condition on edge BB(CS) <- Pred
472     recordCondition(CB, Pred, CB.getParent(), Conditions);
473     // Record conditions following Pred's single predecessors.
474     recordConditions(CB, Pred, Conditions, StopAt);
475     PredsCS.push_back({Pred, Conditions});
476   }
477 
478   if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
479         return P.second.empty();
480       }))
481     return {};
482 
483   return PredsCS;
484 }
485 
486 static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI,
487                                DomTreeUpdater &DTU) {
488   // Check if we can split the call site.
489   if (!CB.arg_size() || !canSplitCallSite(CB, TTI))
490     return false;
491 
492   auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU);
493   if (PredsWithConds.empty())
494     PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB);
495   if (PredsWithConds.empty())
496     return false;
497 
498   splitCallSite(CB, PredsWithConds, DTU);
499   return true;
500 }
501 
502 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
503                                 TargetTransformInfo &TTI, DominatorTree &DT) {
504 
505   DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
506   bool Changed = false;
507   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
508     auto II = BB.getFirstNonPHIOrDbg()->getIterator();
509     auto IE = BB.getTerminator()->getIterator();
510     // Iterate until we reach the terminator instruction. tryToSplitCallSite
511     // can replace BB's terminator in case BB is a successor of itself. In that
512     // case, IE will be invalidated and we also have to check the current
513     // terminator.
514     while (II != IE && &*II != BB.getTerminator()) {
515       CallBase *CB = dyn_cast<CallBase>(&*II++);
516       if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI))
517         continue;
518 
519       Function *Callee = CB->getCalledFunction();
520       if (!Callee || Callee->isDeclaration())
521         continue;
522 
523       // Successful musttail call-site splits result in erased CI and erased BB.
524       // Check if such path is possible before attempting the splitting.
525       bool IsMustTail = CB->isMustTailCall();
526 
527       Changed |= tryToSplitCallSite(*CB, TTI, DTU);
528 
529       // There're no interesting instructions after this. The call site
530       // itself might have been erased on splitting.
531       if (IsMustTail)
532         break;
533     }
534   }
535   return Changed;
536 }
537 
538 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
539                                              FunctionAnalysisManager &AM) {
540   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
541   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
542   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
543 
544   if (!doCallSiteSplitting(F, TLI, TTI, DT))
545     return PreservedAnalyses::all();
546   PreservedAnalyses PA;
547   PA.preserve<DominatorTreeAnalysis>();
548   return PA;
549 }
550