xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that tries to split a call-site to pass
10 // more constrained arguments if its argument is predicated in the control flow
11 // so that we can expose better context to the later passes (e.g, inliner, jump
12 // threading, or IPA-CP based function cloning, etc.).
13 // As of now we support two cases :
14 //
15 // 1) Try to a split call-site with constrained arguments, if any constraints
16 // on any argument can be found by following the single predecessors of the
17 // all site's predecessors. Currently this pass only handles call-sites with 2
18 // predecessors. For example, in the code below, we try to split the call-site
19 // since we can predicate the argument(ptr) based on the OR condition.
20 //
21 // Split from :
22 //   if (!ptr || c)
23 //     callee(ptr);
24 // to :
25 //   if (!ptr)
26 //     callee(null)         // set the known constant value
27 //   else if (c)
28 //     callee(nonnull ptr)  // set non-null attribute in the argument
29 //
30 // 2) We can also split a call-site based on constant incoming values of a PHI
31 // For example,
32 // from :
33 //   Header:
34 //    %c = icmp eq i32 %i1, %i2
35 //    br i1 %c, label %Tail, label %TBB
36 //   TBB:
37 //    br label Tail%
38 //   Tail:
39 //    %p = phi i32 [ 0, %Header], [ 1, %TBB]
40 //    call void @bar(i32 %p)
41 // to
42 //   Header:
43 //    %c = icmp eq i32 %i1, %i2
44 //    br i1 %c, label %Tail-split0, label %TBB
45 //   TBB:
46 //    br label %Tail-split1
47 //   Tail-split0:
48 //    call void @bar(i32 0)
49 //    br label %Tail
50 //   Tail-split1:
51 //    call void @bar(i32 1)
52 //    br label %Tail
53 //   Tail:
54 //    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
55 //
56 //===----------------------------------------------------------------------===//
57 
58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 
72 using namespace llvm;
73 using namespace PatternMatch;
74 
75 #define DEBUG_TYPE "callsite-splitting"
76 
77 STATISTIC(NumCallSiteSplit, "Number of call-site split");
78 
79 /// Only allow instructions before a call, if their CodeSize cost is below
80 /// DuplicationThreshold. Those instructions need to be duplicated in all
81 /// split blocks.
82 static cl::opt<unsigned>
83     DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
84                          cl::desc("Only allow instructions before a call, if "
85                                   "their cost is below DuplicationThreshold"),
86                          cl::init(5));
87 
88 static void addNonNullAttribute(CallSite CS, Value *Op) {
89   unsigned ArgNo = 0;
90   for (auto &I : CS.args()) {
91     if (&*I == Op)
92       CS.addParamAttr(ArgNo, Attribute::NonNull);
93     ++ArgNo;
94   }
95 }
96 
97 static void setConstantInArgument(CallSite CS, Value *Op,
98                                   Constant *ConstValue) {
99   unsigned ArgNo = 0;
100   for (auto &I : CS.args()) {
101     if (&*I == Op) {
102       // It is possible we have already added the non-null attribute to the
103       // parameter by using an earlier constraining condition.
104       CS.removeParamAttr(ArgNo, Attribute::NonNull);
105       CS.setArgument(ArgNo, ConstValue);
106     }
107     ++ArgNo;
108   }
109 }
110 
111 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
112   assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
113   Value *Op0 = Cmp->getOperand(0);
114   unsigned ArgNo = 0;
115   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
116        ++I, ++ArgNo) {
117     // Don't consider constant or arguments that are already known non-null.
118     if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
119       continue;
120 
121     if (*I == Op0)
122       return true;
123   }
124   return false;
125 }
126 
127 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
128 typedef SmallVector<ConditionTy, 2> ConditionsTy;
129 
130 /// If From has a conditional jump to To, add the condition to Conditions,
131 /// if it is relevant to any argument at CS.
132 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
133                             ConditionsTy &Conditions) {
134   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
135   if (!BI || !BI->isConditional())
136     return;
137 
138   CmpInst::Predicate Pred;
139   Value *Cond = BI->getCondition();
140   if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
141     return;
142 
143   ICmpInst *Cmp = cast<ICmpInst>(Cond);
144   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
145     if (isCondRelevantToAnyCallArgument(Cmp, CS))
146       Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
147                                      ? Pred
148                                      : Cmp->getInversePredicate()});
149 }
150 
151 /// Record ICmp conditions relevant to any argument in CS following Pred's
152 /// single predecessors. If there are conflicting conditions along a path, like
153 /// x == 1 and x == 0, the first condition will be used. We stop once we reach
154 /// an edge to StopAt.
155 static void recordConditions(CallSite CS, BasicBlock *Pred,
156                              ConditionsTy &Conditions, BasicBlock *StopAt) {
157   BasicBlock *From = Pred;
158   BasicBlock *To = Pred;
159   SmallPtrSet<BasicBlock *, 4> Visited;
160   while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
161          (From = From->getSinglePredecessor())) {
162     recordCondition(CS, From, To, Conditions);
163     Visited.insert(From);
164     To = From;
165   }
166 }
167 
168 static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
169   for (auto &Cond : Conditions) {
170     Value *Arg = Cond.first->getOperand(0);
171     Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
172     if (Cond.second == ICmpInst::ICMP_EQ)
173       setConstantInArgument(CS, Arg, ConstVal);
174     else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
175       assert(Cond.second == ICmpInst::ICMP_NE);
176       addNonNullAttribute(CS, Arg);
177     }
178   }
179 }
180 
181 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
182   SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
183   assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
184   return Preds;
185 }
186 
187 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
188   if (CS.isConvergent() || CS.cannotDuplicate())
189     return false;
190 
191   // FIXME: As of now we handle only CallInst. InvokeInst could be handled
192   // without too much effort.
193   Instruction *Instr = CS.getInstruction();
194   if (!isa<CallInst>(Instr))
195     return false;
196 
197   BasicBlock *CallSiteBB = Instr->getParent();
198   // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
199   SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
200   if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
201       isa<IndirectBrInst>(Preds[1]->getTerminator()))
202     return false;
203 
204   // BasicBlock::canSplitPredecessors is more aggressive, so checking for
205   // BasicBlock::isEHPad as well.
206   if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
207     return false;
208 
209   // Allow splitting a call-site only when the CodeSize cost of the
210   // instructions before the call is less then DuplicationThreshold. The
211   // instructions before the call will be duplicated in the split blocks and
212   // corresponding uses will be updated.
213   unsigned Cost = 0;
214   for (auto &InstBeforeCall :
215        llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
216     Cost += TTI.getInstructionCost(&InstBeforeCall,
217                                    TargetTransformInfo::TCK_CodeSize);
218     if (Cost >= DuplicationThreshold)
219       return false;
220   }
221 
222   return true;
223 }
224 
225 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
226                                          Value *V) {
227   Instruction *Copy = I->clone();
228   Copy->setName(I->getName());
229   Copy->insertBefore(Before);
230   if (V)
231     Copy->setOperand(0, V);
232   return Copy;
233 }
234 
235 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
236 /// link it up to `NewCI` value instead:
237 ///
238 ///   * (optional) `bitcast NewCI to ...`
239 ///   * `ret bitcast or NewCI`
240 ///
241 /// Insert this sequence right before `SplitBB`'s terminator, which will be
242 /// cleaned up later in `splitCallSite` below.
243 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
244                                Instruction *NewCI) {
245   bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
246   auto II = std::next(CI->getIterator());
247 
248   BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
249   if (BCI)
250     ++II;
251 
252   ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
253   assert(RI && "`musttail` call must be followed by `ret` instruction");
254 
255   Instruction *TI = SplitBB->getTerminator();
256   Value *V = NewCI;
257   if (BCI)
258     V = cloneInstForMustTail(BCI, TI, V);
259   cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
260 
261   // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
262   // that prevents doing this now.
263 }
264 
265 /// For each (predecessor, conditions from predecessors) pair, it will split the
266 /// basic block containing the call site, hook it up to the predecessor and
267 /// replace the call instruction with new call instructions, which contain
268 /// constraints based on the conditions from their predecessors.
269 /// For example, in the IR below with an OR condition, the call-site can
270 /// be split. In this case, Preds for Tail is [(Header, a == null),
271 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
272 /// CallInst1, which has constraints based on the conditions from Head and
273 /// CallInst2, which has constraints based on the conditions coming from TBB.
274 ///
275 /// From :
276 ///
277 ///   Header:
278 ///     %c = icmp eq i32* %a, null
279 ///     br i1 %c %Tail, %TBB
280 ///   TBB:
281 ///     %c2 = icmp eq i32* %b, null
282 ///     br i1 %c %Tail, %End
283 ///   Tail:
284 ///     %ca = call i1  @callee (i32* %a, i32* %b)
285 ///
286 ///  to :
287 ///
288 ///   Header:                          // PredBB1 is Header
289 ///     %c = icmp eq i32* %a, null
290 ///     br i1 %c %Tail-split1, %TBB
291 ///   TBB:                             // PredBB2 is TBB
292 ///     %c2 = icmp eq i32* %b, null
293 ///     br i1 %c %Tail-split2, %End
294 ///   Tail-split1:
295 ///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
296 ///    br %Tail
297 ///   Tail-split2:
298 ///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
299 ///    br %Tail
300 ///   Tail:
301 ///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
302 ///
303 /// Note that in case any arguments at the call-site are constrained by its
304 /// predecessors, new call-sites with more constrained arguments will be
305 /// created in createCallSitesOnPredicatedArgument().
306 static void splitCallSite(
307     CallSite CS,
308     const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
309     DomTreeUpdater &DTU) {
310   Instruction *Instr = CS.getInstruction();
311   BasicBlock *TailBB = Instr->getParent();
312   bool IsMustTailCall = CS.isMustTailCall();
313 
314   PHINode *CallPN = nullptr;
315 
316   // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
317   // split blocks will be terminated right after that so there're no users for
318   // this phi in a `TailBB`.
319   if (!IsMustTailCall && !Instr->use_empty()) {
320     CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
321     CallPN->setDebugLoc(Instr->getDebugLoc());
322   }
323 
324   LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
325 
326   assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
327   // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
328   // here.
329   ValueToValueMapTy ValueToValueMaps[2];
330   for (unsigned i = 0; i < Preds.size(); i++) {
331     BasicBlock *PredBB = Preds[i].first;
332     BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
333         TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
334         DTU);
335     assert(SplitBlock && "Unexpected new basic block split.");
336 
337     Instruction *NewCI =
338         &*std::prev(SplitBlock->getTerminator()->getIterator());
339     CallSite NewCS(NewCI);
340     addConditions(NewCS, Preds[i].second);
341 
342     // Handle PHIs used as arguments in the call-site.
343     for (PHINode &PN : TailBB->phis()) {
344       unsigned ArgNo = 0;
345       for (auto &CI : CS.args()) {
346         if (&*CI == &PN) {
347           NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
348         }
349         ++ArgNo;
350       }
351     }
352     LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
353                       << "\n");
354     if (CallPN)
355       CallPN->addIncoming(NewCI, SplitBlock);
356 
357     // Clone and place bitcast and return instructions before `TI`
358     if (IsMustTailCall)
359       copyMustTailReturn(SplitBlock, Instr, NewCI);
360   }
361 
362   NumCallSiteSplit++;
363 
364   // FIXME: remove TI in `copyMustTailReturn`
365   if (IsMustTailCall) {
366     // Remove superfluous `br` terminators from the end of the Split blocks
367     // NOTE: Removing terminator removes the SplitBlock from the TailBB's
368     // predecessors. Therefore we must get complete list of Splits before
369     // attempting removal.
370     SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
371     assert(Splits.size() == 2 && "Expected exactly 2 splits!");
372     for (unsigned i = 0; i < Splits.size(); i++) {
373       Splits[i]->getTerminator()->eraseFromParent();
374       DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
375     }
376 
377     // Erase the tail block once done with musttail patching
378     DTU.deleteBB(TailBB);
379     return;
380   }
381 
382   auto *OriginalBegin = &*TailBB->begin();
383   // Replace users of the original call with a PHI mering call-sites split.
384   if (CallPN) {
385     CallPN->insertBefore(OriginalBegin);
386     Instr->replaceAllUsesWith(CallPN);
387   }
388 
389   // Remove instructions moved to split blocks from TailBB, from the duplicated
390   // call instruction to the beginning of the basic block. If an instruction
391   // has any uses, add a new PHI node to combine the values coming from the
392   // split blocks. The new PHI nodes are placed before the first original
393   // instruction, so we do not end up deleting them. By using reverse-order, we
394   // do not introduce unnecessary PHI nodes for def-use chains from the call
395   // instruction to the beginning of the block.
396   auto I = Instr->getReverseIterator();
397   while (I != TailBB->rend()) {
398     Instruction *CurrentI = &*I++;
399     if (!CurrentI->use_empty()) {
400       // If an existing PHI has users after the call, there is no need to create
401       // a new one.
402       if (isa<PHINode>(CurrentI))
403         continue;
404       PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
405       NewPN->setDebugLoc(CurrentI->getDebugLoc());
406       for (auto &Mapping : ValueToValueMaps)
407         NewPN->addIncoming(Mapping[CurrentI],
408                            cast<Instruction>(Mapping[CurrentI])->getParent());
409       NewPN->insertBefore(&*TailBB->begin());
410       CurrentI->replaceAllUsesWith(NewPN);
411     }
412     CurrentI->eraseFromParent();
413     // We are done once we handled the first original instruction in TailBB.
414     if (CurrentI == OriginalBegin)
415       break;
416   }
417 }
418 
419 // Return true if the call-site has an argument which is a PHI with only
420 // constant incoming values.
421 static bool isPredicatedOnPHI(CallSite CS) {
422   Instruction *Instr = CS.getInstruction();
423   BasicBlock *Parent = Instr->getParent();
424   if (Instr != Parent->getFirstNonPHIOrDbg())
425     return false;
426 
427   for (auto &BI : *Parent) {
428     if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
429       for (auto &I : CS.args())
430         if (&*I == PN) {
431           assert(PN->getNumIncomingValues() == 2 &&
432                  "Unexpected number of incoming values");
433           if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
434             return false;
435           if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
436             continue;
437           if (isa<Constant>(PN->getIncomingValue(0)) &&
438               isa<Constant>(PN->getIncomingValue(1)))
439             return true;
440         }
441     }
442     break;
443   }
444   return false;
445 }
446 
447 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
448 
449 // Check if any of the arguments in CS are predicated on a PHI node and return
450 // the set of predecessors we should use for splitting.
451 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) {
452   if (!isPredicatedOnPHI(CS))
453     return {};
454 
455   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
456   return {{Preds[0], {}}, {Preds[1], {}}};
457 }
458 
459 // Checks if any of the arguments in CS are predicated in a predecessor and
460 // returns a list of predecessors with the conditions that hold on their edges
461 // to CS.
462 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS,
463                                                         DomTreeUpdater &DTU) {
464   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
465   if (Preds[0] == Preds[1])
466     return {};
467 
468   // We can stop recording conditions once we reached the immediate dominator
469   // for the block containing the call site. Conditions in predecessors of the
470   // that node will be the same for all paths to the call site and splitting
471   // is not beneficial.
472   assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
473   auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent());
474   BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
475 
476   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
477   for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
478     ConditionsTy Conditions;
479     // Record condition on edge BB(CS) <- Pred
480     recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
481     // Record conditions following Pred's single predecessors.
482     recordConditions(CS, Pred, Conditions, StopAt);
483     PredsCS.push_back({Pred, Conditions});
484   }
485 
486   if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
487         return P.second.empty();
488       }))
489     return {};
490 
491   return PredsCS;
492 }
493 
494 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
495                                DomTreeUpdater &DTU) {
496   // Check if we can split the call site.
497   if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
498     return false;
499 
500   auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU);
501   if (PredsWithConds.empty())
502     PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS);
503   if (PredsWithConds.empty())
504     return false;
505 
506   splitCallSite(CS, PredsWithConds, DTU);
507   return true;
508 }
509 
510 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
511                                 TargetTransformInfo &TTI, DominatorTree &DT) {
512 
513   DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
514   bool Changed = false;
515   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
516     BasicBlock &BB = *BI++;
517     auto II = BB.getFirstNonPHIOrDbg()->getIterator();
518     auto IE = BB.getTerminator()->getIterator();
519     // Iterate until we reach the terminator instruction. tryToSplitCallSite
520     // can replace BB's terminator in case BB is a successor of itself. In that
521     // case, IE will be invalidated and we also have to check the current
522     // terminator.
523     while (II != IE && &*II != BB.getTerminator()) {
524       Instruction *I = &*II++;
525       CallSite CS(cast<Value>(I));
526       if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
527         continue;
528 
529       Function *Callee = CS.getCalledFunction();
530       if (!Callee || Callee->isDeclaration())
531         continue;
532 
533       // Successful musttail call-site splits result in erased CI and erased BB.
534       // Check if such path is possible before attempting the splitting.
535       bool IsMustTail = CS.isMustTailCall();
536 
537       Changed |= tryToSplitCallSite(CS, TTI, DTU);
538 
539       // There're no interesting instructions after this. The call site
540       // itself might have been erased on splitting.
541       if (IsMustTail)
542         break;
543     }
544   }
545   return Changed;
546 }
547 
548 namespace {
549 struct CallSiteSplittingLegacyPass : public FunctionPass {
550   static char ID;
551   CallSiteSplittingLegacyPass() : FunctionPass(ID) {
552     initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
553   }
554 
555   void getAnalysisUsage(AnalysisUsage &AU) const override {
556     AU.addRequired<TargetLibraryInfoWrapperPass>();
557     AU.addRequired<TargetTransformInfoWrapperPass>();
558     AU.addRequired<DominatorTreeWrapperPass>();
559     AU.addPreserved<DominatorTreeWrapperPass>();
560     FunctionPass::getAnalysisUsage(AU);
561   }
562 
563   bool runOnFunction(Function &F) override {
564     if (skipFunction(F))
565       return false;
566 
567     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
568     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
569     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
570     return doCallSiteSplitting(F, TLI, TTI, DT);
571   }
572 };
573 } // namespace
574 
575 char CallSiteSplittingLegacyPass::ID = 0;
576 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
577                       "Call-site splitting", false, false)
578 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
579 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
580 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
581 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
582                     "Call-site splitting", false, false)
583 FunctionPass *llvm::createCallSiteSplittingPass() {
584   return new CallSiteSplittingLegacyPass();
585 }
586 
587 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
588                                              FunctionAnalysisManager &AM) {
589   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
590   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
591   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
592 
593   if (!doCallSiteSplitting(F, TLI, TTI, DT))
594     return PreservedAnalyses::all();
595   PreservedAnalyses PA;
596   PA.preserve<DominatorTreeAnalysis>();
597   return PA;
598 }
599