1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that tries to split a call-site to pass 10 // more constrained arguments if its argument is predicated in the control flow 11 // so that we can expose better context to the later passes (e.g, inliner, jump 12 // threading, or IPA-CP based function cloning, etc.). 13 // As of now we support two cases : 14 // 15 // 1) Try to a split call-site with constrained arguments, if any constraints 16 // on any argument can be found by following the single predecessors of the 17 // all site's predecessors. Currently this pass only handles call-sites with 2 18 // predecessors. For example, in the code below, we try to split the call-site 19 // since we can predicate the argument(ptr) based on the OR condition. 20 // 21 // Split from : 22 // if (!ptr || c) 23 // callee(ptr); 24 // to : 25 // if (!ptr) 26 // callee(null) // set the known constant value 27 // else if (c) 28 // callee(nonnull ptr) // set non-null attribute in the argument 29 // 30 // 2) We can also split a call-site based on constant incoming values of a PHI 31 // For example, 32 // from : 33 // Header: 34 // %c = icmp eq i32 %i1, %i2 35 // br i1 %c, label %Tail, label %TBB 36 // TBB: 37 // br label Tail% 38 // Tail: 39 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 40 // call void @bar(i32 %p) 41 // to 42 // Header: 43 // %c = icmp eq i32 %i1, %i2 44 // br i1 %c, label %Tail-split0, label %TBB 45 // TBB: 46 // br label %Tail-split1 47 // Tail-split0: 48 // call void @bar(i32 0) 49 // br label %Tail 50 // Tail-split1: 51 // call void @bar(i32 1) 52 // br label %Tail 53 // Tail: 54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 55 // 56 //===----------------------------------------------------------------------===// 57 58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 72 using namespace llvm; 73 using namespace PatternMatch; 74 75 #define DEBUG_TYPE "callsite-splitting" 76 77 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 78 79 /// Only allow instructions before a call, if their CodeSize cost is below 80 /// DuplicationThreshold. Those instructions need to be duplicated in all 81 /// split blocks. 82 static cl::opt<unsigned> 83 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 84 cl::desc("Only allow instructions before a call, if " 85 "their cost is below DuplicationThreshold"), 86 cl::init(5)); 87 88 static void addNonNullAttribute(CallSite CS, Value *Op) { 89 unsigned ArgNo = 0; 90 for (auto &I : CS.args()) { 91 if (&*I == Op) 92 CS.addParamAttr(ArgNo, Attribute::NonNull); 93 ++ArgNo; 94 } 95 } 96 97 static void setConstantInArgument(CallSite CS, Value *Op, 98 Constant *ConstValue) { 99 unsigned ArgNo = 0; 100 for (auto &I : CS.args()) { 101 if (&*I == Op) { 102 // It is possible we have already added the non-null attribute to the 103 // parameter by using an earlier constraining condition. 104 CS.removeParamAttr(ArgNo, Attribute::NonNull); 105 CS.setArgument(ArgNo, ConstValue); 106 } 107 ++ArgNo; 108 } 109 } 110 111 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 112 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 113 Value *Op0 = Cmp->getOperand(0); 114 unsigned ArgNo = 0; 115 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 116 ++I, ++ArgNo) { 117 // Don't consider constant or arguments that are already known non-null. 118 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 119 continue; 120 121 if (*I == Op0) 122 return true; 123 } 124 return false; 125 } 126 127 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 128 typedef SmallVector<ConditionTy, 2> ConditionsTy; 129 130 /// If From has a conditional jump to To, add the condition to Conditions, 131 /// if it is relevant to any argument at CS. 132 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 133 ConditionsTy &Conditions) { 134 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 135 if (!BI || !BI->isConditional()) 136 return; 137 138 CmpInst::Predicate Pred; 139 Value *Cond = BI->getCondition(); 140 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 141 return; 142 143 ICmpInst *Cmp = cast<ICmpInst>(Cond); 144 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 145 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 146 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 147 ? Pred 148 : Cmp->getInversePredicate()}); 149 } 150 151 /// Record ICmp conditions relevant to any argument in CS following Pred's 152 /// single predecessors. If there are conflicting conditions along a path, like 153 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 154 /// an edge to StopAt. 155 static void recordConditions(CallSite CS, BasicBlock *Pred, 156 ConditionsTy &Conditions, BasicBlock *StopAt) { 157 BasicBlock *From = Pred; 158 BasicBlock *To = Pred; 159 SmallPtrSet<BasicBlock *, 4> Visited; 160 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 161 (From = From->getSinglePredecessor())) { 162 recordCondition(CS, From, To, Conditions); 163 Visited.insert(From); 164 To = From; 165 } 166 } 167 168 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 169 for (auto &Cond : Conditions) { 170 Value *Arg = Cond.first->getOperand(0); 171 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 172 if (Cond.second == ICmpInst::ICMP_EQ) 173 setConstantInArgument(CS, Arg, ConstVal); 174 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 175 assert(Cond.second == ICmpInst::ICMP_NE); 176 addNonNullAttribute(CS, Arg); 177 } 178 } 179 } 180 181 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 182 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 183 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 184 return Preds; 185 } 186 187 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 188 if (CS.isConvergent() || CS.cannotDuplicate()) 189 return false; 190 191 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 192 // without too much effort. 193 Instruction *Instr = CS.getInstruction(); 194 if (!isa<CallInst>(Instr)) 195 return false; 196 197 BasicBlock *CallSiteBB = Instr->getParent(); 198 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 199 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 200 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 201 isa<IndirectBrInst>(Preds[1]->getTerminator())) 202 return false; 203 204 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 205 // BasicBlock::isEHPad as well. 206 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 207 return false; 208 209 // Allow splitting a call-site only when the CodeSize cost of the 210 // instructions before the call is less then DuplicationThreshold. The 211 // instructions before the call will be duplicated in the split blocks and 212 // corresponding uses will be updated. 213 unsigned Cost = 0; 214 for (auto &InstBeforeCall : 215 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 216 Cost += TTI.getInstructionCost(&InstBeforeCall, 217 TargetTransformInfo::TCK_CodeSize); 218 if (Cost >= DuplicationThreshold) 219 return false; 220 } 221 222 return true; 223 } 224 225 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 226 Value *V) { 227 Instruction *Copy = I->clone(); 228 Copy->setName(I->getName()); 229 Copy->insertBefore(Before); 230 if (V) 231 Copy->setOperand(0, V); 232 return Copy; 233 } 234 235 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 236 /// link it up to `NewCI` value instead: 237 /// 238 /// * (optional) `bitcast NewCI to ...` 239 /// * `ret bitcast or NewCI` 240 /// 241 /// Insert this sequence right before `SplitBB`'s terminator, which will be 242 /// cleaned up later in `splitCallSite` below. 243 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 244 Instruction *NewCI) { 245 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 246 auto II = std::next(CI->getIterator()); 247 248 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 249 if (BCI) 250 ++II; 251 252 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 253 assert(RI && "`musttail` call must be followed by `ret` instruction"); 254 255 Instruction *TI = SplitBB->getTerminator(); 256 Value *V = NewCI; 257 if (BCI) 258 V = cloneInstForMustTail(BCI, TI, V); 259 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 260 261 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 262 // that prevents doing this now. 263 } 264 265 /// For each (predecessor, conditions from predecessors) pair, it will split the 266 /// basic block containing the call site, hook it up to the predecessor and 267 /// replace the call instruction with new call instructions, which contain 268 /// constraints based on the conditions from their predecessors. 269 /// For example, in the IR below with an OR condition, the call-site can 270 /// be split. In this case, Preds for Tail is [(Header, a == null), 271 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 272 /// CallInst1, which has constraints based on the conditions from Head and 273 /// CallInst2, which has constraints based on the conditions coming from TBB. 274 /// 275 /// From : 276 /// 277 /// Header: 278 /// %c = icmp eq i32* %a, null 279 /// br i1 %c %Tail, %TBB 280 /// TBB: 281 /// %c2 = icmp eq i32* %b, null 282 /// br i1 %c %Tail, %End 283 /// Tail: 284 /// %ca = call i1 @callee (i32* %a, i32* %b) 285 /// 286 /// to : 287 /// 288 /// Header: // PredBB1 is Header 289 /// %c = icmp eq i32* %a, null 290 /// br i1 %c %Tail-split1, %TBB 291 /// TBB: // PredBB2 is TBB 292 /// %c2 = icmp eq i32* %b, null 293 /// br i1 %c %Tail-split2, %End 294 /// Tail-split1: 295 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 296 /// br %Tail 297 /// Tail-split2: 298 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 299 /// br %Tail 300 /// Tail: 301 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 302 /// 303 /// Note that in case any arguments at the call-site are constrained by its 304 /// predecessors, new call-sites with more constrained arguments will be 305 /// created in createCallSitesOnPredicatedArgument(). 306 static void splitCallSite( 307 CallSite CS, 308 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 309 DomTreeUpdater &DTU) { 310 Instruction *Instr = CS.getInstruction(); 311 BasicBlock *TailBB = Instr->getParent(); 312 bool IsMustTailCall = CS.isMustTailCall(); 313 314 PHINode *CallPN = nullptr; 315 316 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 317 // split blocks will be terminated right after that so there're no users for 318 // this phi in a `TailBB`. 319 if (!IsMustTailCall && !Instr->use_empty()) { 320 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 321 CallPN->setDebugLoc(Instr->getDebugLoc()); 322 } 323 324 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 325 326 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 327 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 328 // here. 329 ValueToValueMapTy ValueToValueMaps[2]; 330 for (unsigned i = 0; i < Preds.size(); i++) { 331 BasicBlock *PredBB = Preds[i].first; 332 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 333 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i], 334 DTU); 335 assert(SplitBlock && "Unexpected new basic block split."); 336 337 Instruction *NewCI = 338 &*std::prev(SplitBlock->getTerminator()->getIterator()); 339 CallSite NewCS(NewCI); 340 addConditions(NewCS, Preds[i].second); 341 342 // Handle PHIs used as arguments in the call-site. 343 for (PHINode &PN : TailBB->phis()) { 344 unsigned ArgNo = 0; 345 for (auto &CI : CS.args()) { 346 if (&*CI == &PN) { 347 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 348 } 349 ++ArgNo; 350 } 351 } 352 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 353 << "\n"); 354 if (CallPN) 355 CallPN->addIncoming(NewCI, SplitBlock); 356 357 // Clone and place bitcast and return instructions before `TI` 358 if (IsMustTailCall) 359 copyMustTailReturn(SplitBlock, Instr, NewCI); 360 } 361 362 NumCallSiteSplit++; 363 364 // FIXME: remove TI in `copyMustTailReturn` 365 if (IsMustTailCall) { 366 // Remove superfluous `br` terminators from the end of the Split blocks 367 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 368 // predecessors. Therefore we must get complete list of Splits before 369 // attempting removal. 370 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 371 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 372 for (unsigned i = 0; i < Splits.size(); i++) { 373 Splits[i]->getTerminator()->eraseFromParent(); 374 DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}}); 375 } 376 377 // Erase the tail block once done with musttail patching 378 DTU.deleteBB(TailBB); 379 return; 380 } 381 382 auto *OriginalBegin = &*TailBB->begin(); 383 // Replace users of the original call with a PHI mering call-sites split. 384 if (CallPN) { 385 CallPN->insertBefore(OriginalBegin); 386 Instr->replaceAllUsesWith(CallPN); 387 } 388 389 // Remove instructions moved to split blocks from TailBB, from the duplicated 390 // call instruction to the beginning of the basic block. If an instruction 391 // has any uses, add a new PHI node to combine the values coming from the 392 // split blocks. The new PHI nodes are placed before the first original 393 // instruction, so we do not end up deleting them. By using reverse-order, we 394 // do not introduce unnecessary PHI nodes for def-use chains from the call 395 // instruction to the beginning of the block. 396 auto I = Instr->getReverseIterator(); 397 while (I != TailBB->rend()) { 398 Instruction *CurrentI = &*I++; 399 if (!CurrentI->use_empty()) { 400 // If an existing PHI has users after the call, there is no need to create 401 // a new one. 402 if (isa<PHINode>(CurrentI)) 403 continue; 404 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 405 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 406 for (auto &Mapping : ValueToValueMaps) 407 NewPN->addIncoming(Mapping[CurrentI], 408 cast<Instruction>(Mapping[CurrentI])->getParent()); 409 NewPN->insertBefore(&*TailBB->begin()); 410 CurrentI->replaceAllUsesWith(NewPN); 411 } 412 CurrentI->eraseFromParent(); 413 // We are done once we handled the first original instruction in TailBB. 414 if (CurrentI == OriginalBegin) 415 break; 416 } 417 } 418 419 // Return true if the call-site has an argument which is a PHI with only 420 // constant incoming values. 421 static bool isPredicatedOnPHI(CallSite CS) { 422 Instruction *Instr = CS.getInstruction(); 423 BasicBlock *Parent = Instr->getParent(); 424 if (Instr != Parent->getFirstNonPHIOrDbg()) 425 return false; 426 427 for (auto &BI : *Parent) { 428 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 429 for (auto &I : CS.args()) 430 if (&*I == PN) { 431 assert(PN->getNumIncomingValues() == 2 && 432 "Unexpected number of incoming values"); 433 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 434 return false; 435 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 436 continue; 437 if (isa<Constant>(PN->getIncomingValue(0)) && 438 isa<Constant>(PN->getIncomingValue(1))) 439 return true; 440 } 441 } 442 break; 443 } 444 return false; 445 } 446 447 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 448 449 // Check if any of the arguments in CS are predicated on a PHI node and return 450 // the set of predecessors we should use for splitting. 451 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) { 452 if (!isPredicatedOnPHI(CS)) 453 return {}; 454 455 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 456 return {{Preds[0], {}}, {Preds[1], {}}}; 457 } 458 459 // Checks if any of the arguments in CS are predicated in a predecessor and 460 // returns a list of predecessors with the conditions that hold on their edges 461 // to CS. 462 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS, 463 DomTreeUpdater &DTU) { 464 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 465 if (Preds[0] == Preds[1]) 466 return {}; 467 468 // We can stop recording conditions once we reached the immediate dominator 469 // for the block containing the call site. Conditions in predecessors of the 470 // that node will be the same for all paths to the call site and splitting 471 // is not beneficial. 472 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 473 auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent()); 474 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 475 476 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 477 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 478 ConditionsTy Conditions; 479 // Record condition on edge BB(CS) <- Pred 480 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 481 // Record conditions following Pred's single predecessors. 482 recordConditions(CS, Pred, Conditions, StopAt); 483 PredsCS.push_back({Pred, Conditions}); 484 } 485 486 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 487 return P.second.empty(); 488 })) 489 return {}; 490 491 return PredsCS; 492 } 493 494 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI, 495 DomTreeUpdater &DTU) { 496 // Check if we can split the call site. 497 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 498 return false; 499 500 auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU); 501 if (PredsWithConds.empty()) 502 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS); 503 if (PredsWithConds.empty()) 504 return false; 505 506 splitCallSite(CS, PredsWithConds, DTU); 507 return true; 508 } 509 510 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 511 TargetTransformInfo &TTI, DominatorTree &DT) { 512 513 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 514 bool Changed = false; 515 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 516 BasicBlock &BB = *BI++; 517 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 518 auto IE = BB.getTerminator()->getIterator(); 519 // Iterate until we reach the terminator instruction. tryToSplitCallSite 520 // can replace BB's terminator in case BB is a successor of itself. In that 521 // case, IE will be invalidated and we also have to check the current 522 // terminator. 523 while (II != IE && &*II != BB.getTerminator()) { 524 Instruction *I = &*II++; 525 CallSite CS(cast<Value>(I)); 526 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 527 continue; 528 529 Function *Callee = CS.getCalledFunction(); 530 if (!Callee || Callee->isDeclaration()) 531 continue; 532 533 // Successful musttail call-site splits result in erased CI and erased BB. 534 // Check if such path is possible before attempting the splitting. 535 bool IsMustTail = CS.isMustTailCall(); 536 537 Changed |= tryToSplitCallSite(CS, TTI, DTU); 538 539 // There're no interesting instructions after this. The call site 540 // itself might have been erased on splitting. 541 if (IsMustTail) 542 break; 543 } 544 } 545 return Changed; 546 } 547 548 namespace { 549 struct CallSiteSplittingLegacyPass : public FunctionPass { 550 static char ID; 551 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 552 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 553 } 554 555 void getAnalysisUsage(AnalysisUsage &AU) const override { 556 AU.addRequired<TargetLibraryInfoWrapperPass>(); 557 AU.addRequired<TargetTransformInfoWrapperPass>(); 558 AU.addRequired<DominatorTreeWrapperPass>(); 559 AU.addPreserved<DominatorTreeWrapperPass>(); 560 FunctionPass::getAnalysisUsage(AU); 561 } 562 563 bool runOnFunction(Function &F) override { 564 if (skipFunction(F)) 565 return false; 566 567 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 568 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 569 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 570 return doCallSiteSplitting(F, TLI, TTI, DT); 571 } 572 }; 573 } // namespace 574 575 char CallSiteSplittingLegacyPass::ID = 0; 576 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 577 "Call-site splitting", false, false) 578 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 579 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 580 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 581 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 582 "Call-site splitting", false, false) 583 FunctionPass *llvm::createCallSiteSplittingPass() { 584 return new CallSiteSplittingLegacyPass(); 585 } 586 587 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 588 FunctionAnalysisManager &AM) { 589 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 590 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 591 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 592 593 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 594 return PreservedAnalyses::all(); 595 PreservedAnalyses PA; 596 PA.preserve<DominatorTreeAnalysis>(); 597 return PA; 598 } 599