1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that tries to split a call-site to pass 10 // more constrained arguments if its argument is predicated in the control flow 11 // so that we can expose better context to the later passes (e.g, inliner, jump 12 // threading, or IPA-CP based function cloning, etc.). 13 // As of now we support two cases : 14 // 15 // 1) Try to a split call-site with constrained arguments, if any constraints 16 // on any argument can be found by following the single predecessors of the 17 // all site's predecessors. Currently this pass only handles call-sites with 2 18 // predecessors. For example, in the code below, we try to split the call-site 19 // since we can predicate the argument(ptr) based on the OR condition. 20 // 21 // Split from : 22 // if (!ptr || c) 23 // callee(ptr); 24 // to : 25 // if (!ptr) 26 // callee(null) // set the known constant value 27 // else if (c) 28 // callee(nonnull ptr) // set non-null attribute in the argument 29 // 30 // 2) We can also split a call-site based on constant incoming values of a PHI 31 // For example, 32 // from : 33 // Header: 34 // %c = icmp eq i32 %i1, %i2 35 // br i1 %c, label %Tail, label %TBB 36 // TBB: 37 // br label Tail% 38 // Tail: 39 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 40 // call void @bar(i32 %p) 41 // to 42 // Header: 43 // %c = icmp eq i32 %i1, %i2 44 // br i1 %c, label %Tail-split0, label %TBB 45 // TBB: 46 // br label %Tail-split1 47 // Tail-split0: 48 // call void @bar(i32 0) 49 // br label %Tail 50 // Tail-split1: 51 // call void @bar(i32 1) 52 // br label %Tail 53 // Tail: 54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 55 // 56 //===----------------------------------------------------------------------===// 57 58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 70 using namespace llvm; 71 using namespace PatternMatch; 72 73 #define DEBUG_TYPE "callsite-splitting" 74 75 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 76 77 /// Only allow instructions before a call, if their CodeSize cost is below 78 /// DuplicationThreshold. Those instructions need to be duplicated in all 79 /// split blocks. 80 static cl::opt<unsigned> 81 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 82 cl::desc("Only allow instructions before a call, if " 83 "their cost is below DuplicationThreshold"), 84 cl::init(5)); 85 86 static void addNonNullAttribute(CallSite CS, Value *Op) { 87 unsigned ArgNo = 0; 88 for (auto &I : CS.args()) { 89 if (&*I == Op) 90 CS.addParamAttr(ArgNo, Attribute::NonNull); 91 ++ArgNo; 92 } 93 } 94 95 static void setConstantInArgument(CallSite CS, Value *Op, 96 Constant *ConstValue) { 97 unsigned ArgNo = 0; 98 for (auto &I : CS.args()) { 99 if (&*I == Op) { 100 // It is possible we have already added the non-null attribute to the 101 // parameter by using an earlier constraining condition. 102 CS.removeParamAttr(ArgNo, Attribute::NonNull); 103 CS.setArgument(ArgNo, ConstValue); 104 } 105 ++ArgNo; 106 } 107 } 108 109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 110 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 111 Value *Op0 = Cmp->getOperand(0); 112 unsigned ArgNo = 0; 113 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 114 ++I, ++ArgNo) { 115 // Don't consider constant or arguments that are already known non-null. 116 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 117 continue; 118 119 if (*I == Op0) 120 return true; 121 } 122 return false; 123 } 124 125 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 126 typedef SmallVector<ConditionTy, 2> ConditionsTy; 127 128 /// If From has a conditional jump to To, add the condition to Conditions, 129 /// if it is relevant to any argument at CS. 130 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 131 ConditionsTy &Conditions) { 132 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 133 if (!BI || !BI->isConditional()) 134 return; 135 136 CmpInst::Predicate Pred; 137 Value *Cond = BI->getCondition(); 138 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 139 return; 140 141 ICmpInst *Cmp = cast<ICmpInst>(Cond); 142 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 143 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 144 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 145 ? Pred 146 : Cmp->getInversePredicate()}); 147 } 148 149 /// Record ICmp conditions relevant to any argument in CS following Pred's 150 /// single predecessors. If there are conflicting conditions along a path, like 151 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 152 /// an edge to StopAt. 153 static void recordConditions(CallSite CS, BasicBlock *Pred, 154 ConditionsTy &Conditions, BasicBlock *StopAt) { 155 BasicBlock *From = Pred; 156 BasicBlock *To = Pred; 157 SmallPtrSet<BasicBlock *, 4> Visited; 158 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 159 (From = From->getSinglePredecessor())) { 160 recordCondition(CS, From, To, Conditions); 161 Visited.insert(From); 162 To = From; 163 } 164 } 165 166 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 167 for (auto &Cond : Conditions) { 168 Value *Arg = Cond.first->getOperand(0); 169 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 170 if (Cond.second == ICmpInst::ICMP_EQ) 171 setConstantInArgument(CS, Arg, ConstVal); 172 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 173 assert(Cond.second == ICmpInst::ICMP_NE); 174 addNonNullAttribute(CS, Arg); 175 } 176 } 177 } 178 179 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 180 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 181 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 182 return Preds; 183 } 184 185 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 186 if (CS.isConvergent() || CS.cannotDuplicate()) 187 return false; 188 189 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 190 // without too much effort. 191 Instruction *Instr = CS.getInstruction(); 192 if (!isa<CallInst>(Instr)) 193 return false; 194 195 BasicBlock *CallSiteBB = Instr->getParent(); 196 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 197 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 198 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 199 isa<IndirectBrInst>(Preds[1]->getTerminator())) 200 return false; 201 202 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 203 // BasicBlock::isEHPad as well. 204 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 205 return false; 206 207 // Allow splitting a call-site only when the CodeSize cost of the 208 // instructions before the call is less then DuplicationThreshold. The 209 // instructions before the call will be duplicated in the split blocks and 210 // corresponding uses will be updated. 211 unsigned Cost = 0; 212 for (auto &InstBeforeCall : 213 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 214 Cost += TTI.getInstructionCost(&InstBeforeCall, 215 TargetTransformInfo::TCK_CodeSize); 216 if (Cost >= DuplicationThreshold) 217 return false; 218 } 219 220 return true; 221 } 222 223 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 224 Value *V) { 225 Instruction *Copy = I->clone(); 226 Copy->setName(I->getName()); 227 Copy->insertBefore(Before); 228 if (V) 229 Copy->setOperand(0, V); 230 return Copy; 231 } 232 233 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 234 /// link it up to `NewCI` value instead: 235 /// 236 /// * (optional) `bitcast NewCI to ...` 237 /// * `ret bitcast or NewCI` 238 /// 239 /// Insert this sequence right before `SplitBB`'s terminator, which will be 240 /// cleaned up later in `splitCallSite` below. 241 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 242 Instruction *NewCI) { 243 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 244 auto II = std::next(CI->getIterator()); 245 246 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 247 if (BCI) 248 ++II; 249 250 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 251 assert(RI && "`musttail` call must be followed by `ret` instruction"); 252 253 Instruction *TI = SplitBB->getTerminator(); 254 Value *V = NewCI; 255 if (BCI) 256 V = cloneInstForMustTail(BCI, TI, V); 257 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 258 259 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 260 // that prevents doing this now. 261 } 262 263 /// For each (predecessor, conditions from predecessors) pair, it will split the 264 /// basic block containing the call site, hook it up to the predecessor and 265 /// replace the call instruction with new call instructions, which contain 266 /// constraints based on the conditions from their predecessors. 267 /// For example, in the IR below with an OR condition, the call-site can 268 /// be split. In this case, Preds for Tail is [(Header, a == null), 269 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 270 /// CallInst1, which has constraints based on the conditions from Head and 271 /// CallInst2, which has constraints based on the conditions coming from TBB. 272 /// 273 /// From : 274 /// 275 /// Header: 276 /// %c = icmp eq i32* %a, null 277 /// br i1 %c %Tail, %TBB 278 /// TBB: 279 /// %c2 = icmp eq i32* %b, null 280 /// br i1 %c %Tail, %End 281 /// Tail: 282 /// %ca = call i1 @callee (i32* %a, i32* %b) 283 /// 284 /// to : 285 /// 286 /// Header: // PredBB1 is Header 287 /// %c = icmp eq i32* %a, null 288 /// br i1 %c %Tail-split1, %TBB 289 /// TBB: // PredBB2 is TBB 290 /// %c2 = icmp eq i32* %b, null 291 /// br i1 %c %Tail-split2, %End 292 /// Tail-split1: 293 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 294 /// br %Tail 295 /// Tail-split2: 296 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 297 /// br %Tail 298 /// Tail: 299 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 300 /// 301 /// Note that in case any arguments at the call-site are constrained by its 302 /// predecessors, new call-sites with more constrained arguments will be 303 /// created in createCallSitesOnPredicatedArgument(). 304 static void splitCallSite( 305 CallSite CS, 306 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 307 DomTreeUpdater &DTU) { 308 Instruction *Instr = CS.getInstruction(); 309 BasicBlock *TailBB = Instr->getParent(); 310 bool IsMustTailCall = CS.isMustTailCall(); 311 312 PHINode *CallPN = nullptr; 313 314 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 315 // split blocks will be terminated right after that so there're no users for 316 // this phi in a `TailBB`. 317 if (!IsMustTailCall && !Instr->use_empty()) { 318 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 319 CallPN->setDebugLoc(Instr->getDebugLoc()); 320 } 321 322 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 323 324 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 325 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 326 // here. 327 ValueToValueMapTy ValueToValueMaps[2]; 328 for (unsigned i = 0; i < Preds.size(); i++) { 329 BasicBlock *PredBB = Preds[i].first; 330 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 331 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i], 332 DTU); 333 assert(SplitBlock && "Unexpected new basic block split."); 334 335 Instruction *NewCI = 336 &*std::prev(SplitBlock->getTerminator()->getIterator()); 337 CallSite NewCS(NewCI); 338 addConditions(NewCS, Preds[i].second); 339 340 // Handle PHIs used as arguments in the call-site. 341 for (PHINode &PN : TailBB->phis()) { 342 unsigned ArgNo = 0; 343 for (auto &CI : CS.args()) { 344 if (&*CI == &PN) { 345 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 346 } 347 ++ArgNo; 348 } 349 } 350 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 351 << "\n"); 352 if (CallPN) 353 CallPN->addIncoming(NewCI, SplitBlock); 354 355 // Clone and place bitcast and return instructions before `TI` 356 if (IsMustTailCall) 357 copyMustTailReturn(SplitBlock, Instr, NewCI); 358 } 359 360 NumCallSiteSplit++; 361 362 // FIXME: remove TI in `copyMustTailReturn` 363 if (IsMustTailCall) { 364 // Remove superfluous `br` terminators from the end of the Split blocks 365 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 366 // predecessors. Therefore we must get complete list of Splits before 367 // attempting removal. 368 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 369 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 370 for (unsigned i = 0; i < Splits.size(); i++) { 371 Splits[i]->getTerminator()->eraseFromParent(); 372 DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}}); 373 } 374 375 // Erase the tail block once done with musttail patching 376 DTU.deleteBB(TailBB); 377 return; 378 } 379 380 auto *OriginalBegin = &*TailBB->begin(); 381 // Replace users of the original call with a PHI mering call-sites split. 382 if (CallPN) { 383 CallPN->insertBefore(OriginalBegin); 384 Instr->replaceAllUsesWith(CallPN); 385 } 386 387 // Remove instructions moved to split blocks from TailBB, from the duplicated 388 // call instruction to the beginning of the basic block. If an instruction 389 // has any uses, add a new PHI node to combine the values coming from the 390 // split blocks. The new PHI nodes are placed before the first original 391 // instruction, so we do not end up deleting them. By using reverse-order, we 392 // do not introduce unnecessary PHI nodes for def-use chains from the call 393 // instruction to the beginning of the block. 394 auto I = Instr->getReverseIterator(); 395 while (I != TailBB->rend()) { 396 Instruction *CurrentI = &*I++; 397 if (!CurrentI->use_empty()) { 398 // If an existing PHI has users after the call, there is no need to create 399 // a new one. 400 if (isa<PHINode>(CurrentI)) 401 continue; 402 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 403 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 404 for (auto &Mapping : ValueToValueMaps) 405 NewPN->addIncoming(Mapping[CurrentI], 406 cast<Instruction>(Mapping[CurrentI])->getParent()); 407 NewPN->insertBefore(&*TailBB->begin()); 408 CurrentI->replaceAllUsesWith(NewPN); 409 } 410 CurrentI->eraseFromParent(); 411 // We are done once we handled the first original instruction in TailBB. 412 if (CurrentI == OriginalBegin) 413 break; 414 } 415 } 416 417 // Return true if the call-site has an argument which is a PHI with only 418 // constant incoming values. 419 static bool isPredicatedOnPHI(CallSite CS) { 420 Instruction *Instr = CS.getInstruction(); 421 BasicBlock *Parent = Instr->getParent(); 422 if (Instr != Parent->getFirstNonPHIOrDbg()) 423 return false; 424 425 for (auto &BI : *Parent) { 426 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 427 for (auto &I : CS.args()) 428 if (&*I == PN) { 429 assert(PN->getNumIncomingValues() == 2 && 430 "Unexpected number of incoming values"); 431 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 432 return false; 433 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 434 continue; 435 if (isa<Constant>(PN->getIncomingValue(0)) && 436 isa<Constant>(PN->getIncomingValue(1))) 437 return true; 438 } 439 } 440 break; 441 } 442 return false; 443 } 444 445 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 446 447 // Check if any of the arguments in CS are predicated on a PHI node and return 448 // the set of predecessors we should use for splitting. 449 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) { 450 if (!isPredicatedOnPHI(CS)) 451 return {}; 452 453 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 454 return {{Preds[0], {}}, {Preds[1], {}}}; 455 } 456 457 // Checks if any of the arguments in CS are predicated in a predecessor and 458 // returns a list of predecessors with the conditions that hold on their edges 459 // to CS. 460 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS, 461 DomTreeUpdater &DTU) { 462 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 463 if (Preds[0] == Preds[1]) 464 return {}; 465 466 // We can stop recording conditions once we reached the immediate dominator 467 // for the block containing the call site. Conditions in predecessors of the 468 // that node will be the same for all paths to the call site and splitting 469 // is not beneficial. 470 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 471 auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent()); 472 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 473 474 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 475 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 476 ConditionsTy Conditions; 477 // Record condition on edge BB(CS) <- Pred 478 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 479 // Record conditions following Pred's single predecessors. 480 recordConditions(CS, Pred, Conditions, StopAt); 481 PredsCS.push_back({Pred, Conditions}); 482 } 483 484 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 485 return P.second.empty(); 486 })) 487 return {}; 488 489 return PredsCS; 490 } 491 492 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI, 493 DomTreeUpdater &DTU) { 494 // Check if we can split the call site. 495 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 496 return false; 497 498 auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU); 499 if (PredsWithConds.empty()) 500 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS); 501 if (PredsWithConds.empty()) 502 return false; 503 504 splitCallSite(CS, PredsWithConds, DTU); 505 return true; 506 } 507 508 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 509 TargetTransformInfo &TTI, DominatorTree &DT) { 510 511 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 512 bool Changed = false; 513 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 514 BasicBlock &BB = *BI++; 515 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 516 auto IE = BB.getTerminator()->getIterator(); 517 // Iterate until we reach the terminator instruction. tryToSplitCallSite 518 // can replace BB's terminator in case BB is a successor of itself. In that 519 // case, IE will be invalidated and we also have to check the current 520 // terminator. 521 while (II != IE && &*II != BB.getTerminator()) { 522 Instruction *I = &*II++; 523 CallSite CS(cast<Value>(I)); 524 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 525 continue; 526 527 Function *Callee = CS.getCalledFunction(); 528 if (!Callee || Callee->isDeclaration()) 529 continue; 530 531 // Successful musttail call-site splits result in erased CI and erased BB. 532 // Check if such path is possible before attempting the splitting. 533 bool IsMustTail = CS.isMustTailCall(); 534 535 Changed |= tryToSplitCallSite(CS, TTI, DTU); 536 537 // There're no interesting instructions after this. The call site 538 // itself might have been erased on splitting. 539 if (IsMustTail) 540 break; 541 } 542 } 543 return Changed; 544 } 545 546 namespace { 547 struct CallSiteSplittingLegacyPass : public FunctionPass { 548 static char ID; 549 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 550 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 551 } 552 553 void getAnalysisUsage(AnalysisUsage &AU) const override { 554 AU.addRequired<TargetLibraryInfoWrapperPass>(); 555 AU.addRequired<TargetTransformInfoWrapperPass>(); 556 AU.addRequired<DominatorTreeWrapperPass>(); 557 AU.addPreserved<DominatorTreeWrapperPass>(); 558 FunctionPass::getAnalysisUsage(AU); 559 } 560 561 bool runOnFunction(Function &F) override { 562 if (skipFunction(F)) 563 return false; 564 565 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 566 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 567 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 568 return doCallSiteSplitting(F, TLI, TTI, DT); 569 } 570 }; 571 } // namespace 572 573 char CallSiteSplittingLegacyPass::ID = 0; 574 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 575 "Call-site splitting", false, false) 576 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 577 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 578 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 579 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 580 "Call-site splitting", false, false) 581 FunctionPass *llvm::createCallSiteSplittingPass() { 582 return new CallSiteSplittingLegacyPass(); 583 } 584 585 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 586 FunctionAnalysisManager &AM) { 587 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 588 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 589 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 590 591 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 592 return PreservedAnalyses::all(); 593 PreservedAnalyses PA; 594 PA.preserve<DominatorTreeAnalysis>(); 595 return PA; 596 } 597