1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that tries to split a call-site to pass 10 // more constrained arguments if its argument is predicated in the control flow 11 // so that we can expose better context to the later passes (e.g, inliner, jump 12 // threading, or IPA-CP based function cloning, etc.). 13 // As of now we support two cases : 14 // 15 // 1) Try to a split call-site with constrained arguments, if any constraints 16 // on any argument can be found by following the single predecessors of the 17 // all site's predecessors. Currently this pass only handles call-sites with 2 18 // predecessors. For example, in the code below, we try to split the call-site 19 // since we can predicate the argument(ptr) based on the OR condition. 20 // 21 // Split from : 22 // if (!ptr || c) 23 // callee(ptr); 24 // to : 25 // if (!ptr) 26 // callee(null) // set the known constant value 27 // else if (c) 28 // callee(nonnull ptr) // set non-null attribute in the argument 29 // 30 // 2) We can also split a call-site based on constant incoming values of a PHI 31 // For example, 32 // from : 33 // Header: 34 // %c = icmp eq i32 %i1, %i2 35 // br i1 %c, label %Tail, label %TBB 36 // TBB: 37 // br label Tail% 38 // Tail: 39 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 40 // call void @bar(i32 %p) 41 // to 42 // Header: 43 // %c = icmp eq i32 %i1, %i2 44 // br i1 %c, label %Tail-split0, label %TBB 45 // TBB: 46 // br label %Tail-split1 47 // Tail-split0: 48 // call void @bar(i32 0) 49 // br label %Tail 50 // Tail-split1: 51 // call void @bar(i32 1) 52 // br label %Tail 53 // Tail: 54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 55 // 56 //===----------------------------------------------------------------------===// 57 58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/DomTreeUpdater.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 70 using namespace llvm; 71 using namespace PatternMatch; 72 73 #define DEBUG_TYPE "callsite-splitting" 74 75 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 76 77 /// Only allow instructions before a call, if their CodeSize cost is below 78 /// DuplicationThreshold. Those instructions need to be duplicated in all 79 /// split blocks. 80 static cl::opt<unsigned> 81 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 82 cl::desc("Only allow instructions before a call, if " 83 "their cost is below DuplicationThreshold"), 84 cl::init(5)); 85 86 static void addNonNullAttribute(CallBase &CB, Value *Op) { 87 unsigned ArgNo = 0; 88 for (auto &I : CB.args()) { 89 if (&*I == Op) 90 CB.addParamAttr(ArgNo, Attribute::NonNull); 91 ++ArgNo; 92 } 93 } 94 95 static void setConstantInArgument(CallBase &CB, Value *Op, 96 Constant *ConstValue) { 97 unsigned ArgNo = 0; 98 for (auto &I : CB.args()) { 99 if (&*I == Op) { 100 // It is possible we have already added the non-null attribute to the 101 // parameter by using an earlier constraining condition. 102 CB.removeParamAttr(ArgNo, Attribute::NonNull); 103 CB.setArgOperand(ArgNo, ConstValue); 104 } 105 ++ArgNo; 106 } 107 } 108 109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) { 110 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 111 Value *Op0 = Cmp->getOperand(0); 112 unsigned ArgNo = 0; 113 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) { 114 // Don't consider constant or arguments that are already known non-null. 115 if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull)) 116 continue; 117 118 if (*I == Op0) 119 return true; 120 } 121 return false; 122 } 123 124 using ConditionTy = std::pair<ICmpInst *, unsigned>; 125 using ConditionsTy = SmallVector<ConditionTy, 2>; 126 127 /// If From has a conditional jump to To, add the condition to Conditions, 128 /// if it is relevant to any argument at CB. 129 static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To, 130 ConditionsTy &Conditions) { 131 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 132 if (!BI || !BI->isConditional()) 133 return; 134 135 CmpInst::Predicate Pred; 136 Value *Cond = BI->getCondition(); 137 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 138 return; 139 140 ICmpInst *Cmp = cast<ICmpInst>(Cond); 141 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 142 if (isCondRelevantToAnyCallArgument(Cmp, CB)) 143 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 144 ? Pred 145 : Cmp->getInversePredicate()}); 146 } 147 148 /// Record ICmp conditions relevant to any argument in CB following Pred's 149 /// single predecessors. If there are conflicting conditions along a path, like 150 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 151 /// an edge to StopAt. 152 static void recordConditions(CallBase &CB, BasicBlock *Pred, 153 ConditionsTy &Conditions, BasicBlock *StopAt) { 154 BasicBlock *From = Pred; 155 BasicBlock *To = Pred; 156 SmallPtrSet<BasicBlock *, 4> Visited; 157 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 158 (From = From->getSinglePredecessor())) { 159 recordCondition(CB, From, To, Conditions); 160 Visited.insert(From); 161 To = From; 162 } 163 } 164 165 static void addConditions(CallBase &CB, const ConditionsTy &Conditions) { 166 for (const auto &Cond : Conditions) { 167 Value *Arg = Cond.first->getOperand(0); 168 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 169 if (Cond.second == ICmpInst::ICMP_EQ) 170 setConstantInArgument(CB, Arg, ConstVal); 171 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 172 assert(Cond.second == ICmpInst::ICMP_NE); 173 addNonNullAttribute(CB, Arg); 174 } 175 } 176 } 177 178 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 179 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 180 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 181 return Preds; 182 } 183 184 static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) { 185 if (CB.isConvergent() || CB.cannotDuplicate()) 186 return false; 187 188 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 189 // without too much effort. 190 if (!isa<CallInst>(CB)) 191 return false; 192 193 BasicBlock *CallSiteBB = CB.getParent(); 194 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 195 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 196 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 197 isa<IndirectBrInst>(Preds[1]->getTerminator())) 198 return false; 199 200 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 201 // BasicBlock::isEHPad as well. 202 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 203 return false; 204 205 // Allow splitting a call-site only when the CodeSize cost of the 206 // instructions before the call is less then DuplicationThreshold. The 207 // instructions before the call will be duplicated in the split blocks and 208 // corresponding uses will be updated. 209 InstructionCost Cost = 0; 210 for (auto &InstBeforeCall : 211 llvm::make_range(CallSiteBB->begin(), CB.getIterator())) { 212 Cost += TTI.getInstructionCost(&InstBeforeCall, 213 TargetTransformInfo::TCK_CodeSize); 214 if (Cost >= DuplicationThreshold) 215 return false; 216 } 217 218 return true; 219 } 220 221 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 222 Value *V) { 223 Instruction *Copy = I->clone(); 224 Copy->setName(I->getName()); 225 Copy->insertBefore(Before); 226 if (V) 227 Copy->setOperand(0, V); 228 return Copy; 229 } 230 231 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 232 /// link it up to `NewCI` value instead: 233 /// 234 /// * (optional) `bitcast NewCI to ...` 235 /// * `ret bitcast or NewCI` 236 /// 237 /// Insert this sequence right before `SplitBB`'s terminator, which will be 238 /// cleaned up later in `splitCallSite` below. 239 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 240 Instruction *NewCI) { 241 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 242 auto II = std::next(CI->getIterator()); 243 244 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 245 if (BCI) 246 ++II; 247 248 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 249 assert(RI && "`musttail` call must be followed by `ret` instruction"); 250 251 Instruction *TI = SplitBB->getTerminator(); 252 Value *V = NewCI; 253 if (BCI) 254 V = cloneInstForMustTail(BCI, TI, V); 255 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 256 257 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 258 // that prevents doing this now. 259 } 260 261 /// For each (predecessor, conditions from predecessors) pair, it will split the 262 /// basic block containing the call site, hook it up to the predecessor and 263 /// replace the call instruction with new call instructions, which contain 264 /// constraints based on the conditions from their predecessors. 265 /// For example, in the IR below with an OR condition, the call-site can 266 /// be split. In this case, Preds for Tail is [(Header, a == null), 267 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 268 /// CallInst1, which has constraints based on the conditions from Head and 269 /// CallInst2, which has constraints based on the conditions coming from TBB. 270 /// 271 /// From : 272 /// 273 /// Header: 274 /// %c = icmp eq i32* %a, null 275 /// br i1 %c %Tail, %TBB 276 /// TBB: 277 /// %c2 = icmp eq i32* %b, null 278 /// br i1 %c %Tail, %End 279 /// Tail: 280 /// %ca = call i1 @callee (i32* %a, i32* %b) 281 /// 282 /// to : 283 /// 284 /// Header: // PredBB1 is Header 285 /// %c = icmp eq i32* %a, null 286 /// br i1 %c %Tail-split1, %TBB 287 /// TBB: // PredBB2 is TBB 288 /// %c2 = icmp eq i32* %b, null 289 /// br i1 %c %Tail-split2, %End 290 /// Tail-split1: 291 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 292 /// br %Tail 293 /// Tail-split2: 294 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 295 /// br %Tail 296 /// Tail: 297 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 298 /// 299 /// Note that in case any arguments at the call-site are constrained by its 300 /// predecessors, new call-sites with more constrained arguments will be 301 /// created in createCallSitesOnPredicatedArgument(). 302 static void splitCallSite(CallBase &CB, 303 ArrayRef<std::pair<BasicBlock *, ConditionsTy>> Preds, 304 DomTreeUpdater &DTU) { 305 BasicBlock *TailBB = CB.getParent(); 306 bool IsMustTailCall = CB.isMustTailCall(); 307 308 PHINode *CallPN = nullptr; 309 310 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 311 // split blocks will be terminated right after that so there're no users for 312 // this phi in a `TailBB`. 313 if (!IsMustTailCall && !CB.use_empty()) { 314 CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call"); 315 CallPN->setDebugLoc(CB.getDebugLoc()); 316 } 317 318 LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n"); 319 320 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 321 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 322 // here. 323 ValueToValueMapTy ValueToValueMaps[2]; 324 for (unsigned i = 0; i < Preds.size(); i++) { 325 BasicBlock *PredBB = Preds[i].first; 326 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 327 TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i], 328 DTU); 329 assert(SplitBlock && "Unexpected new basic block split."); 330 331 auto *NewCI = 332 cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator())); 333 addConditions(*NewCI, Preds[i].second); 334 335 // Handle PHIs used as arguments in the call-site. 336 for (PHINode &PN : TailBB->phis()) { 337 unsigned ArgNo = 0; 338 for (auto &CI : CB.args()) { 339 if (&*CI == &PN) { 340 NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 341 } 342 ++ArgNo; 343 } 344 } 345 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 346 << "\n"); 347 if (CallPN) 348 CallPN->addIncoming(NewCI, SplitBlock); 349 350 // Clone and place bitcast and return instructions before `TI` 351 if (IsMustTailCall) 352 copyMustTailReturn(SplitBlock, &CB, NewCI); 353 } 354 355 NumCallSiteSplit++; 356 357 // FIXME: remove TI in `copyMustTailReturn` 358 if (IsMustTailCall) { 359 // Remove superfluous `br` terminators from the end of the Split blocks 360 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 361 // predecessors. Therefore we must get complete list of Splits before 362 // attempting removal. 363 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 364 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 365 for (BasicBlock *BB : Splits) { 366 BB->getTerminator()->eraseFromParent(); 367 DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, TailBB}}); 368 } 369 370 // Erase the tail block once done with musttail patching 371 DTU.deleteBB(TailBB); 372 return; 373 } 374 375 BasicBlock::iterator OriginalBegin = TailBB->begin(); 376 // Replace users of the original call with a PHI mering call-sites split. 377 if (CallPN) { 378 CallPN->insertBefore(*TailBB, OriginalBegin); 379 CB.replaceAllUsesWith(CallPN); 380 } 381 382 // Remove instructions moved to split blocks from TailBB, from the duplicated 383 // call instruction to the beginning of the basic block. If an instruction 384 // has any uses, add a new PHI node to combine the values coming from the 385 // split blocks. The new PHI nodes are placed before the first original 386 // instruction, so we do not end up deleting them. By using reverse-order, we 387 // do not introduce unnecessary PHI nodes for def-use chains from the call 388 // instruction to the beginning of the block. 389 auto I = CB.getReverseIterator(); 390 Instruction *OriginalBeginInst = &*OriginalBegin; 391 while (I != TailBB->rend()) { 392 Instruction *CurrentI = &*I++; 393 if (!CurrentI->use_empty()) { 394 // If an existing PHI has users after the call, there is no need to create 395 // a new one. 396 if (isa<PHINode>(CurrentI)) 397 continue; 398 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 399 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 400 for (auto &Mapping : ValueToValueMaps) 401 NewPN->addIncoming(Mapping[CurrentI], 402 cast<Instruction>(Mapping[CurrentI])->getParent()); 403 NewPN->insertBefore(*TailBB, TailBB->begin()); 404 CurrentI->replaceAllUsesWith(NewPN); 405 } 406 CurrentI->dropDbgValues(); 407 CurrentI->eraseFromParent(); 408 // We are done once we handled the first original instruction in TailBB. 409 if (CurrentI == OriginalBeginInst) 410 break; 411 } 412 } 413 414 // Return true if the call-site has an argument which is a PHI with only 415 // constant incoming values. 416 static bool isPredicatedOnPHI(CallBase &CB) { 417 BasicBlock *Parent = CB.getParent(); 418 if (&CB != Parent->getFirstNonPHIOrDbg()) 419 return false; 420 421 for (auto &PN : Parent->phis()) { 422 for (auto &Arg : CB.args()) { 423 if (&*Arg != &PN) 424 continue; 425 assert(PN.getNumIncomingValues() == 2 && 426 "Unexpected number of incoming values"); 427 if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1)) 428 return false; 429 if (PN.getIncomingValue(0) == PN.getIncomingValue(1)) 430 continue; 431 if (isa<Constant>(PN.getIncomingValue(0)) && 432 isa<Constant>(PN.getIncomingValue(1))) 433 return true; 434 } 435 } 436 return false; 437 } 438 439 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 440 441 // Check if any of the arguments in CS are predicated on a PHI node and return 442 // the set of predecessors we should use for splitting. 443 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) { 444 if (!isPredicatedOnPHI(CB)) 445 return {}; 446 447 auto Preds = getTwoPredecessors(CB.getParent()); 448 return {{Preds[0], {}}, {Preds[1], {}}}; 449 } 450 451 // Checks if any of the arguments in CS are predicated in a predecessor and 452 // returns a list of predecessors with the conditions that hold on their edges 453 // to CS. 454 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB, 455 DomTreeUpdater &DTU) { 456 auto Preds = getTwoPredecessors(CB.getParent()); 457 if (Preds[0] == Preds[1]) 458 return {}; 459 460 // We can stop recording conditions once we reached the immediate dominator 461 // for the block containing the call site. Conditions in predecessors of the 462 // that node will be the same for all paths to the call site and splitting 463 // is not beneficial. 464 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 465 auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent()); 466 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 467 468 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 469 for (auto *Pred : llvm::reverse(Preds)) { 470 ConditionsTy Conditions; 471 // Record condition on edge BB(CS) <- Pred 472 recordCondition(CB, Pred, CB.getParent(), Conditions); 473 // Record conditions following Pred's single predecessors. 474 recordConditions(CB, Pred, Conditions, StopAt); 475 PredsCS.push_back({Pred, Conditions}); 476 } 477 478 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 479 return P.second.empty(); 480 })) 481 return {}; 482 483 return PredsCS; 484 } 485 486 static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI, 487 DomTreeUpdater &DTU) { 488 // Check if we can split the call site. 489 if (!CB.arg_size() || !canSplitCallSite(CB, TTI)) 490 return false; 491 492 auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU); 493 if (PredsWithConds.empty()) 494 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB); 495 if (PredsWithConds.empty()) 496 return false; 497 498 splitCallSite(CB, PredsWithConds, DTU); 499 return true; 500 } 501 502 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 503 TargetTransformInfo &TTI, DominatorTree &DT) { 504 505 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 506 bool Changed = false; 507 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 508 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 509 auto IE = BB.getTerminator()->getIterator(); 510 // Iterate until we reach the terminator instruction. tryToSplitCallSite 511 // can replace BB's terminator in case BB is a successor of itself. In that 512 // case, IE will be invalidated and we also have to check the current 513 // terminator. 514 while (II != IE && &*II != BB.getTerminator()) { 515 CallBase *CB = dyn_cast<CallBase>(&*II++); 516 if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI)) 517 continue; 518 519 Function *Callee = CB->getCalledFunction(); 520 if (!Callee || Callee->isDeclaration()) 521 continue; 522 523 // Successful musttail call-site splits result in erased CI and erased BB. 524 // Check if such path is possible before attempting the splitting. 525 bool IsMustTail = CB->isMustTailCall(); 526 527 Changed |= tryToSplitCallSite(*CB, TTI, DTU); 528 529 // There're no interesting instructions after this. The call site 530 // itself might have been erased on splitting. 531 if (IsMustTail) 532 break; 533 } 534 } 535 return Changed; 536 } 537 538 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 539 FunctionAnalysisManager &AM) { 540 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 541 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 542 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 543 544 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 545 return PreservedAnalyses::all(); 546 PreservedAnalyses PA; 547 PA.preserve<DominatorTreeAnalysis>(); 548 return PA; 549 } 550