1 //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Bit-Tracking Dead Code Elimination pass. Some 10 // instructions (shifts, some ands, ors, etc.) kill some of their input bits. 11 // We track these dead bits and remove instructions that compute only these 12 // dead bits. We also simplify sext that generates unused extension bits, 13 // converting it to a zext. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/BDCE.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/DemandedBits.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define DEBUG_TYPE "bdce" 35 36 STATISTIC(NumRemoved, "Number of instructions removed (unused)"); 37 STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); 38 STATISTIC(NumSExt2ZExt, 39 "Number of sign extension instructions converted to zero extension"); 40 41 /// If an instruction is trivialized (dead), then the chain of users of that 42 /// instruction may need to be cleared of assumptions that can no longer be 43 /// guaranteed correct. 44 static void clearAssumptionsOfUsers(Instruction *I, DemandedBits &DB) { 45 assert(I->getType()->isIntOrIntVectorTy() && 46 "Trivializing a non-integer value?"); 47 48 // If all bits of a user are demanded, then we know that nothing below that 49 // in the def-use chain needs to be changed. 50 if (DB.getDemandedBits(I).isAllOnes()) 51 return; 52 53 // Initialize the worklist with eligible direct users. 54 SmallPtrSet<Instruction *, 16> Visited; 55 SmallVector<Instruction *, 16> WorkList; 56 for (User *JU : I->users()) { 57 auto *J = cast<Instruction>(JU); 58 if (J->getType()->isIntOrIntVectorTy()) { 59 Visited.insert(J); 60 WorkList.push_back(J); 61 } 62 63 // Note that we need to check for non-int types above before asking for 64 // demanded bits. Normally, the only way to reach an instruction with an 65 // non-int type is via an instruction that has side effects (or otherwise 66 // will demand its input bits). However, if we have a readnone function 67 // that returns an unsized type (e.g., void), we must avoid asking for the 68 // demanded bits of the function call's return value. A void-returning 69 // readnone function is always dead (and so we can stop walking the use/def 70 // chain here), but the check is necessary to avoid asserting. 71 } 72 73 // DFS through subsequent users while tracking visits to avoid cycles. 74 while (!WorkList.empty()) { 75 Instruction *J = WorkList.pop_back_val(); 76 77 // NSW, NUW, and exact are based on operands that might have changed. 78 J->dropPoisonGeneratingAnnotations(); 79 80 // We do not have to worry about llvm.assume, because it demands its 81 // operand, so trivializing can't change it. 82 83 // If all bits of a user are demanded, then we know that nothing below 84 // that in the def-use chain needs to be changed. 85 if (DB.getDemandedBits(J).isAllOnes()) 86 continue; 87 88 for (User *KU : J->users()) { 89 auto *K = cast<Instruction>(KU); 90 if (Visited.insert(K).second && K->getType()->isIntOrIntVectorTy()) 91 WorkList.push_back(K); 92 } 93 } 94 } 95 96 static bool bitTrackingDCE(Function &F, DemandedBits &DB) { 97 SmallVector<Instruction*, 128> Worklist; 98 bool Changed = false; 99 for (Instruction &I : instructions(F)) { 100 // If the instruction has side effects and no non-dbg uses, 101 // skip it. This way we avoid computing known bits on an instruction 102 // that will not help us. 103 if (I.mayHaveSideEffects() && I.use_empty()) 104 continue; 105 106 // Remove instructions that are dead, either because they were not reached 107 // during analysis or have no demanded bits. 108 if (DB.isInstructionDead(&I) || 109 (I.getType()->isIntOrIntVectorTy() && DB.getDemandedBits(&I).isZero() && 110 wouldInstructionBeTriviallyDead(&I))) { 111 Worklist.push_back(&I); 112 Changed = true; 113 continue; 114 } 115 116 // Convert SExt into ZExt if none of the extension bits is required 117 if (SExtInst *SE = dyn_cast<SExtInst>(&I)) { 118 APInt Demanded = DB.getDemandedBits(SE); 119 const uint32_t SrcBitSize = SE->getSrcTy()->getScalarSizeInBits(); 120 auto *const DstTy = SE->getDestTy(); 121 const uint32_t DestBitSize = DstTy->getScalarSizeInBits(); 122 if (Demanded.countl_zero() >= (DestBitSize - SrcBitSize)) { 123 clearAssumptionsOfUsers(SE, DB); 124 IRBuilder<> Builder(SE); 125 I.replaceAllUsesWith( 126 Builder.CreateZExt(SE->getOperand(0), DstTy, SE->getName())); 127 Worklist.push_back(SE); 128 Changed = true; 129 NumSExt2ZExt++; 130 continue; 131 } 132 } 133 134 // Simplify and, or, xor when their mask does not affect the demanded bits. 135 if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 136 APInt Demanded = DB.getDemandedBits(BO); 137 if (!Demanded.isAllOnes()) { 138 const APInt *Mask; 139 if (match(BO->getOperand(1), m_APInt(Mask))) { 140 bool CanBeSimplified = false; 141 switch (BO->getOpcode()) { 142 case Instruction::Or: 143 case Instruction::Xor: 144 CanBeSimplified = !Demanded.intersects(*Mask); 145 break; 146 case Instruction::And: 147 CanBeSimplified = Demanded.isSubsetOf(*Mask); 148 break; 149 default: 150 // TODO: Handle more cases here. 151 break; 152 } 153 154 if (CanBeSimplified) { 155 clearAssumptionsOfUsers(BO, DB); 156 BO->replaceAllUsesWith(BO->getOperand(0)); 157 Worklist.push_back(BO); 158 ++NumSimplified; 159 Changed = true; 160 continue; 161 } 162 } 163 } 164 } 165 166 for (Use &U : I.operands()) { 167 // DemandedBits only detects dead integer uses. 168 if (!U->getType()->isIntOrIntVectorTy()) 169 continue; 170 171 if (!isa<Instruction>(U) && !isa<Argument>(U)) 172 continue; 173 174 if (!DB.isUseDead(&U)) 175 continue; 176 177 LLVM_DEBUG(dbgs() << "BDCE: Trivializing: " << U << " (all bits dead)\n"); 178 179 clearAssumptionsOfUsers(&I, DB); 180 181 // Substitute all uses with zero. In theory we could use `freeze poison` 182 // instead, but that seems unlikely to be profitable. 183 U.set(ConstantInt::get(U->getType(), 0)); 184 ++NumSimplified; 185 Changed = true; 186 } 187 } 188 189 for (Instruction *&I : llvm::reverse(Worklist)) { 190 salvageDebugInfo(*I); 191 I->dropAllReferences(); 192 } 193 194 for (Instruction *&I : Worklist) { 195 ++NumRemoved; 196 I->eraseFromParent(); 197 } 198 199 return Changed; 200 } 201 202 PreservedAnalyses BDCEPass::run(Function &F, FunctionAnalysisManager &AM) { 203 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 204 if (!bitTrackingDCE(F, DB)) 205 return PreservedAnalyses::all(); 206 207 PreservedAnalyses PA; 208 PA.preserveSet<CFGAnalyses>(); 209 return PA; 210 } 211