xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #define AA_NAME "alignment-from-assumptions"
37 #define DEBUG_TYPE AA_NAME
38 using namespace llvm;
39 
40 STATISTIC(NumLoadAlignChanged,
41   "Number of loads changed by alignment assumptions");
42 STATISTIC(NumStoreAlignChanged,
43   "Number of stores changed by alignment assumptions");
44 STATISTIC(NumMemIntAlignChanged,
45   "Number of memory intrinsics changed by alignment assumptions");
46 
47 namespace {
48 struct AlignmentFromAssumptions : public FunctionPass {
49   static char ID; // Pass identification, replacement for typeid
50   AlignmentFromAssumptions() : FunctionPass(ID) {
51     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
52   }
53 
54   bool runOnFunction(Function &F) override;
55 
56   void getAnalysisUsage(AnalysisUsage &AU) const override {
57     AU.addRequired<AssumptionCacheTracker>();
58     AU.addRequired<ScalarEvolutionWrapperPass>();
59     AU.addRequired<DominatorTreeWrapperPass>();
60 
61     AU.setPreservesCFG();
62     AU.addPreserved<AAResultsWrapperPass>();
63     AU.addPreserved<GlobalsAAWrapperPass>();
64     AU.addPreserved<LoopInfoWrapperPass>();
65     AU.addPreserved<DominatorTreeWrapperPass>();
66     AU.addPreserved<ScalarEvolutionWrapperPass>();
67   }
68 
69   AlignmentFromAssumptionsPass Impl;
70 };
71 }
72 
73 char AlignmentFromAssumptions::ID = 0;
74 static const char aip_name[] = "Alignment from assumptions";
75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
76                       aip_name, false, false)
77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
81                     aip_name, false, false)
82 
83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
84   return new AlignmentFromAssumptions();
85 }
86 
87 // Given an expression for the (constant) alignment, AlignSCEV, and an
88 // expression for the displacement between a pointer and the aligned address,
89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
90 // to a constant. Using SCEV to compute alignment handles the case where
91 // DiffSCEV is a recurrence with constant start such that the aligned offset
92 // is constant. e.g. {16,+,32} % 32 -> 16.
93 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
94                                       const SCEV *AlignSCEV,
95                                       ScalarEvolution *SE) {
96   // DiffUnits = Diff % int64_t(Alignment)
97   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
98 
99   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
100                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
101 
102   if (const SCEVConstant *ConstDUSCEV =
103       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
104     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
105 
106     // If the displacement is an exact multiple of the alignment, then the
107     // displaced pointer has the same alignment as the aligned pointer, so
108     // return the alignment value.
109     if (!DiffUnits)
110       return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
111 
112     // If the displacement is not an exact multiple, but the remainder is a
113     // constant, then return this remainder (but only if it is a power of 2).
114     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
115     if (isPowerOf2_64(DiffUnitsAbs))
116       return Align(DiffUnitsAbs);
117   }
118 
119   return std::nullopt;
120 }
121 
122 // There is an address given by an offset OffSCEV from AASCEV which has an
123 // alignment AlignSCEV. Use that information, if possible, to compute a new
124 // alignment for Ptr.
125 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
126                              const SCEV *OffSCEV, Value *Ptr,
127                              ScalarEvolution *SE) {
128   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
129   // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes
130   // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV
131   // may disagree. Trunc/extend so they agree.
132   PtrSCEV = SE->getTruncateOrZeroExtend(
133       PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType()));
134   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
135   if (isa<SCEVCouldNotCompute>(DiffSCEV))
136     return Align(1);
137 
138   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
139   // sign-extended OffSCEV to i64, so make sure they agree again.
140   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
141 
142   // What we really want to know is the overall offset to the aligned
143   // address. This address is displaced by the provided offset.
144   DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
145 
146   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
147                     << *AlignSCEV << " and offset " << *OffSCEV
148                     << " using diff " << *DiffSCEV << "\n");
149 
150   if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
151     LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
152     return *NewAlignment;
153   }
154 
155   if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
156     // The relative offset to the alignment assumption did not yield a constant,
157     // but we should try harder: if we assume that a is 32-byte aligned, then in
158     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
159     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
160     // As a result, the new alignment will not be a constant, but can still
161     // be improved over the default (of 4) to 16.
162 
163     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
164     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
165 
166     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
167                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
168 
169     // Now compute the new alignment using the displacement to the value in the
170     // first iteration, and also the alignment using the per-iteration delta.
171     // If these are the same, then use that answer. Otherwise, use the smaller
172     // one, but only if it divides the larger one.
173     MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
174     MaybeAlign NewIncAlignment =
175         getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
176 
177     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
178                       << "\n");
179     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
180                       << "\n");
181 
182     if (!NewAlignment || !NewIncAlignment)
183       return Align(1);
184 
185     const Align NewAlign = *NewAlignment;
186     const Align NewIncAlign = *NewIncAlignment;
187     if (NewAlign > NewIncAlign) {
188       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
189                         << DebugStr(NewIncAlign) << "\n");
190       return NewIncAlign;
191     }
192     if (NewIncAlign > NewAlign) {
193       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
194                         << "\n");
195       return NewAlign;
196     }
197     assert(NewIncAlign == NewAlign);
198     LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
199                       << "\n");
200     return NewAlign;
201   }
202 
203   return Align(1);
204 }
205 
206 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
207                                                         unsigned Idx,
208                                                         Value *&AAPtr,
209                                                         const SCEV *&AlignSCEV,
210                                                         const SCEV *&OffSCEV) {
211   Type *Int64Ty = Type::getInt64Ty(I->getContext());
212   OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
213   if (AlignOB.getTagName() != "align")
214     return false;
215   assert(AlignOB.Inputs.size() >= 2);
216   AAPtr = AlignOB.Inputs[0].get();
217   // TODO: Consider accumulating the offset to the base.
218   AAPtr = AAPtr->stripPointerCastsSameRepresentation();
219   AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
220   AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
221   if (!isa<SCEVConstant>(AlignSCEV))
222     // Added to suppress a crash because consumer doesn't expect non-constant
223     // alignments in the assume bundle.  TODO: Consider generalizing caller.
224     return false;
225   if (AlignOB.Inputs.size() == 3)
226     OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
227   else
228     OffSCEV = SE->getZero(Int64Ty);
229   OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
230   return true;
231 }
232 
233 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
234                                                      unsigned Idx) {
235   Value *AAPtr;
236   const SCEV *AlignSCEV, *OffSCEV;
237   if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
238     return false;
239 
240   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
241   // affect other users.
242   if (isa<ConstantData>(AAPtr))
243     return false;
244 
245   const SCEV *AASCEV = SE->getSCEV(AAPtr);
246 
247   // Apply the assumption to all other users of the specified pointer.
248   SmallPtrSet<Instruction *, 32> Visited;
249   SmallVector<Instruction*, 16> WorkList;
250   for (User *J : AAPtr->users()) {
251     if (J == ACall)
252       continue;
253 
254     if (Instruction *K = dyn_cast<Instruction>(J))
255         WorkList.push_back(K);
256   }
257 
258   while (!WorkList.empty()) {
259     Instruction *J = WorkList.pop_back_val();
260     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
261       if (!isValidAssumeForContext(ACall, J, DT))
262         continue;
263       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
264                                            LI->getPointerOperand(), SE);
265       if (NewAlignment > LI->getAlign()) {
266         LI->setAlignment(NewAlignment);
267         ++NumLoadAlignChanged;
268       }
269     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
270       if (!isValidAssumeForContext(ACall, J, DT))
271         continue;
272       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
273                                            SI->getPointerOperand(), SE);
274       if (NewAlignment > SI->getAlign()) {
275         SI->setAlignment(NewAlignment);
276         ++NumStoreAlignChanged;
277       }
278     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
279       if (!isValidAssumeForContext(ACall, J, DT))
280         continue;
281       Align NewDestAlignment =
282           getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
283 
284       LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
285                         << "\n";);
286       if (NewDestAlignment > *MI->getDestAlign()) {
287         MI->setDestAlignment(NewDestAlignment);
288         ++NumMemIntAlignChanged;
289       }
290 
291       // For memory transfers, there is also a source alignment that
292       // can be set.
293       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
294         Align NewSrcAlignment =
295             getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
296 
297         LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
298                           << "\n";);
299 
300         if (NewSrcAlignment > *MTI->getSourceAlign()) {
301           MTI->setSourceAlignment(NewSrcAlignment);
302           ++NumMemIntAlignChanged;
303         }
304       }
305     }
306 
307     // Now that we've updated that use of the pointer, look for other uses of
308     // the pointer to update.
309     Visited.insert(J);
310     for (User *UJ : J->users()) {
311       Instruction *K = cast<Instruction>(UJ);
312       if (!Visited.count(K))
313         WorkList.push_back(K);
314     }
315   }
316 
317   return true;
318 }
319 
320 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
321   if (skipFunction(F))
322     return false;
323 
324   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
325   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
326   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
327 
328   return Impl.runImpl(F, AC, SE, DT);
329 }
330 
331 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
332                                            ScalarEvolution *SE_,
333                                            DominatorTree *DT_) {
334   SE = SE_;
335   DT = DT_;
336 
337   bool Changed = false;
338   for (auto &AssumeVH : AC.assumptions())
339     if (AssumeVH) {
340       CallInst *Call = cast<CallInst>(AssumeVH);
341       for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
342         Changed |= processAssumption(Call, Idx);
343     }
344 
345   return Changed;
346 }
347 
348 PreservedAnalyses
349 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
350 
351   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
352   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
353   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
354   if (!runImpl(F, AC, &SE, &DT))
355     return PreservedAnalyses::all();
356 
357   PreservedAnalyses PA;
358   PA.preserveSet<CFGAnalyses>();
359   PA.preserve<ScalarEvolutionAnalysis>();
360   return PA;
361 }
362