xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/InitializePasses.h"
20 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 
39 #define AA_NAME "alignment-from-assumptions"
40 #define DEBUG_TYPE AA_NAME
41 using namespace llvm;
42 
43 STATISTIC(NumLoadAlignChanged,
44   "Number of loads changed by alignment assumptions");
45 STATISTIC(NumStoreAlignChanged,
46   "Number of stores changed by alignment assumptions");
47 STATISTIC(NumMemIntAlignChanged,
48   "Number of memory intrinsics changed by alignment assumptions");
49 
50 namespace {
51 struct AlignmentFromAssumptions : public FunctionPass {
52   static char ID; // Pass identification, replacement for typeid
53   AlignmentFromAssumptions() : FunctionPass(ID) {
54     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
55   }
56 
57   bool runOnFunction(Function &F) override;
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.addRequired<AssumptionCacheTracker>();
61     AU.addRequired<ScalarEvolutionWrapperPass>();
62     AU.addRequired<DominatorTreeWrapperPass>();
63 
64     AU.setPreservesCFG();
65     AU.addPreserved<AAResultsWrapperPass>();
66     AU.addPreserved<GlobalsAAWrapperPass>();
67     AU.addPreserved<LoopInfoWrapperPass>();
68     AU.addPreserved<DominatorTreeWrapperPass>();
69     AU.addPreserved<ScalarEvolutionWrapperPass>();
70   }
71 
72   AlignmentFromAssumptionsPass Impl;
73 };
74 }
75 
76 char AlignmentFromAssumptions::ID = 0;
77 static const char aip_name[] = "Alignment from assumptions";
78 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
79                       aip_name, false, false)
80 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
81 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
82 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
83 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
84                     aip_name, false, false)
85 
86 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
87   return new AlignmentFromAssumptions();
88 }
89 
90 // Given an expression for the (constant) alignment, AlignSCEV, and an
91 // expression for the displacement between a pointer and the aligned address,
92 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
93 // to a constant. Using SCEV to compute alignment handles the case where
94 // DiffSCEV is a recurrence with constant start such that the aligned offset
95 // is constant. e.g. {16,+,32} % 32 -> 16.
96 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
97                                       const SCEV *AlignSCEV,
98                                       ScalarEvolution *SE) {
99   // DiffUnits = Diff % int64_t(Alignment)
100   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
101 
102   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
103                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
104 
105   if (const SCEVConstant *ConstDUSCEV =
106       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
107     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
108 
109     // If the displacement is an exact multiple of the alignment, then the
110     // displaced pointer has the same alignment as the aligned pointer, so
111     // return the alignment value.
112     if (!DiffUnits)
113       return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
114 
115     // If the displacement is not an exact multiple, but the remainder is a
116     // constant, then return this remainder (but only if it is a power of 2).
117     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
118     if (isPowerOf2_64(DiffUnitsAbs))
119       return Align(DiffUnitsAbs);
120   }
121 
122   return None;
123 }
124 
125 // There is an address given by an offset OffSCEV from AASCEV which has an
126 // alignment AlignSCEV. Use that information, if possible, to compute a new
127 // alignment for Ptr.
128 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
129                              const SCEV *OffSCEV, Value *Ptr,
130                              ScalarEvolution *SE) {
131   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
132   // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes
133   // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV
134   // may disagree. Trunc/extend so they agree.
135   PtrSCEV = SE->getTruncateOrZeroExtend(
136       PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType()));
137   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
138   if (isa<SCEVCouldNotCompute>(DiffSCEV))
139     return Align(1);
140 
141   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
142   // sign-extended OffSCEV to i64, so make sure they agree again.
143   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
144 
145   // What we really want to know is the overall offset to the aligned
146   // address. This address is displaced by the provided offset.
147   DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
148 
149   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
150                     << *AlignSCEV << " and offset " << *OffSCEV
151                     << " using diff " << *DiffSCEV << "\n");
152 
153   if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
154     LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
155     return *NewAlignment;
156   }
157 
158   if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
159     // The relative offset to the alignment assumption did not yield a constant,
160     // but we should try harder: if we assume that a is 32-byte aligned, then in
161     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
162     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
163     // As a result, the new alignment will not be a constant, but can still
164     // be improved over the default (of 4) to 16.
165 
166     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
167     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
168 
169     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
170                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
171 
172     // Now compute the new alignment using the displacement to the value in the
173     // first iteration, and also the alignment using the per-iteration delta.
174     // If these are the same, then use that answer. Otherwise, use the smaller
175     // one, but only if it divides the larger one.
176     MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
177     MaybeAlign NewIncAlignment =
178         getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
179 
180     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
181                       << "\n");
182     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
183                       << "\n");
184 
185     if (!NewAlignment || !NewIncAlignment)
186       return Align(1);
187 
188     const Align NewAlign = *NewAlignment;
189     const Align NewIncAlign = *NewIncAlignment;
190     if (NewAlign > NewIncAlign) {
191       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
192                         << DebugStr(NewIncAlign) << "\n");
193       return NewIncAlign;
194     }
195     if (NewIncAlign > NewAlign) {
196       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
197                         << "\n");
198       return NewAlign;
199     }
200     assert(NewIncAlign == NewAlign);
201     LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
202                       << "\n");
203     return NewAlign;
204   }
205 
206   return Align(1);
207 }
208 
209 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
210                                                         unsigned Idx,
211                                                         Value *&AAPtr,
212                                                         const SCEV *&AlignSCEV,
213                                                         const SCEV *&OffSCEV) {
214   Type *Int64Ty = Type::getInt64Ty(I->getContext());
215   OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
216   if (AlignOB.getTagName() != "align")
217     return false;
218   assert(AlignOB.Inputs.size() >= 2);
219   AAPtr = AlignOB.Inputs[0].get();
220   // TODO: Consider accumulating the offset to the base.
221   AAPtr = AAPtr->stripPointerCastsSameRepresentation();
222   AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
223   AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
224   if (!isa<SCEVConstant>(AlignSCEV))
225     // Added to suppress a crash because consumer doesn't expect non-constant
226     // alignments in the assume bundle.  TODO: Consider generalizing caller.
227     return false;
228   if (AlignOB.Inputs.size() == 3)
229     OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
230   else
231     OffSCEV = SE->getZero(Int64Ty);
232   OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
233   return true;
234 }
235 
236 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
237                                                      unsigned Idx) {
238   Value *AAPtr;
239   const SCEV *AlignSCEV, *OffSCEV;
240   if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
241     return false;
242 
243   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
244   // affect other users.
245   if (isa<ConstantData>(AAPtr))
246     return false;
247 
248   const SCEV *AASCEV = SE->getSCEV(AAPtr);
249 
250   // Apply the assumption to all other users of the specified pointer.
251   SmallPtrSet<Instruction *, 32> Visited;
252   SmallVector<Instruction*, 16> WorkList;
253   for (User *J : AAPtr->users()) {
254     if (J == ACall)
255       continue;
256 
257     if (Instruction *K = dyn_cast<Instruction>(J))
258         WorkList.push_back(K);
259   }
260 
261   while (!WorkList.empty()) {
262     Instruction *J = WorkList.pop_back_val();
263     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
264       if (!isValidAssumeForContext(ACall, J, DT))
265         continue;
266       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
267                                            LI->getPointerOperand(), SE);
268       if (NewAlignment > LI->getAlign()) {
269         LI->setAlignment(NewAlignment);
270         ++NumLoadAlignChanged;
271       }
272     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
273       if (!isValidAssumeForContext(ACall, J, DT))
274         continue;
275       Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
276                                            SI->getPointerOperand(), SE);
277       if (NewAlignment > SI->getAlign()) {
278         SI->setAlignment(NewAlignment);
279         ++NumStoreAlignChanged;
280       }
281     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
282       if (!isValidAssumeForContext(ACall, J, DT))
283         continue;
284       Align NewDestAlignment =
285           getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
286 
287       LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
288                         << "\n";);
289       if (NewDestAlignment > *MI->getDestAlign()) {
290         MI->setDestAlignment(NewDestAlignment);
291         ++NumMemIntAlignChanged;
292       }
293 
294       // For memory transfers, there is also a source alignment that
295       // can be set.
296       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
297         Align NewSrcAlignment =
298             getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
299 
300         LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
301                           << "\n";);
302 
303         if (NewSrcAlignment > *MTI->getSourceAlign()) {
304           MTI->setSourceAlignment(NewSrcAlignment);
305           ++NumMemIntAlignChanged;
306         }
307       }
308     }
309 
310     // Now that we've updated that use of the pointer, look for other uses of
311     // the pointer to update.
312     Visited.insert(J);
313     for (User *UJ : J->users()) {
314       Instruction *K = cast<Instruction>(UJ);
315       if (!Visited.count(K))
316         WorkList.push_back(K);
317     }
318   }
319 
320   return true;
321 }
322 
323 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
324   if (skipFunction(F))
325     return false;
326 
327   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
328   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
329   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
330 
331   return Impl.runImpl(F, AC, SE, DT);
332 }
333 
334 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
335                                            ScalarEvolution *SE_,
336                                            DominatorTree *DT_) {
337   SE = SE_;
338   DT = DT_;
339 
340   bool Changed = false;
341   for (auto &AssumeVH : AC.assumptions())
342     if (AssumeVH) {
343       CallInst *Call = cast<CallInst>(AssumeVH);
344       for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
345         Changed |= processAssumption(Call, Idx);
346     }
347 
348   return Changed;
349 }
350 
351 PreservedAnalyses
352 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
353 
354   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
355   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
356   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
357   if (!runImpl(F, AC, &SE, &DT))
358     return PreservedAnalyses::all();
359 
360   PreservedAnalyses PA;
361   PA.preserveSet<CFGAnalyses>();
362   PA.preserve<ScalarEvolutionAnalysis>();
363   return PA;
364 }
365