1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/InitializePasses.h" 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 using namespace llvm; 39 40 STATISTIC(NumLoadAlignChanged, 41 "Number of loads changed by alignment assumptions"); 42 STATISTIC(NumStoreAlignChanged, 43 "Number of stores changed by alignment assumptions"); 44 STATISTIC(NumMemIntAlignChanged, 45 "Number of memory intrinsics changed by alignment assumptions"); 46 47 namespace { 48 struct AlignmentFromAssumptions : public FunctionPass { 49 static char ID; // Pass identification, replacement for typeid 50 AlignmentFromAssumptions() : FunctionPass(ID) { 51 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 52 } 53 54 bool runOnFunction(Function &F) override; 55 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.addRequired<AssumptionCacheTracker>(); 58 AU.addRequired<ScalarEvolutionWrapperPass>(); 59 AU.addRequired<DominatorTreeWrapperPass>(); 60 61 AU.setPreservesCFG(); 62 AU.addPreserved<AAResultsWrapperPass>(); 63 AU.addPreserved<GlobalsAAWrapperPass>(); 64 AU.addPreserved<LoopInfoWrapperPass>(); 65 AU.addPreserved<DominatorTreeWrapperPass>(); 66 AU.addPreserved<ScalarEvolutionWrapperPass>(); 67 } 68 69 AlignmentFromAssumptionsPass Impl; 70 }; 71 } 72 73 char AlignmentFromAssumptions::ID = 0; 74 static const char aip_name[] = "Alignment from assumptions"; 75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 76 aip_name, false, false) 77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 81 aip_name, false, false) 82 83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 84 return new AlignmentFromAssumptions(); 85 } 86 87 // Given an expression for the (constant) alignment, AlignSCEV, and an 88 // expression for the displacement between a pointer and the aligned address, 89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 90 // to a constant. Using SCEV to compute alignment handles the case where 91 // DiffSCEV is a recurrence with constant start such that the aligned offset 92 // is constant. e.g. {16,+,32} % 32 -> 16. 93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, 94 const SCEV *AlignSCEV, 95 ScalarEvolution *SE) { 96 // DiffUnits = Diff % int64_t(Alignment) 97 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 98 99 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 100 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 101 102 if (const SCEVConstant *ConstDUSCEV = 103 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 104 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 105 106 // If the displacement is an exact multiple of the alignment, then the 107 // displaced pointer has the same alignment as the aligned pointer, so 108 // return the alignment value. 109 if (!DiffUnits) 110 return (unsigned) 111 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue(); 112 113 // If the displacement is not an exact multiple, but the remainder is a 114 // constant, then return this remainder (but only if it is a power of 2). 115 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 116 if (isPowerOf2_64(DiffUnitsAbs)) 117 return (unsigned) DiffUnitsAbs; 118 } 119 120 return 0; 121 } 122 123 // There is an address given by an offset OffSCEV from AASCEV which has an 124 // alignment AlignSCEV. Use that information, if possible, to compute a new 125 // alignment for Ptr. 126 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 127 const SCEV *OffSCEV, Value *Ptr, 128 ScalarEvolution *SE) { 129 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 130 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 131 132 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 133 // sign-extended OffSCEV to i64, so make sure they agree again. 134 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 135 136 // What we really want to know is the overall offset to the aligned 137 // address. This address is displaced by the provided offset. 138 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 139 140 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 141 << *AlignSCEV << " and offset " << *OffSCEV 142 << " using diff " << *DiffSCEV << "\n"); 143 144 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); 145 LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); 146 147 if (NewAlignment) { 148 return NewAlignment; 149 } else if (const SCEVAddRecExpr *DiffARSCEV = 150 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 151 // The relative offset to the alignment assumption did not yield a constant, 152 // but we should try harder: if we assume that a is 32-byte aligned, then in 153 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 154 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 155 // As a result, the new alignment will not be a constant, but can still 156 // be improved over the default (of 4) to 16. 157 158 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 159 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 160 161 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 162 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 163 164 // Now compute the new alignment using the displacement to the value in the 165 // first iteration, and also the alignment using the per-iteration delta. 166 // If these are the same, then use that answer. Otherwise, use the smaller 167 // one, but only if it divides the larger one. 168 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 169 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 170 171 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); 172 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); 173 174 if (!NewAlignment || !NewIncAlignment) { 175 return 0; 176 } else if (NewAlignment > NewIncAlignment) { 177 if (NewAlignment % NewIncAlignment == 0) { 178 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment 179 << "\n"); 180 return NewIncAlignment; 181 } 182 } else if (NewIncAlignment > NewAlignment) { 183 if (NewIncAlignment % NewAlignment == 0) { 184 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment 185 << "\n"); 186 return NewAlignment; 187 } 188 } else if (NewIncAlignment == NewAlignment) { 189 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment 190 << "\n"); 191 return NewAlignment; 192 } 193 } 194 195 return 0; 196 } 197 198 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 199 Value *&AAPtr, 200 const SCEV *&AlignSCEV, 201 const SCEV *&OffSCEV) { 202 // An alignment assume must be a statement about the least-significant 203 // bits of the pointer being zero, possibly with some offset. 204 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); 205 if (!ICI) 206 return false; 207 208 // This must be an expression of the form: x & m == 0. 209 if (ICI->getPredicate() != ICmpInst::ICMP_EQ) 210 return false; 211 212 // Swap things around so that the RHS is 0. 213 Value *CmpLHS = ICI->getOperand(0); 214 Value *CmpRHS = ICI->getOperand(1); 215 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); 216 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); 217 if (CmpLHSSCEV->isZero()) 218 std::swap(CmpLHS, CmpRHS); 219 else if (!CmpRHSSCEV->isZero()) 220 return false; 221 222 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); 223 if (!CmpBO || CmpBO->getOpcode() != Instruction::And) 224 return false; 225 226 // Swap things around so that the right operand of the and is a constant 227 // (the mask); we cannot deal with variable masks. 228 Value *AndLHS = CmpBO->getOperand(0); 229 Value *AndRHS = CmpBO->getOperand(1); 230 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); 231 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); 232 if (isa<SCEVConstant>(AndLHSSCEV)) { 233 std::swap(AndLHS, AndRHS); 234 std::swap(AndLHSSCEV, AndRHSSCEV); 235 } 236 237 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); 238 if (!MaskSCEV) 239 return false; 240 241 // The mask must have some trailing ones (otherwise the condition is 242 // trivial and tells us nothing about the alignment of the left operand). 243 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes(); 244 if (!TrailingOnes) 245 return false; 246 247 // Cap the alignment at the maximum with which LLVM can deal (and make sure 248 // we don't overflow the shift). 249 uint64_t Alignment; 250 TrailingOnes = std::min(TrailingOnes, 251 unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 252 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); 253 254 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); 255 AlignSCEV = SE->getConstant(Int64Ty, Alignment); 256 257 // The LHS might be a ptrtoint instruction, or it might be the pointer 258 // with an offset. 259 AAPtr = nullptr; 260 OffSCEV = nullptr; 261 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { 262 AAPtr = PToI->getPointerOperand(); 263 OffSCEV = SE->getZero(Int64Ty); 264 } else if (const SCEVAddExpr* AndLHSAddSCEV = 265 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { 266 // Try to find the ptrtoint; subtract it and the rest is the offset. 267 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), 268 JE = AndLHSAddSCEV->op_end(); J != JE; ++J) 269 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) 270 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { 271 AAPtr = PToI->getPointerOperand(); 272 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); 273 break; 274 } 275 } 276 277 if (!AAPtr) 278 return false; 279 280 // Sign extend the offset to 64 bits (so that it is like all of the other 281 // expressions). 282 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); 283 if (OffSCEVBits < 64) 284 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); 285 else if (OffSCEVBits > 64) 286 return false; 287 288 AAPtr = AAPtr->stripPointerCasts(); 289 return true; 290 } 291 292 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { 293 Value *AAPtr; 294 const SCEV *AlignSCEV, *OffSCEV; 295 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 296 return false; 297 298 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 299 // affect other users. 300 if (isa<ConstantData>(AAPtr)) 301 return false; 302 303 const SCEV *AASCEV = SE->getSCEV(AAPtr); 304 305 // Apply the assumption to all other users of the specified pointer. 306 SmallPtrSet<Instruction *, 32> Visited; 307 SmallVector<Instruction*, 16> WorkList; 308 for (User *J : AAPtr->users()) { 309 if (J == ACall) 310 continue; 311 312 if (Instruction *K = dyn_cast<Instruction>(J)) 313 if (isValidAssumeForContext(ACall, K, DT)) 314 WorkList.push_back(K); 315 } 316 317 while (!WorkList.empty()) { 318 Instruction *J = WorkList.pop_back_val(); 319 320 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 321 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 322 LI->getPointerOperand(), SE); 323 324 if (NewAlignment > LI->getAlignment()) { 325 LI->setAlignment(MaybeAlign(NewAlignment)); 326 ++NumLoadAlignChanged; 327 } 328 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 329 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 330 SI->getPointerOperand(), SE); 331 332 if (NewAlignment > SI->getAlignment()) { 333 SI->setAlignment(MaybeAlign(NewAlignment)); 334 ++NumStoreAlignChanged; 335 } 336 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 337 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 338 MI->getDest(), SE); 339 340 LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";); 341 if (NewDestAlignment > MI->getDestAlignment()) { 342 MI->setDestAlignment(NewDestAlignment); 343 ++NumMemIntAlignChanged; 344 } 345 346 // For memory transfers, there is also a source alignment that 347 // can be set. 348 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 349 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 350 MTI->getSource(), SE); 351 352 LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";); 353 354 if (NewSrcAlignment > MTI->getSourceAlignment()) { 355 MTI->setSourceAlignment(NewSrcAlignment); 356 ++NumMemIntAlignChanged; 357 } 358 } 359 } 360 361 // Now that we've updated that use of the pointer, look for other uses of 362 // the pointer to update. 363 Visited.insert(J); 364 for (User *UJ : J->users()) { 365 Instruction *K = cast<Instruction>(UJ); 366 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT)) 367 WorkList.push_back(K); 368 } 369 } 370 371 return true; 372 } 373 374 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 375 if (skipFunction(F)) 376 return false; 377 378 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 379 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 380 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 381 382 return Impl.runImpl(F, AC, SE, DT); 383 } 384 385 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 386 ScalarEvolution *SE_, 387 DominatorTree *DT_) { 388 SE = SE_; 389 DT = DT_; 390 391 bool Changed = false; 392 for (auto &AssumeVH : AC.assumptions()) 393 if (AssumeVH) 394 Changed |= processAssumption(cast<CallInst>(AssumeVH)); 395 396 return Changed; 397 } 398 399 PreservedAnalyses 400 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 401 402 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 403 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 404 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 405 if (!runImpl(F, AC, &SE, &DT)) 406 return PreservedAnalyses::all(); 407 408 PreservedAnalyses PA; 409 PA.preserveSet<CFGAnalyses>(); 410 PA.preserve<AAManager>(); 411 PA.preserve<ScalarEvolutionAnalysis>(); 412 PA.preserve<GlobalsAA>(); 413 return PA; 414 } 415