xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/InitializePasses.h"
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 using namespace llvm;
39 
40 STATISTIC(NumLoadAlignChanged,
41   "Number of loads changed by alignment assumptions");
42 STATISTIC(NumStoreAlignChanged,
43   "Number of stores changed by alignment assumptions");
44 STATISTIC(NumMemIntAlignChanged,
45   "Number of memory intrinsics changed by alignment assumptions");
46 
47 namespace {
48 struct AlignmentFromAssumptions : public FunctionPass {
49   static char ID; // Pass identification, replacement for typeid
50   AlignmentFromAssumptions() : FunctionPass(ID) {
51     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
52   }
53 
54   bool runOnFunction(Function &F) override;
55 
56   void getAnalysisUsage(AnalysisUsage &AU) const override {
57     AU.addRequired<AssumptionCacheTracker>();
58     AU.addRequired<ScalarEvolutionWrapperPass>();
59     AU.addRequired<DominatorTreeWrapperPass>();
60 
61     AU.setPreservesCFG();
62     AU.addPreserved<AAResultsWrapperPass>();
63     AU.addPreserved<GlobalsAAWrapperPass>();
64     AU.addPreserved<LoopInfoWrapperPass>();
65     AU.addPreserved<DominatorTreeWrapperPass>();
66     AU.addPreserved<ScalarEvolutionWrapperPass>();
67   }
68 
69   AlignmentFromAssumptionsPass Impl;
70 };
71 }
72 
73 char AlignmentFromAssumptions::ID = 0;
74 static const char aip_name[] = "Alignment from assumptions";
75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
76                       aip_name, false, false)
77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
81                     aip_name, false, false)
82 
83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
84   return new AlignmentFromAssumptions();
85 }
86 
87 // Given an expression for the (constant) alignment, AlignSCEV, and an
88 // expression for the displacement between a pointer and the aligned address,
89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
90 // to a constant. Using SCEV to compute alignment handles the case where
91 // DiffSCEV is a recurrence with constant start such that the aligned offset
92 // is constant. e.g. {16,+,32} % 32 -> 16.
93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
94                                     const SCEV *AlignSCEV,
95                                     ScalarEvolution *SE) {
96   // DiffUnits = Diff % int64_t(Alignment)
97   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
98 
99   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
100                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
101 
102   if (const SCEVConstant *ConstDUSCEV =
103       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
104     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
105 
106     // If the displacement is an exact multiple of the alignment, then the
107     // displaced pointer has the same alignment as the aligned pointer, so
108     // return the alignment value.
109     if (!DiffUnits)
110       return (unsigned)
111         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
112 
113     // If the displacement is not an exact multiple, but the remainder is a
114     // constant, then return this remainder (but only if it is a power of 2).
115     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
116     if (isPowerOf2_64(DiffUnitsAbs))
117       return (unsigned) DiffUnitsAbs;
118   }
119 
120   return 0;
121 }
122 
123 // There is an address given by an offset OffSCEV from AASCEV which has an
124 // alignment AlignSCEV. Use that information, if possible, to compute a new
125 // alignment for Ptr.
126 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
127                                 const SCEV *OffSCEV, Value *Ptr,
128                                 ScalarEvolution *SE) {
129   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
130   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
131 
132   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
133   // sign-extended OffSCEV to i64, so make sure they agree again.
134   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
135 
136   // What we really want to know is the overall offset to the aligned
137   // address. This address is displaced by the provided offset.
138   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
139 
140   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
141                     << *AlignSCEV << " and offset " << *OffSCEV
142                     << " using diff " << *DiffSCEV << "\n");
143 
144   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
145   LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
146 
147   if (NewAlignment) {
148     return NewAlignment;
149   } else if (const SCEVAddRecExpr *DiffARSCEV =
150              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
151     // The relative offset to the alignment assumption did not yield a constant,
152     // but we should try harder: if we assume that a is 32-byte aligned, then in
153     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
154     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
155     // As a result, the new alignment will not be a constant, but can still
156     // be improved over the default (of 4) to 16.
157 
158     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
159     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
160 
161     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
162                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
163 
164     // Now compute the new alignment using the displacement to the value in the
165     // first iteration, and also the alignment using the per-iteration delta.
166     // If these are the same, then use that answer. Otherwise, use the smaller
167     // one, but only if it divides the larger one.
168     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
169     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
170 
171     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
172     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
173 
174     if (!NewAlignment || !NewIncAlignment) {
175       return 0;
176     } else if (NewAlignment > NewIncAlignment) {
177       if (NewAlignment % NewIncAlignment == 0) {
178         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
179                           << "\n");
180         return NewIncAlignment;
181       }
182     } else if (NewIncAlignment > NewAlignment) {
183       if (NewIncAlignment % NewAlignment == 0) {
184         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
185                           << "\n");
186         return NewAlignment;
187       }
188     } else if (NewIncAlignment == NewAlignment) {
189       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
190                         << "\n");
191       return NewAlignment;
192     }
193   }
194 
195   return 0;
196 }
197 
198 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
199                                                         Value *&AAPtr,
200                                                         const SCEV *&AlignSCEV,
201                                                         const SCEV *&OffSCEV) {
202   // An alignment assume must be a statement about the least-significant
203   // bits of the pointer being zero, possibly with some offset.
204   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
205   if (!ICI)
206     return false;
207 
208   // This must be an expression of the form: x & m == 0.
209   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
210     return false;
211 
212   // Swap things around so that the RHS is 0.
213   Value *CmpLHS = ICI->getOperand(0);
214   Value *CmpRHS = ICI->getOperand(1);
215   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
216   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
217   if (CmpLHSSCEV->isZero())
218     std::swap(CmpLHS, CmpRHS);
219   else if (!CmpRHSSCEV->isZero())
220     return false;
221 
222   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
223   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
224     return false;
225 
226   // Swap things around so that the right operand of the and is a constant
227   // (the mask); we cannot deal with variable masks.
228   Value *AndLHS = CmpBO->getOperand(0);
229   Value *AndRHS = CmpBO->getOperand(1);
230   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
231   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
232   if (isa<SCEVConstant>(AndLHSSCEV)) {
233     std::swap(AndLHS, AndRHS);
234     std::swap(AndLHSSCEV, AndRHSSCEV);
235   }
236 
237   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
238   if (!MaskSCEV)
239     return false;
240 
241   // The mask must have some trailing ones (otherwise the condition is
242   // trivial and tells us nothing about the alignment of the left operand).
243   unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
244   if (!TrailingOnes)
245     return false;
246 
247   // Cap the alignment at the maximum with which LLVM can deal (and make sure
248   // we don't overflow the shift).
249   uint64_t Alignment;
250   TrailingOnes = std::min(TrailingOnes,
251     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
252   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
253 
254   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
255   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
256 
257   // The LHS might be a ptrtoint instruction, or it might be the pointer
258   // with an offset.
259   AAPtr = nullptr;
260   OffSCEV = nullptr;
261   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
262     AAPtr = PToI->getPointerOperand();
263     OffSCEV = SE->getZero(Int64Ty);
264   } else if (const SCEVAddExpr* AndLHSAddSCEV =
265              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
266     // Try to find the ptrtoint; subtract it and the rest is the offset.
267     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
268          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
269       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
270         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
271           AAPtr = PToI->getPointerOperand();
272           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
273           break;
274         }
275   }
276 
277   if (!AAPtr)
278     return false;
279 
280   // Sign extend the offset to 64 bits (so that it is like all of the other
281   // expressions).
282   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
283   if (OffSCEVBits < 64)
284     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
285   else if (OffSCEVBits > 64)
286     return false;
287 
288   AAPtr = AAPtr->stripPointerCasts();
289   return true;
290 }
291 
292 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
293   Value *AAPtr;
294   const SCEV *AlignSCEV, *OffSCEV;
295   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
296     return false;
297 
298   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
299   // affect other users.
300   if (isa<ConstantData>(AAPtr))
301     return false;
302 
303   const SCEV *AASCEV = SE->getSCEV(AAPtr);
304 
305   // Apply the assumption to all other users of the specified pointer.
306   SmallPtrSet<Instruction *, 32> Visited;
307   SmallVector<Instruction*, 16> WorkList;
308   for (User *J : AAPtr->users()) {
309     if (J == ACall)
310       continue;
311 
312     if (Instruction *K = dyn_cast<Instruction>(J))
313       if (isValidAssumeForContext(ACall, K, DT))
314         WorkList.push_back(K);
315   }
316 
317   while (!WorkList.empty()) {
318     Instruction *J = WorkList.pop_back_val();
319 
320     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
321       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
322         LI->getPointerOperand(), SE);
323 
324       if (NewAlignment > LI->getAlignment()) {
325         LI->setAlignment(MaybeAlign(NewAlignment));
326         ++NumLoadAlignChanged;
327       }
328     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
329       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
330         SI->getPointerOperand(), SE);
331 
332       if (NewAlignment > SI->getAlignment()) {
333         SI->setAlignment(MaybeAlign(NewAlignment));
334         ++NumStoreAlignChanged;
335       }
336     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
337       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
338         MI->getDest(), SE);
339 
340       LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
341       if (NewDestAlignment > MI->getDestAlignment()) {
342         MI->setDestAlignment(NewDestAlignment);
343         ++NumMemIntAlignChanged;
344       }
345 
346       // For memory transfers, there is also a source alignment that
347       // can be set.
348       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
349         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
350           MTI->getSource(), SE);
351 
352         LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
353 
354         if (NewSrcAlignment > MTI->getSourceAlignment()) {
355           MTI->setSourceAlignment(NewSrcAlignment);
356           ++NumMemIntAlignChanged;
357         }
358       }
359     }
360 
361     // Now that we've updated that use of the pointer, look for other uses of
362     // the pointer to update.
363     Visited.insert(J);
364     for (User *UJ : J->users()) {
365       Instruction *K = cast<Instruction>(UJ);
366       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
367         WorkList.push_back(K);
368     }
369   }
370 
371   return true;
372 }
373 
374 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
375   if (skipFunction(F))
376     return false;
377 
378   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
379   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
380   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
381 
382   return Impl.runImpl(F, AC, SE, DT);
383 }
384 
385 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
386                                            ScalarEvolution *SE_,
387                                            DominatorTree *DT_) {
388   SE = SE_;
389   DT = DT_;
390 
391   bool Changed = false;
392   for (auto &AssumeVH : AC.assumptions())
393     if (AssumeVH)
394       Changed |= processAssumption(cast<CallInst>(AssumeVH));
395 
396   return Changed;
397 }
398 
399 PreservedAnalyses
400 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
401 
402   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
403   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
404   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
405   if (!runImpl(F, AC, &SE, &DT))
406     return PreservedAnalyses::all();
407 
408   PreservedAnalyses PA;
409   PA.preserveSet<CFGAnalyses>();
410   PA.preserve<AAManager>();
411   PA.preserve<ScalarEvolutionAnalysis>();
412   PA.preserve<GlobalsAA>();
413   return PA;
414 }
415