1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/InitializePasses.h" 20 #define AA_NAME "alignment-from-assumptions" 21 #define DEBUG_TYPE AA_NAME 22 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Scalar.h" 40 using namespace llvm; 41 42 STATISTIC(NumLoadAlignChanged, 43 "Number of loads changed by alignment assumptions"); 44 STATISTIC(NumStoreAlignChanged, 45 "Number of stores changed by alignment assumptions"); 46 STATISTIC(NumMemIntAlignChanged, 47 "Number of memory intrinsics changed by alignment assumptions"); 48 49 namespace { 50 struct AlignmentFromAssumptions : public FunctionPass { 51 static char ID; // Pass identification, replacement for typeid 52 AlignmentFromAssumptions() : FunctionPass(ID) { 53 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 54 } 55 56 bool runOnFunction(Function &F) override; 57 58 void getAnalysisUsage(AnalysisUsage &AU) const override { 59 AU.addRequired<AssumptionCacheTracker>(); 60 AU.addRequired<ScalarEvolutionWrapperPass>(); 61 AU.addRequired<DominatorTreeWrapperPass>(); 62 63 AU.setPreservesCFG(); 64 AU.addPreserved<AAResultsWrapperPass>(); 65 AU.addPreserved<GlobalsAAWrapperPass>(); 66 AU.addPreserved<LoopInfoWrapperPass>(); 67 AU.addPreserved<DominatorTreeWrapperPass>(); 68 AU.addPreserved<ScalarEvolutionWrapperPass>(); 69 } 70 71 AlignmentFromAssumptionsPass Impl; 72 }; 73 } 74 75 char AlignmentFromAssumptions::ID = 0; 76 static const char aip_name[] = "Alignment from assumptions"; 77 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 78 aip_name, false, false) 79 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 80 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 81 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 82 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 83 aip_name, false, false) 84 85 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 86 return new AlignmentFromAssumptions(); 87 } 88 89 // Given an expression for the (constant) alignment, AlignSCEV, and an 90 // expression for the displacement between a pointer and the aligned address, 91 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 92 // to a constant. Using SCEV to compute alignment handles the case where 93 // DiffSCEV is a recurrence with constant start such that the aligned offset 94 // is constant. e.g. {16,+,32} % 32 -> 16. 95 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV, 96 const SCEV *AlignSCEV, 97 ScalarEvolution *SE) { 98 // DiffUnits = Diff % int64_t(Alignment) 99 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 100 101 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 102 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 103 104 if (const SCEVConstant *ConstDUSCEV = 105 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 106 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 107 108 // If the displacement is an exact multiple of the alignment, then the 109 // displaced pointer has the same alignment as the aligned pointer, so 110 // return the alignment value. 111 if (!DiffUnits) 112 return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue(); 113 114 // If the displacement is not an exact multiple, but the remainder is a 115 // constant, then return this remainder (but only if it is a power of 2). 116 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 117 if (isPowerOf2_64(DiffUnitsAbs)) 118 return Align(DiffUnitsAbs); 119 } 120 121 return None; 122 } 123 124 // There is an address given by an offset OffSCEV from AASCEV which has an 125 // alignment AlignSCEV. Use that information, if possible, to compute a new 126 // alignment for Ptr. 127 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 128 const SCEV *OffSCEV, Value *Ptr, 129 ScalarEvolution *SE) { 130 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 131 // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes 132 // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV 133 // may disagree. Trunc/extend so they agree. 134 PtrSCEV = SE->getTruncateOrZeroExtend( 135 PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType())); 136 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 137 138 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 139 // sign-extended OffSCEV to i64, so make sure they agree again. 140 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 141 142 // What we really want to know is the overall offset to the aligned 143 // address. This address is displaced by the provided offset. 144 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 145 146 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 147 << *AlignSCEV << " and offset " << *OffSCEV 148 << " using diff " << *DiffSCEV << "\n"); 149 150 if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) { 151 LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n"); 152 return *NewAlignment; 153 } 154 155 if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 156 // The relative offset to the alignment assumption did not yield a constant, 157 // but we should try harder: if we assume that a is 32-byte aligned, then in 158 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 159 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 160 // As a result, the new alignment will not be a constant, but can still 161 // be improved over the default (of 4) to 16. 162 163 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 164 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 165 166 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 167 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 168 169 // Now compute the new alignment using the displacement to the value in the 170 // first iteration, and also the alignment using the per-iteration delta. 171 // If these are the same, then use that answer. Otherwise, use the smaller 172 // one, but only if it divides the larger one. 173 MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 174 MaybeAlign NewIncAlignment = 175 getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 176 177 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment) 178 << "\n"); 179 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment) 180 << "\n"); 181 182 if (!NewAlignment || !NewIncAlignment) 183 return Align(1); 184 185 const Align NewAlign = *NewAlignment; 186 const Align NewIncAlign = *NewIncAlignment; 187 if (NewAlign > NewIncAlign) { 188 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " 189 << DebugStr(NewIncAlign) << "\n"); 190 return NewIncAlign; 191 } 192 if (NewIncAlign > NewAlign) { 193 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 194 << "\n"); 195 return NewAlign; 196 } 197 assert(NewIncAlign == NewAlign); 198 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 199 << "\n"); 200 return NewAlign; 201 } 202 203 return Align(1); 204 } 205 206 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 207 unsigned Idx, 208 Value *&AAPtr, 209 const SCEV *&AlignSCEV, 210 const SCEV *&OffSCEV) { 211 Type *Int64Ty = Type::getInt64Ty(I->getContext()); 212 OperandBundleUse AlignOB = I->getOperandBundleAt(Idx); 213 if (AlignOB.getTagName() != "align") 214 return false; 215 assert(AlignOB.Inputs.size() >= 2); 216 AAPtr = AlignOB.Inputs[0].get(); 217 // TODO: Consider accumulating the offset to the base. 218 AAPtr = AAPtr->stripPointerCastsSameRepresentation(); 219 AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get()); 220 AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty); 221 if (AlignOB.Inputs.size() == 3) 222 OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get()); 223 else 224 OffSCEV = SE->getZero(Int64Ty); 225 OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty); 226 return true; 227 } 228 229 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall, 230 unsigned Idx) { 231 Value *AAPtr; 232 const SCEV *AlignSCEV, *OffSCEV; 233 if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV)) 234 return false; 235 236 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 237 // affect other users. 238 if (isa<ConstantData>(AAPtr)) 239 return false; 240 241 const SCEV *AASCEV = SE->getSCEV(AAPtr); 242 243 // Apply the assumption to all other users of the specified pointer. 244 SmallPtrSet<Instruction *, 32> Visited; 245 SmallVector<Instruction*, 16> WorkList; 246 for (User *J : AAPtr->users()) { 247 if (J == ACall) 248 continue; 249 250 if (Instruction *K = dyn_cast<Instruction>(J)) 251 WorkList.push_back(K); 252 } 253 254 while (!WorkList.empty()) { 255 Instruction *J = WorkList.pop_back_val(); 256 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 257 if (!isValidAssumeForContext(ACall, J, DT)) 258 continue; 259 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 260 LI->getPointerOperand(), SE); 261 if (NewAlignment > LI->getAlign()) { 262 LI->setAlignment(NewAlignment); 263 ++NumLoadAlignChanged; 264 } 265 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 266 if (!isValidAssumeForContext(ACall, J, DT)) 267 continue; 268 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 269 SI->getPointerOperand(), SE); 270 if (NewAlignment > SI->getAlign()) { 271 SI->setAlignment(NewAlignment); 272 ++NumStoreAlignChanged; 273 } 274 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 275 if (!isValidAssumeForContext(ACall, J, DT)) 276 continue; 277 Align NewDestAlignment = 278 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); 279 280 LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment) 281 << "\n";); 282 if (NewDestAlignment > *MI->getDestAlign()) { 283 MI->setDestAlignment(NewDestAlignment); 284 ++NumMemIntAlignChanged; 285 } 286 287 // For memory transfers, there is also a source alignment that 288 // can be set. 289 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 290 Align NewSrcAlignment = 291 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); 292 293 LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment) 294 << "\n";); 295 296 if (NewSrcAlignment > *MTI->getSourceAlign()) { 297 MTI->setSourceAlignment(NewSrcAlignment); 298 ++NumMemIntAlignChanged; 299 } 300 } 301 } 302 303 // Now that we've updated that use of the pointer, look for other uses of 304 // the pointer to update. 305 Visited.insert(J); 306 for (User *UJ : J->users()) { 307 Instruction *K = cast<Instruction>(UJ); 308 if (!Visited.count(K)) 309 WorkList.push_back(K); 310 } 311 } 312 313 return true; 314 } 315 316 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 317 if (skipFunction(F)) 318 return false; 319 320 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 321 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 322 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 323 324 return Impl.runImpl(F, AC, SE, DT); 325 } 326 327 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 328 ScalarEvolution *SE_, 329 DominatorTree *DT_) { 330 SE = SE_; 331 DT = DT_; 332 333 bool Changed = false; 334 for (auto &AssumeVH : AC.assumptions()) 335 if (AssumeVH) { 336 CallInst *Call = cast<CallInst>(AssumeVH); 337 for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++) 338 Changed |= processAssumption(Call, Idx); 339 } 340 341 return Changed; 342 } 343 344 PreservedAnalyses 345 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 346 347 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 348 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 349 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 350 if (!runImpl(F, AC, &SE, &DT)) 351 return PreservedAnalyses::all(); 352 353 PreservedAnalyses PA; 354 PA.preserveSet<CFGAnalyses>(); 355 PA.preserve<AAManager>(); 356 PA.preserve<ScalarEvolutionAnalysis>(); 357 PA.preserve<GlobalsAA>(); 358 return PA; 359 } 360