1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Aggressive Dead Code Elimination pass. This pass 10 // optimistically assumes that all instructions are dead until proven otherwise, 11 // allowing it to eliminate dead computations that other DCE passes do not 12 // catch, particularly involving loop computations. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/ADCE.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstIterator.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/ProfileData/InstrProf.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include <cassert> 53 #include <cstddef> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "adce" 59 60 STATISTIC(NumRemoved, "Number of instructions removed"); 61 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed"); 62 63 // This is a temporary option until we change the interface to this pass based 64 // on optimization level. 65 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow", 66 cl::init(true), cl::Hidden); 67 68 // This option enables removing of may-be-infinite loops which have no other 69 // effect. 70 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false), 71 cl::Hidden); 72 73 namespace { 74 75 /// Information about Instructions 76 struct InstInfoType { 77 /// True if the associated instruction is live. 78 bool Live = false; 79 80 /// Quick access to information for block containing associated Instruction. 81 struct BlockInfoType *Block = nullptr; 82 }; 83 84 /// Information about basic blocks relevant to dead code elimination. 85 struct BlockInfoType { 86 /// True when this block contains a live instructions. 87 bool Live = false; 88 89 /// True when this block ends in an unconditional branch. 90 bool UnconditionalBranch = false; 91 92 /// True when this block is known to have live PHI nodes. 93 bool HasLivePhiNodes = false; 94 95 /// Control dependence sources need to be live for this block. 96 bool CFLive = false; 97 98 /// Quick access to the LiveInfo for the terminator, 99 /// holds the value &InstInfo[Terminator] 100 InstInfoType *TerminatorLiveInfo = nullptr; 101 102 /// Corresponding BasicBlock. 103 BasicBlock *BB = nullptr; 104 105 /// Cache of BB->getTerminator(). 106 Instruction *Terminator = nullptr; 107 108 /// Post-order numbering of reverse control flow graph. 109 unsigned PostOrder; 110 111 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } 112 }; 113 114 struct ADCEChanged { 115 bool ChangedAnything = false; 116 bool ChangedNonDebugInstr = false; 117 bool ChangedControlFlow = false; 118 }; 119 120 class AggressiveDeadCodeElimination { 121 Function &F; 122 123 // ADCE does not use DominatorTree per se, but it updates it to preserve the 124 // analysis. 125 DominatorTree *DT; 126 PostDominatorTree &PDT; 127 128 /// Mapping of blocks to associated information, an element in BlockInfoVec. 129 /// Use MapVector to get deterministic iteration order. 130 MapVector<BasicBlock *, BlockInfoType> BlockInfo; 131 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } 132 133 /// Mapping of instructions to associated information. 134 DenseMap<Instruction *, InstInfoType> InstInfo; 135 bool isLive(Instruction *I) { return InstInfo[I].Live; } 136 137 /// Instructions known to be live where we need to mark 138 /// reaching definitions as live. 139 SmallVector<Instruction *, 128> Worklist; 140 141 /// Debug info scopes around a live instruction. 142 SmallPtrSet<const Metadata *, 32> AliveScopes; 143 144 /// Set of blocks with not known to have live terminators. 145 SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators; 146 147 /// The set of blocks which we have determined whose control 148 /// dependence sources must be live and which have not had 149 /// those dependences analyzed. 150 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; 151 152 /// Set up auxiliary data structures for Instructions and BasicBlocks and 153 /// initialize the Worklist to the set of must-be-live Instruscions. 154 void initialize(); 155 156 /// Return true for operations which are always treated as live. 157 bool isAlwaysLive(Instruction &I); 158 159 /// Return true for instrumentation instructions for value profiling. 160 bool isInstrumentsConstant(Instruction &I); 161 162 /// Propagate liveness to reaching definitions. 163 void markLiveInstructions(); 164 165 /// Mark an instruction as live. 166 void markLive(Instruction *I); 167 168 /// Mark a block as live. 169 void markLive(BlockInfoType &BB); 170 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); } 171 172 /// Mark terminators of control predecessors of a PHI node live. 173 void markPhiLive(PHINode *PN); 174 175 /// Record the Debug Scopes which surround live debug information. 176 void collectLiveScopes(const DILocalScope &LS); 177 void collectLiveScopes(const DILocation &DL); 178 179 /// Analyze dead branches to find those whose branches are the sources 180 /// of control dependences impacting a live block. Those branches are 181 /// marked live. 182 void markLiveBranchesFromControlDependences(); 183 184 /// Remove instructions not marked live, return if any instruction was 185 /// removed. 186 ADCEChanged removeDeadInstructions(); 187 188 /// Identify connected sections of the control flow graph which have 189 /// dead terminators and rewrite the control flow graph to remove them. 190 bool updateDeadRegions(); 191 192 /// Set the BlockInfo::PostOrder field based on a post-order 193 /// numbering of the reverse control flow graph. 194 void computeReversePostOrder(); 195 196 /// Make the terminator of this block an unconditional branch to \p Target. 197 void makeUnconditional(BasicBlock *BB, BasicBlock *Target); 198 199 public: 200 AggressiveDeadCodeElimination(Function &F, DominatorTree *DT, 201 PostDominatorTree &PDT) 202 : F(F), DT(DT), PDT(PDT) {} 203 204 ADCEChanged performDeadCodeElimination(); 205 }; 206 207 } // end anonymous namespace 208 209 ADCEChanged AggressiveDeadCodeElimination::performDeadCodeElimination() { 210 initialize(); 211 markLiveInstructions(); 212 return removeDeadInstructions(); 213 } 214 215 static bool isUnconditionalBranch(Instruction *Term) { 216 auto *BR = dyn_cast<BranchInst>(Term); 217 return BR && BR->isUnconditional(); 218 } 219 220 void AggressiveDeadCodeElimination::initialize() { 221 auto NumBlocks = F.size(); 222 223 // We will have an entry in the map for each block so we grow the 224 // structure to twice that size to keep the load factor low in the hash table. 225 BlockInfo.reserve(NumBlocks); 226 size_t NumInsts = 0; 227 228 // Iterate over blocks and initialize BlockInfoVec entries, count 229 // instructions to size the InstInfo hash table. 230 for (auto &BB : F) { 231 NumInsts += BB.size(); 232 auto &Info = BlockInfo[&BB]; 233 Info.BB = &BB; 234 Info.Terminator = BB.getTerminator(); 235 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator); 236 } 237 238 // Initialize instruction map and set pointers to block info. 239 InstInfo.reserve(NumInsts); 240 for (auto &BBInfo : BlockInfo) 241 for (Instruction &I : *BBInfo.second.BB) 242 InstInfo[&I].Block = &BBInfo.second; 243 244 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not 245 // add any more elements to either after this point. 246 for (auto &BBInfo : BlockInfo) 247 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; 248 249 // Collect the set of "root" instructions that are known live. 250 for (Instruction &I : instructions(F)) 251 if (isAlwaysLive(I)) 252 markLive(&I); 253 254 if (!RemoveControlFlowFlag) 255 return; 256 257 if (!RemoveLoops) { 258 // This stores state for the depth-first iterator. In addition 259 // to recording which nodes have been visited we also record whether 260 // a node is currently on the "stack" of active ancestors of the current 261 // node. 262 using StatusMap = DenseMap<BasicBlock *, bool>; 263 264 class DFState : public StatusMap { 265 public: 266 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { 267 return StatusMap::insert(std::make_pair(BB, true)); 268 } 269 270 // Invoked after we have visited all children of a node. 271 void completed(BasicBlock *BB) { (*this)[BB] = false; } 272 273 // Return true if \p BB is currently on the active stack 274 // of ancestors. 275 bool onStack(BasicBlock *BB) { 276 auto Iter = find(BB); 277 return Iter != end() && Iter->second; 278 } 279 } State; 280 281 State.reserve(F.size()); 282 // Iterate over blocks in depth-first pre-order and 283 // treat all edges to a block already seen as loop back edges 284 // and mark the branch live it if there is a back edge. 285 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) { 286 Instruction *Term = BB->getTerminator(); 287 if (isLive(Term)) 288 continue; 289 290 for (auto *Succ : successors(BB)) 291 if (State.onStack(Succ)) { 292 // back edge.... 293 markLive(Term); 294 break; 295 } 296 } 297 } 298 299 // Mark blocks live if there is no path from the block to a 300 // return of the function. 301 // We do this by seeing which of the postdomtree root children exit the 302 // program, and for all others, mark the subtree live. 303 for (const auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) { 304 auto *BB = PDTChild->getBlock(); 305 auto &Info = BlockInfo[BB]; 306 // Real function return 307 if (isa<ReturnInst>(Info.Terminator)) { 308 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName() 309 << '\n';); 310 continue; 311 } 312 313 // This child is something else, like an infinite loop. 314 for (auto *DFNode : depth_first(PDTChild)) 315 markLive(BlockInfo[DFNode->getBlock()].Terminator); 316 } 317 318 // Treat the entry block as always live 319 auto *BB = &F.getEntryBlock(); 320 auto &EntryInfo = BlockInfo[BB]; 321 EntryInfo.Live = true; 322 if (EntryInfo.UnconditionalBranch) 323 markLive(EntryInfo.Terminator); 324 325 // Build initial collection of blocks with dead terminators 326 for (auto &BBInfo : BlockInfo) 327 if (!BBInfo.second.terminatorIsLive()) 328 BlocksWithDeadTerminators.insert(BBInfo.second.BB); 329 } 330 331 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { 332 // TODO -- use llvm::isInstructionTriviallyDead 333 if (I.isEHPad() || I.mayHaveSideEffects()) { 334 // Skip any value profile instrumentation calls if they are 335 // instrumenting constants. 336 if (isInstrumentsConstant(I)) 337 return false; 338 return true; 339 } 340 if (!I.isTerminator()) 341 return false; 342 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I))) 343 return false; 344 return true; 345 } 346 347 // Check if this instruction is a runtime call for value profiling and 348 // if it's instrumenting a constant. 349 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { 350 // TODO -- move this test into llvm::isInstructionTriviallyDead 351 if (CallInst *CI = dyn_cast<CallInst>(&I)) 352 if (Function *Callee = CI->getCalledFunction()) 353 if (Callee->getName() == getInstrProfValueProfFuncName()) 354 if (isa<Constant>(CI->getArgOperand(0))) 355 return true; 356 return false; 357 } 358 359 void AggressiveDeadCodeElimination::markLiveInstructions() { 360 // Propagate liveness backwards to operands. 361 do { 362 // Worklist holds newly discovered live instructions 363 // where we need to mark the inputs as live. 364 while (!Worklist.empty()) { 365 Instruction *LiveInst = Worklist.pop_back_val(); 366 LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump();); 367 368 for (Use &OI : LiveInst->operands()) 369 if (Instruction *Inst = dyn_cast<Instruction>(OI)) 370 markLive(Inst); 371 372 if (auto *PN = dyn_cast<PHINode>(LiveInst)) 373 markPhiLive(PN); 374 } 375 376 // After data flow liveness has been identified, examine which branch 377 // decisions are required to determine live instructions are executed. 378 markLiveBranchesFromControlDependences(); 379 380 } while (!Worklist.empty()); 381 } 382 383 void AggressiveDeadCodeElimination::markLive(Instruction *I) { 384 auto &Info = InstInfo[I]; 385 if (Info.Live) 386 return; 387 388 LLVM_DEBUG(dbgs() << "mark live: "; I->dump()); 389 Info.Live = true; 390 Worklist.push_back(I); 391 392 // Collect the live debug info scopes attached to this instruction. 393 if (const DILocation *DL = I->getDebugLoc()) 394 collectLiveScopes(*DL); 395 396 // Mark the containing block live 397 auto &BBInfo = *Info.Block; 398 if (BBInfo.Terminator == I) { 399 BlocksWithDeadTerminators.remove(BBInfo.BB); 400 // For live terminators, mark destination blocks 401 // live to preserve this control flow edges. 402 if (!BBInfo.UnconditionalBranch) 403 for (auto *BB : successors(I->getParent())) 404 markLive(BB); 405 } 406 markLive(BBInfo); 407 } 408 409 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { 410 if (BBInfo.Live) 411 return; 412 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); 413 BBInfo.Live = true; 414 if (!BBInfo.CFLive) { 415 BBInfo.CFLive = true; 416 NewLiveBlocks.insert(BBInfo.BB); 417 } 418 419 // Mark unconditional branches at the end of live 420 // blocks as live since there is no work to do for them later 421 if (BBInfo.UnconditionalBranch) 422 markLive(BBInfo.Terminator); 423 } 424 425 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { 426 if (!AliveScopes.insert(&LS).second) 427 return; 428 429 if (isa<DISubprogram>(LS)) 430 return; 431 432 // Tail-recurse through the scope chain. 433 collectLiveScopes(cast<DILocalScope>(*LS.getScope())); 434 } 435 436 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { 437 // Even though DILocations are not scopes, shove them into AliveScopes so we 438 // don't revisit them. 439 if (!AliveScopes.insert(&DL).second) 440 return; 441 442 // Collect live scopes from the scope chain. 443 collectLiveScopes(*DL.getScope()); 444 445 // Tail-recurse through the inlined-at chain. 446 if (const DILocation *IA = DL.getInlinedAt()) 447 collectLiveScopes(*IA); 448 } 449 450 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { 451 auto &Info = BlockInfo[PN->getParent()]; 452 // Only need to check this once per block. 453 if (Info.HasLivePhiNodes) 454 return; 455 Info.HasLivePhiNodes = true; 456 457 // If a predecessor block is not live, mark it as control-flow live 458 // which will trigger marking live branches upon which 459 // that block is control dependent. 460 for (auto *PredBB : predecessors(Info.BB)) { 461 auto &Info = BlockInfo[PredBB]; 462 if (!Info.CFLive) { 463 Info.CFLive = true; 464 NewLiveBlocks.insert(PredBB); 465 } 466 } 467 } 468 469 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { 470 if (BlocksWithDeadTerminators.empty()) 471 return; 472 473 LLVM_DEBUG({ 474 dbgs() << "new live blocks:\n"; 475 for (auto *BB : NewLiveBlocks) 476 dbgs() << "\t" << BB->getName() << '\n'; 477 dbgs() << "dead terminator blocks:\n"; 478 for (auto *BB : BlocksWithDeadTerminators) 479 dbgs() << "\t" << BB->getName() << '\n'; 480 }); 481 482 // The dominance frontier of a live block X in the reverse 483 // control graph is the set of blocks upon which X is control 484 // dependent. The following sequence computes the set of blocks 485 // which currently have dead terminators that are control 486 // dependence sources of a block which is in NewLiveBlocks. 487 488 const SmallPtrSet<BasicBlock *, 16> BWDT{ 489 BlocksWithDeadTerminators.begin(), 490 BlocksWithDeadTerminators.end() 491 }; 492 SmallVector<BasicBlock *, 32> IDFBlocks; 493 ReverseIDFCalculator IDFs(PDT); 494 IDFs.setDefiningBlocks(NewLiveBlocks); 495 IDFs.setLiveInBlocks(BWDT); 496 IDFs.calculate(IDFBlocks); 497 NewLiveBlocks.clear(); 498 499 // Dead terminators which control live blocks are now marked live. 500 for (auto *BB : IDFBlocks) { 501 LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); 502 markLive(BB->getTerminator()); 503 } 504 } 505 506 //===----------------------------------------------------------------------===// 507 // 508 // Routines to update the CFG and SSA information before removing dead code. 509 // 510 //===----------------------------------------------------------------------===// 511 ADCEChanged AggressiveDeadCodeElimination::removeDeadInstructions() { 512 ADCEChanged Changed; 513 // Updates control and dataflow around dead blocks 514 Changed.ChangedControlFlow = updateDeadRegions(); 515 516 LLVM_DEBUG({ 517 for (Instruction &I : instructions(F)) { 518 // Check if the instruction is alive. 519 if (isLive(&I)) 520 continue; 521 522 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 523 // Check if the scope of this variable location is alive. 524 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 525 continue; 526 527 // If intrinsic is pointing at a live SSA value, there may be an 528 // earlier optimization bug: if we know the location of the variable, 529 // why isn't the scope of the location alive? 530 for (Value *V : DII->location_ops()) { 531 if (Instruction *II = dyn_cast<Instruction>(V)) { 532 if (isLive(II)) { 533 dbgs() << "Dropping debug info for " << *DII << "\n"; 534 break; 535 } 536 } 537 } 538 } 539 } 540 }); 541 542 // The inverse of the live set is the dead set. These are those instructions 543 // that have no side effects and do not influence the control flow or return 544 // value of the function, and may therefore be deleted safely. 545 // NOTE: We reuse the Worklist vector here for memory efficiency. 546 for (Instruction &I : llvm::reverse(instructions(F))) { 547 // With "RemoveDIs" debug-info stored in DbgVariableRecord objects, 548 // debug-info attached to this instruction, and drop any for scopes that 549 // aren't alive, like the rest of this loop does. Extending support to 550 // assignment tracking is future work. 551 for (DbgRecord &DR : make_early_inc_range(I.getDbgRecordRange())) { 552 // Avoid removing a DVR that is linked to instructions because it holds 553 // information about an existing store. 554 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 555 DVR && DVR->isDbgAssign()) 556 if (!at::getAssignmentInsts(DVR).empty()) 557 continue; 558 if (AliveScopes.count(DR.getDebugLoc()->getScope())) 559 continue; 560 I.dropOneDbgRecord(&DR); 561 } 562 563 // Check if the instruction is alive. 564 if (isLive(&I)) 565 continue; 566 567 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 568 // Avoid removing a dbg.assign that is linked to instructions because it 569 // holds information about an existing store. 570 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) 571 if (!at::getAssignmentInsts(DAI).empty()) 572 continue; 573 // Check if the scope of this variable location is alive. 574 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 575 continue; 576 577 // Fallthrough and drop the intrinsic. 578 } else { 579 Changed.ChangedNonDebugInstr = true; 580 } 581 582 // Prepare to delete. 583 Worklist.push_back(&I); 584 salvageDebugInfo(I); 585 } 586 587 for (Instruction *&I : Worklist) 588 I->dropAllReferences(); 589 590 for (Instruction *&I : Worklist) { 591 ++NumRemoved; 592 I->eraseFromParent(); 593 } 594 595 Changed.ChangedAnything = Changed.ChangedControlFlow || !Worklist.empty(); 596 597 return Changed; 598 } 599 600 // A dead region is the set of dead blocks with a common live post-dominator. 601 bool AggressiveDeadCodeElimination::updateDeadRegions() { 602 LLVM_DEBUG({ 603 dbgs() << "final dead terminator blocks: " << '\n'; 604 for (auto *BB : BlocksWithDeadTerminators) 605 dbgs() << '\t' << BB->getName() 606 << (BlockInfo[BB].Live ? " LIVE\n" : "\n"); 607 }); 608 609 // Don't compute the post ordering unless we needed it. 610 bool HavePostOrder = false; 611 bool Changed = false; 612 SmallVector<DominatorTree::UpdateType, 10> DeletedEdges; 613 614 for (auto *BB : BlocksWithDeadTerminators) { 615 auto &Info = BlockInfo[BB]; 616 if (Info.UnconditionalBranch) { 617 InstInfo[Info.Terminator].Live = true; 618 continue; 619 } 620 621 if (!HavePostOrder) { 622 computeReversePostOrder(); 623 HavePostOrder = true; 624 } 625 626 // Add an unconditional branch to the successor closest to the 627 // end of the function which insures a path to the exit for each 628 // live edge. 629 BlockInfoType *PreferredSucc = nullptr; 630 for (auto *Succ : successors(BB)) { 631 auto *Info = &BlockInfo[Succ]; 632 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) 633 PreferredSucc = Info; 634 } 635 assert((PreferredSucc && PreferredSucc->PostOrder > 0) && 636 "Failed to find safe successor for dead branch"); 637 638 // Collect removed successors to update the (Post)DominatorTrees. 639 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 640 bool First = true; 641 for (auto *Succ : successors(BB)) { 642 if (!First || Succ != PreferredSucc->BB) { 643 Succ->removePredecessor(BB); 644 RemovedSuccessors.insert(Succ); 645 } else 646 First = false; 647 } 648 makeUnconditional(BB, PreferredSucc->BB); 649 650 // Inform the dominators about the deleted CFG edges. 651 for (auto *Succ : RemovedSuccessors) { 652 // It might have happened that the same successor appeared multiple times 653 // and the CFG edge wasn't really removed. 654 if (Succ != PreferredSucc->BB) { 655 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion" 656 << BB->getName() << " -> " << Succ->getName() 657 << "\n"); 658 DeletedEdges.push_back({DominatorTree::Delete, BB, Succ}); 659 } 660 } 661 662 NumBranchesRemoved += 1; 663 Changed = true; 664 } 665 666 if (!DeletedEdges.empty()) 667 DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager) 668 .applyUpdates(DeletedEdges); 669 670 return Changed; 671 } 672 673 // reverse top-sort order 674 void AggressiveDeadCodeElimination::computeReversePostOrder() { 675 // This provides a post-order numbering of the reverse control flow graph 676 // Note that it is incomplete in the presence of infinite loops but we don't 677 // need numbers blocks which don't reach the end of the functions since 678 // all branches in those blocks are forced live. 679 680 // For each block without successors, extend the DFS from the block 681 // backward through the graph 682 SmallPtrSet<BasicBlock*, 16> Visited; 683 unsigned PostOrder = 0; 684 for (auto &BB : F) { 685 if (!succ_empty(&BB)) 686 continue; 687 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited)) 688 BlockInfo[Block].PostOrder = PostOrder++; 689 } 690 } 691 692 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, 693 BasicBlock *Target) { 694 Instruction *PredTerm = BB->getTerminator(); 695 // Collect the live debug info scopes attached to this instruction. 696 if (const DILocation *DL = PredTerm->getDebugLoc()) 697 collectLiveScopes(*DL); 698 699 // Just mark live an existing unconditional branch 700 if (isUnconditionalBranch(PredTerm)) { 701 PredTerm->setSuccessor(0, Target); 702 InstInfo[PredTerm].Live = true; 703 return; 704 } 705 LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); 706 NumBranchesRemoved += 1; 707 IRBuilder<> Builder(PredTerm); 708 auto *NewTerm = Builder.CreateBr(Target); 709 InstInfo[NewTerm].Live = true; 710 if (const DILocation *DL = PredTerm->getDebugLoc()) 711 NewTerm->setDebugLoc(DL); 712 713 InstInfo.erase(PredTerm); 714 PredTerm->eraseFromParent(); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // 719 // Pass Manager integration code 720 // 721 //===----------------------------------------------------------------------===// 722 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { 723 // ADCE does not need DominatorTree, but require DominatorTree here 724 // to update analysis if it is already available. 725 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 726 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F); 727 ADCEChanged Changed = 728 AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination(); 729 if (!Changed.ChangedAnything) 730 return PreservedAnalyses::all(); 731 732 PreservedAnalyses PA; 733 if (!Changed.ChangedControlFlow) { 734 PA.preserveSet<CFGAnalyses>(); 735 if (!Changed.ChangedNonDebugInstr) { 736 // Only removing debug instructions does not affect MemorySSA. 737 // 738 // Therefore we preserve MemorySSA when only removing debug instructions 739 // since otherwise later passes may behave differently which then makes 740 // the presence of debug info affect code generation. 741 PA.preserve<MemorySSAAnalysis>(); 742 } 743 } 744 PA.preserve<DominatorTreeAnalysis>(); 745 PA.preserve<PostDominatorTreeAnalysis>(); 746 747 return PA; 748 } 749