1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Aggressive Dead Code Elimination pass. This pass 10 // optimistically assumes that all instructions are dead until proven otherwise, 11 // allowing it to eliminate dead computations that other DCE passes do not 12 // catch, particularly involving loop computations. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/ADCE.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/PostDominators.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/ProfileData/InstrProf.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include <cassert> 54 #include <cstddef> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "adce" 60 61 STATISTIC(NumRemoved, "Number of instructions removed"); 62 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed"); 63 64 // This is a temporary option until we change the interface to this pass based 65 // on optimization level. 66 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow", 67 cl::init(true), cl::Hidden); 68 69 // This option enables removing of may-be-infinite loops which have no other 70 // effect. 71 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false), 72 cl::Hidden); 73 74 namespace { 75 76 /// Information about Instructions 77 struct InstInfoType { 78 /// True if the associated instruction is live. 79 bool Live = false; 80 81 /// Quick access to information for block containing associated Instruction. 82 struct BlockInfoType *Block = nullptr; 83 }; 84 85 /// Information about basic blocks relevant to dead code elimination. 86 struct BlockInfoType { 87 /// True when this block contains a live instructions. 88 bool Live = false; 89 90 /// True when this block ends in an unconditional branch. 91 bool UnconditionalBranch = false; 92 93 /// True when this block is known to have live PHI nodes. 94 bool HasLivePhiNodes = false; 95 96 /// Control dependence sources need to be live for this block. 97 bool CFLive = false; 98 99 /// Quick access to the LiveInfo for the terminator, 100 /// holds the value &InstInfo[Terminator] 101 InstInfoType *TerminatorLiveInfo = nullptr; 102 103 /// Corresponding BasicBlock. 104 BasicBlock *BB = nullptr; 105 106 /// Cache of BB->getTerminator(). 107 Instruction *Terminator = nullptr; 108 109 /// Post-order numbering of reverse control flow graph. 110 unsigned PostOrder; 111 112 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } 113 }; 114 115 class AggressiveDeadCodeElimination { 116 Function &F; 117 118 // ADCE does not use DominatorTree per se, but it updates it to preserve the 119 // analysis. 120 DominatorTree *DT; 121 PostDominatorTree &PDT; 122 123 /// Mapping of blocks to associated information, an element in BlockInfoVec. 124 /// Use MapVector to get deterministic iteration order. 125 MapVector<BasicBlock *, BlockInfoType> BlockInfo; 126 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } 127 128 /// Mapping of instructions to associated information. 129 DenseMap<Instruction *, InstInfoType> InstInfo; 130 bool isLive(Instruction *I) { return InstInfo[I].Live; } 131 132 /// Instructions known to be live where we need to mark 133 /// reaching definitions as live. 134 SmallVector<Instruction *, 128> Worklist; 135 136 /// Debug info scopes around a live instruction. 137 SmallPtrSet<const Metadata *, 32> AliveScopes; 138 139 /// Set of blocks with not known to have live terminators. 140 SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators; 141 142 /// The set of blocks which we have determined whose control 143 /// dependence sources must be live and which have not had 144 /// those dependences analyzed. 145 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; 146 147 /// Set up auxiliary data structures for Instructions and BasicBlocks and 148 /// initialize the Worklist to the set of must-be-live Instruscions. 149 void initialize(); 150 151 /// Return true for operations which are always treated as live. 152 bool isAlwaysLive(Instruction &I); 153 154 /// Return true for instrumentation instructions for value profiling. 155 bool isInstrumentsConstant(Instruction &I); 156 157 /// Propagate liveness to reaching definitions. 158 void markLiveInstructions(); 159 160 /// Mark an instruction as live. 161 void markLive(Instruction *I); 162 163 /// Mark a block as live. 164 void markLive(BlockInfoType &BB); 165 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); } 166 167 /// Mark terminators of control predecessors of a PHI node live. 168 void markPhiLive(PHINode *PN); 169 170 /// Record the Debug Scopes which surround live debug information. 171 void collectLiveScopes(const DILocalScope &LS); 172 void collectLiveScopes(const DILocation &DL); 173 174 /// Analyze dead branches to find those whose branches are the sources 175 /// of control dependences impacting a live block. Those branches are 176 /// marked live. 177 void markLiveBranchesFromControlDependences(); 178 179 /// Remove instructions not marked live, return if any instruction was 180 /// removed. 181 bool removeDeadInstructions(); 182 183 /// Identify connected sections of the control flow graph which have 184 /// dead terminators and rewrite the control flow graph to remove them. 185 bool updateDeadRegions(); 186 187 /// Set the BlockInfo::PostOrder field based on a post-order 188 /// numbering of the reverse control flow graph. 189 void computeReversePostOrder(); 190 191 /// Make the terminator of this block an unconditional branch to \p Target. 192 void makeUnconditional(BasicBlock *BB, BasicBlock *Target); 193 194 public: 195 AggressiveDeadCodeElimination(Function &F, DominatorTree *DT, 196 PostDominatorTree &PDT) 197 : F(F), DT(DT), PDT(PDT) {} 198 199 bool performDeadCodeElimination(); 200 }; 201 202 } // end anonymous namespace 203 204 bool AggressiveDeadCodeElimination::performDeadCodeElimination() { 205 initialize(); 206 markLiveInstructions(); 207 return removeDeadInstructions(); 208 } 209 210 static bool isUnconditionalBranch(Instruction *Term) { 211 auto *BR = dyn_cast<BranchInst>(Term); 212 return BR && BR->isUnconditional(); 213 } 214 215 void AggressiveDeadCodeElimination::initialize() { 216 auto NumBlocks = F.size(); 217 218 // We will have an entry in the map for each block so we grow the 219 // structure to twice that size to keep the load factor low in the hash table. 220 BlockInfo.reserve(NumBlocks); 221 size_t NumInsts = 0; 222 223 // Iterate over blocks and initialize BlockInfoVec entries, count 224 // instructions to size the InstInfo hash table. 225 for (auto &BB : F) { 226 NumInsts += BB.size(); 227 auto &Info = BlockInfo[&BB]; 228 Info.BB = &BB; 229 Info.Terminator = BB.getTerminator(); 230 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator); 231 } 232 233 // Initialize instruction map and set pointers to block info. 234 InstInfo.reserve(NumInsts); 235 for (auto &BBInfo : BlockInfo) 236 for (Instruction &I : *BBInfo.second.BB) 237 InstInfo[&I].Block = &BBInfo.second; 238 239 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not 240 // add any more elements to either after this point. 241 for (auto &BBInfo : BlockInfo) 242 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; 243 244 // Collect the set of "root" instructions that are known live. 245 for (Instruction &I : instructions(F)) 246 if (isAlwaysLive(I)) 247 markLive(&I); 248 249 if (!RemoveControlFlowFlag) 250 return; 251 252 if (!RemoveLoops) { 253 // This stores state for the depth-first iterator. In addition 254 // to recording which nodes have been visited we also record whether 255 // a node is currently on the "stack" of active ancestors of the current 256 // node. 257 using StatusMap = DenseMap<BasicBlock *, bool>; 258 259 class DFState : public StatusMap { 260 public: 261 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { 262 return StatusMap::insert(std::make_pair(BB, true)); 263 } 264 265 // Invoked after we have visited all children of a node. 266 void completed(BasicBlock *BB) { (*this)[BB] = false; } 267 268 // Return true if \p BB is currently on the active stack 269 // of ancestors. 270 bool onStack(BasicBlock *BB) { 271 auto Iter = find(BB); 272 return Iter != end() && Iter->second; 273 } 274 } State; 275 276 State.reserve(F.size()); 277 // Iterate over blocks in depth-first pre-order and 278 // treat all edges to a block already seen as loop back edges 279 // and mark the branch live it if there is a back edge. 280 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) { 281 Instruction *Term = BB->getTerminator(); 282 if (isLive(Term)) 283 continue; 284 285 for (auto *Succ : successors(BB)) 286 if (State.onStack(Succ)) { 287 // back edge.... 288 markLive(Term); 289 break; 290 } 291 } 292 } 293 294 // Mark blocks live if there is no path from the block to a 295 // return of the function. 296 // We do this by seeing which of the postdomtree root children exit the 297 // program, and for all others, mark the subtree live. 298 for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) { 299 auto *BB = PDTChild->getBlock(); 300 auto &Info = BlockInfo[BB]; 301 // Real function return 302 if (isa<ReturnInst>(Info.Terminator)) { 303 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName() 304 << '\n';); 305 continue; 306 } 307 308 // This child is something else, like an infinite loop. 309 for (auto DFNode : depth_first(PDTChild)) 310 markLive(BlockInfo[DFNode->getBlock()].Terminator); 311 } 312 313 // Treat the entry block as always live 314 auto *BB = &F.getEntryBlock(); 315 auto &EntryInfo = BlockInfo[BB]; 316 EntryInfo.Live = true; 317 if (EntryInfo.UnconditionalBranch) 318 markLive(EntryInfo.Terminator); 319 320 // Build initial collection of blocks with dead terminators 321 for (auto &BBInfo : BlockInfo) 322 if (!BBInfo.second.terminatorIsLive()) 323 BlocksWithDeadTerminators.insert(BBInfo.second.BB); 324 } 325 326 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { 327 // TODO -- use llvm::isInstructionTriviallyDead 328 if (I.isEHPad() || I.mayHaveSideEffects()) { 329 // Skip any value profile instrumentation calls if they are 330 // instrumenting constants. 331 if (isInstrumentsConstant(I)) 332 return false; 333 return true; 334 } 335 if (!I.isTerminator()) 336 return false; 337 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I))) 338 return false; 339 return true; 340 } 341 342 // Check if this instruction is a runtime call for value profiling and 343 // if it's instrumenting a constant. 344 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { 345 // TODO -- move this test into llvm::isInstructionTriviallyDead 346 if (CallInst *CI = dyn_cast<CallInst>(&I)) 347 if (Function *Callee = CI->getCalledFunction()) 348 if (Callee->getName().equals(getInstrProfValueProfFuncName())) 349 if (isa<Constant>(CI->getArgOperand(0))) 350 return true; 351 return false; 352 } 353 354 void AggressiveDeadCodeElimination::markLiveInstructions() { 355 // Propagate liveness backwards to operands. 356 do { 357 // Worklist holds newly discovered live instructions 358 // where we need to mark the inputs as live. 359 while (!Worklist.empty()) { 360 Instruction *LiveInst = Worklist.pop_back_val(); 361 LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump();); 362 363 for (Use &OI : LiveInst->operands()) 364 if (Instruction *Inst = dyn_cast<Instruction>(OI)) 365 markLive(Inst); 366 367 if (auto *PN = dyn_cast<PHINode>(LiveInst)) 368 markPhiLive(PN); 369 } 370 371 // After data flow liveness has been identified, examine which branch 372 // decisions are required to determine live instructions are executed. 373 markLiveBranchesFromControlDependences(); 374 375 } while (!Worklist.empty()); 376 } 377 378 void AggressiveDeadCodeElimination::markLive(Instruction *I) { 379 auto &Info = InstInfo[I]; 380 if (Info.Live) 381 return; 382 383 LLVM_DEBUG(dbgs() << "mark live: "; I->dump()); 384 Info.Live = true; 385 Worklist.push_back(I); 386 387 // Collect the live debug info scopes attached to this instruction. 388 if (const DILocation *DL = I->getDebugLoc()) 389 collectLiveScopes(*DL); 390 391 // Mark the containing block live 392 auto &BBInfo = *Info.Block; 393 if (BBInfo.Terminator == I) { 394 BlocksWithDeadTerminators.remove(BBInfo.BB); 395 // For live terminators, mark destination blocks 396 // live to preserve this control flow edges. 397 if (!BBInfo.UnconditionalBranch) 398 for (auto *BB : successors(I->getParent())) 399 markLive(BB); 400 } 401 markLive(BBInfo); 402 } 403 404 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { 405 if (BBInfo.Live) 406 return; 407 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); 408 BBInfo.Live = true; 409 if (!BBInfo.CFLive) { 410 BBInfo.CFLive = true; 411 NewLiveBlocks.insert(BBInfo.BB); 412 } 413 414 // Mark unconditional branches at the end of live 415 // blocks as live since there is no work to do for them later 416 if (BBInfo.UnconditionalBranch) 417 markLive(BBInfo.Terminator); 418 } 419 420 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { 421 if (!AliveScopes.insert(&LS).second) 422 return; 423 424 if (isa<DISubprogram>(LS)) 425 return; 426 427 // Tail-recurse through the scope chain. 428 collectLiveScopes(cast<DILocalScope>(*LS.getScope())); 429 } 430 431 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { 432 // Even though DILocations are not scopes, shove them into AliveScopes so we 433 // don't revisit them. 434 if (!AliveScopes.insert(&DL).second) 435 return; 436 437 // Collect live scopes from the scope chain. 438 collectLiveScopes(*DL.getScope()); 439 440 // Tail-recurse through the inlined-at chain. 441 if (const DILocation *IA = DL.getInlinedAt()) 442 collectLiveScopes(*IA); 443 } 444 445 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { 446 auto &Info = BlockInfo[PN->getParent()]; 447 // Only need to check this once per block. 448 if (Info.HasLivePhiNodes) 449 return; 450 Info.HasLivePhiNodes = true; 451 452 // If a predecessor block is not live, mark it as control-flow live 453 // which will trigger marking live branches upon which 454 // that block is control dependent. 455 for (auto *PredBB : predecessors(Info.BB)) { 456 auto &Info = BlockInfo[PredBB]; 457 if (!Info.CFLive) { 458 Info.CFLive = true; 459 NewLiveBlocks.insert(PredBB); 460 } 461 } 462 } 463 464 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { 465 if (BlocksWithDeadTerminators.empty()) 466 return; 467 468 LLVM_DEBUG({ 469 dbgs() << "new live blocks:\n"; 470 for (auto *BB : NewLiveBlocks) 471 dbgs() << "\t" << BB->getName() << '\n'; 472 dbgs() << "dead terminator blocks:\n"; 473 for (auto *BB : BlocksWithDeadTerminators) 474 dbgs() << "\t" << BB->getName() << '\n'; 475 }); 476 477 // The dominance frontier of a live block X in the reverse 478 // control graph is the set of blocks upon which X is control 479 // dependent. The following sequence computes the set of blocks 480 // which currently have dead terminators that are control 481 // dependence sources of a block which is in NewLiveBlocks. 482 483 const SmallPtrSet<BasicBlock *, 16> BWDT{ 484 BlocksWithDeadTerminators.begin(), 485 BlocksWithDeadTerminators.end() 486 }; 487 SmallVector<BasicBlock *, 32> IDFBlocks; 488 ReverseIDFCalculator IDFs(PDT); 489 IDFs.setDefiningBlocks(NewLiveBlocks); 490 IDFs.setLiveInBlocks(BWDT); 491 IDFs.calculate(IDFBlocks); 492 NewLiveBlocks.clear(); 493 494 // Dead terminators which control live blocks are now marked live. 495 for (auto *BB : IDFBlocks) { 496 LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); 497 markLive(BB->getTerminator()); 498 } 499 } 500 501 //===----------------------------------------------------------------------===// 502 // 503 // Routines to update the CFG and SSA information before removing dead code. 504 // 505 //===----------------------------------------------------------------------===// 506 bool AggressiveDeadCodeElimination::removeDeadInstructions() { 507 // Updates control and dataflow around dead blocks 508 bool RegionsUpdated = updateDeadRegions(); 509 510 LLVM_DEBUG({ 511 for (Instruction &I : instructions(F)) { 512 // Check if the instruction is alive. 513 if (isLive(&I)) 514 continue; 515 516 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 517 // Check if the scope of this variable location is alive. 518 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 519 continue; 520 521 // If intrinsic is pointing at a live SSA value, there may be an 522 // earlier optimization bug: if we know the location of the variable, 523 // why isn't the scope of the location alive? 524 if (Value *V = DII->getVariableLocation()) 525 if (Instruction *II = dyn_cast<Instruction>(V)) 526 if (isLive(II)) 527 dbgs() << "Dropping debug info for " << *DII << "\n"; 528 } 529 } 530 }); 531 532 // The inverse of the live set is the dead set. These are those instructions 533 // that have no side effects and do not influence the control flow or return 534 // value of the function, and may therefore be deleted safely. 535 // NOTE: We reuse the Worklist vector here for memory efficiency. 536 for (Instruction &I : instructions(F)) { 537 // Check if the instruction is alive. 538 if (isLive(&I)) 539 continue; 540 541 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 542 // Check if the scope of this variable location is alive. 543 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 544 continue; 545 546 // Fallthrough and drop the intrinsic. 547 } 548 549 // Prepare to delete. 550 Worklist.push_back(&I); 551 I.dropAllReferences(); 552 } 553 554 for (Instruction *&I : Worklist) { 555 ++NumRemoved; 556 I->eraseFromParent(); 557 } 558 559 return !Worklist.empty() || RegionsUpdated; 560 } 561 562 // A dead region is the set of dead blocks with a common live post-dominator. 563 bool AggressiveDeadCodeElimination::updateDeadRegions() { 564 LLVM_DEBUG({ 565 dbgs() << "final dead terminator blocks: " << '\n'; 566 for (auto *BB : BlocksWithDeadTerminators) 567 dbgs() << '\t' << BB->getName() 568 << (BlockInfo[BB].Live ? " LIVE\n" : "\n"); 569 }); 570 571 // Don't compute the post ordering unless we needed it. 572 bool HavePostOrder = false; 573 bool Changed = false; 574 575 for (auto *BB : BlocksWithDeadTerminators) { 576 auto &Info = BlockInfo[BB]; 577 if (Info.UnconditionalBranch) { 578 InstInfo[Info.Terminator].Live = true; 579 continue; 580 } 581 582 if (!HavePostOrder) { 583 computeReversePostOrder(); 584 HavePostOrder = true; 585 } 586 587 // Add an unconditional branch to the successor closest to the 588 // end of the function which insures a path to the exit for each 589 // live edge. 590 BlockInfoType *PreferredSucc = nullptr; 591 for (auto *Succ : successors(BB)) { 592 auto *Info = &BlockInfo[Succ]; 593 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) 594 PreferredSucc = Info; 595 } 596 assert((PreferredSucc && PreferredSucc->PostOrder > 0) && 597 "Failed to find safe successor for dead branch"); 598 599 // Collect removed successors to update the (Post)DominatorTrees. 600 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 601 bool First = true; 602 for (auto *Succ : successors(BB)) { 603 if (!First || Succ != PreferredSucc->BB) { 604 Succ->removePredecessor(BB); 605 RemovedSuccessors.insert(Succ); 606 } else 607 First = false; 608 } 609 makeUnconditional(BB, PreferredSucc->BB); 610 611 // Inform the dominators about the deleted CFG edges. 612 SmallVector<DominatorTree::UpdateType, 4> DeletedEdges; 613 for (auto *Succ : RemovedSuccessors) { 614 // It might have happened that the same successor appeared multiple times 615 // and the CFG edge wasn't really removed. 616 if (Succ != PreferredSucc->BB) { 617 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion" 618 << BB->getName() << " -> " << Succ->getName() 619 << "\n"); 620 DeletedEdges.push_back({DominatorTree::Delete, BB, Succ}); 621 } 622 } 623 624 DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager) 625 .applyUpdates(DeletedEdges); 626 627 NumBranchesRemoved += 1; 628 Changed = true; 629 } 630 631 return Changed; 632 } 633 634 // reverse top-sort order 635 void AggressiveDeadCodeElimination::computeReversePostOrder() { 636 // This provides a post-order numbering of the reverse control flow graph 637 // Note that it is incomplete in the presence of infinite loops but we don't 638 // need numbers blocks which don't reach the end of the functions since 639 // all branches in those blocks are forced live. 640 641 // For each block without successors, extend the DFS from the block 642 // backward through the graph 643 SmallPtrSet<BasicBlock*, 16> Visited; 644 unsigned PostOrder = 0; 645 for (auto &BB : F) { 646 if (succ_begin(&BB) != succ_end(&BB)) 647 continue; 648 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited)) 649 BlockInfo[Block].PostOrder = PostOrder++; 650 } 651 } 652 653 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, 654 BasicBlock *Target) { 655 Instruction *PredTerm = BB->getTerminator(); 656 // Collect the live debug info scopes attached to this instruction. 657 if (const DILocation *DL = PredTerm->getDebugLoc()) 658 collectLiveScopes(*DL); 659 660 // Just mark live an existing unconditional branch 661 if (isUnconditionalBranch(PredTerm)) { 662 PredTerm->setSuccessor(0, Target); 663 InstInfo[PredTerm].Live = true; 664 return; 665 } 666 LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); 667 NumBranchesRemoved += 1; 668 IRBuilder<> Builder(PredTerm); 669 auto *NewTerm = Builder.CreateBr(Target); 670 InstInfo[NewTerm].Live = true; 671 if (const DILocation *DL = PredTerm->getDebugLoc()) 672 NewTerm->setDebugLoc(DL); 673 674 InstInfo.erase(PredTerm); 675 PredTerm->eraseFromParent(); 676 } 677 678 //===----------------------------------------------------------------------===// 679 // 680 // Pass Manager integration code 681 // 682 //===----------------------------------------------------------------------===// 683 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { 684 // ADCE does not need DominatorTree, but require DominatorTree here 685 // to update analysis if it is already available. 686 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 687 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F); 688 if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination()) 689 return PreservedAnalyses::all(); 690 691 PreservedAnalyses PA; 692 // TODO: We could track if we have actually done CFG changes. 693 if (!RemoveControlFlowFlag) 694 PA.preserveSet<CFGAnalyses>(); 695 else { 696 PA.preserve<DominatorTreeAnalysis>(); 697 PA.preserve<PostDominatorTreeAnalysis>(); 698 } 699 PA.preserve<GlobalsAA>(); 700 return PA; 701 } 702 703 namespace { 704 705 struct ADCELegacyPass : public FunctionPass { 706 static char ID; // Pass identification, replacement for typeid 707 708 ADCELegacyPass() : FunctionPass(ID) { 709 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); 710 } 711 712 bool runOnFunction(Function &F) override { 713 if (skipFunction(F)) 714 return false; 715 716 // ADCE does not need DominatorTree, but require DominatorTree here 717 // to update analysis if it is already available. 718 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 719 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 720 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 721 return AggressiveDeadCodeElimination(F, DT, PDT) 722 .performDeadCodeElimination(); 723 } 724 725 void getAnalysisUsage(AnalysisUsage &AU) const override { 726 AU.addRequired<PostDominatorTreeWrapperPass>(); 727 if (!RemoveControlFlowFlag) 728 AU.setPreservesCFG(); 729 else { 730 AU.addPreserved<DominatorTreeWrapperPass>(); 731 AU.addPreserved<PostDominatorTreeWrapperPass>(); 732 } 733 AU.addPreserved<GlobalsAAWrapperPass>(); 734 } 735 }; 736 737 } // end anonymous namespace 738 739 char ADCELegacyPass::ID = 0; 740 741 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce", 742 "Aggressive Dead Code Elimination", false, false) 743 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 744 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", 745 false, false) 746 747 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); } 748