xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Aggressive Dead Code Elimination pass.  This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/PassManager.h"
44 #include "llvm/IR/Use.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include <cassert>
53 #include <cstddef>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "adce"
59 
60 STATISTIC(NumRemoved, "Number of instructions removed");
61 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
62 
63 // This is a temporary option until we change the interface to this pass based
64 // on optimization level.
65 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
66                                            cl::init(true), cl::Hidden);
67 
68 // This option enables removing of may-be-infinite loops which have no other
69 // effect.
70 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
71                                  cl::Hidden);
72 
73 namespace {
74 
75 /// Information about Instructions
76 struct InstInfoType {
77   /// True if the associated instruction is live.
78   bool Live = false;
79 
80   /// Quick access to information for block containing associated Instruction.
81   struct BlockInfoType *Block = nullptr;
82 };
83 
84 /// Information about basic blocks relevant to dead code elimination.
85 struct BlockInfoType {
86   /// True when this block contains a live instructions.
87   bool Live = false;
88 
89   /// True when this block ends in an unconditional branch.
90   bool UnconditionalBranch = false;
91 
92   /// True when this block is known to have live PHI nodes.
93   bool HasLivePhiNodes = false;
94 
95   /// Control dependence sources need to be live for this block.
96   bool CFLive = false;
97 
98   /// Quick access to the LiveInfo for the terminator,
99   /// holds the value &InstInfo[Terminator]
100   InstInfoType *TerminatorLiveInfo = nullptr;
101 
102   /// Corresponding BasicBlock.
103   BasicBlock *BB = nullptr;
104 
105   /// Cache of BB->getTerminator().
106   Instruction *Terminator = nullptr;
107 
108   /// Post-order numbering of reverse control flow graph.
109   unsigned PostOrder;
110 
111   bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
112 };
113 
114 struct ADCEChanged {
115   bool ChangedAnything = false;
116   bool ChangedNonDebugInstr = false;
117   bool ChangedControlFlow = false;
118 };
119 
120 class AggressiveDeadCodeElimination {
121   Function &F;
122 
123   // ADCE does not use DominatorTree per se, but it updates it to preserve the
124   // analysis.
125   DominatorTree *DT;
126   PostDominatorTree &PDT;
127 
128   /// Mapping of blocks to associated information, an element in BlockInfoVec.
129   /// Use MapVector to get deterministic iteration order.
130   MapVector<BasicBlock *, BlockInfoType> BlockInfo;
131   bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
132 
133   /// Mapping of instructions to associated information.
134   DenseMap<Instruction *, InstInfoType> InstInfo;
135   bool isLive(Instruction *I) { return InstInfo[I].Live; }
136 
137   /// Instructions known to be live where we need to mark
138   /// reaching definitions as live.
139   SmallVector<Instruction *, 128> Worklist;
140 
141   /// Debug info scopes around a live instruction.
142   SmallPtrSet<const Metadata *, 32> AliveScopes;
143 
144   /// Set of blocks with not known to have live terminators.
145   SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;
146 
147   /// The set of blocks which we have determined whose control
148   /// dependence sources must be live and which have not had
149   /// those dependences analyzed.
150   SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
151 
152   /// Set up auxiliary data structures for Instructions and BasicBlocks and
153   /// initialize the Worklist to the set of must-be-live Instruscions.
154   void initialize();
155 
156   /// Return true for operations which are always treated as live.
157   bool isAlwaysLive(Instruction &I);
158 
159   /// Return true for instrumentation instructions for value profiling.
160   bool isInstrumentsConstant(Instruction &I);
161 
162   /// Propagate liveness to reaching definitions.
163   void markLiveInstructions();
164 
165   /// Mark an instruction as live.
166   void markLive(Instruction *I);
167 
168   /// Mark a block as live.
169   void markLive(BlockInfoType &BB);
170   void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
171 
172   /// Mark terminators of control predecessors of a PHI node live.
173   void markPhiLive(PHINode *PN);
174 
175   /// Record the Debug Scopes which surround live debug information.
176   void collectLiveScopes(const DILocalScope &LS);
177   void collectLiveScopes(const DILocation &DL);
178 
179   /// Analyze dead branches to find those whose branches are the sources
180   /// of control dependences impacting a live block. Those branches are
181   /// marked live.
182   void markLiveBranchesFromControlDependences();
183 
184   /// Remove instructions not marked live, return if any instruction was
185   /// removed.
186   ADCEChanged removeDeadInstructions();
187 
188   /// Identify connected sections of the control flow graph which have
189   /// dead terminators and rewrite the control flow graph to remove them.
190   bool updateDeadRegions();
191 
192   /// Set the BlockInfo::PostOrder field based on a post-order
193   /// numbering of the reverse control flow graph.
194   void computeReversePostOrder();
195 
196   /// Make the terminator of this block an unconditional branch to \p Target.
197   void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
198 
199 public:
200   AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
201                                 PostDominatorTree &PDT)
202       : F(F), DT(DT), PDT(PDT) {}
203 
204   ADCEChanged performDeadCodeElimination();
205 };
206 
207 } // end anonymous namespace
208 
209 ADCEChanged AggressiveDeadCodeElimination::performDeadCodeElimination() {
210   initialize();
211   markLiveInstructions();
212   return removeDeadInstructions();
213 }
214 
215 static bool isUnconditionalBranch(Instruction *Term) {
216   auto *BR = dyn_cast<BranchInst>(Term);
217   return BR && BR->isUnconditional();
218 }
219 
220 void AggressiveDeadCodeElimination::initialize() {
221   auto NumBlocks = F.size();
222 
223   // We will have an entry in the map for each block so we grow the
224   // structure to twice that size to keep the load factor low in the hash table.
225   BlockInfo.reserve(NumBlocks);
226   size_t NumInsts = 0;
227 
228   // Iterate over blocks and initialize BlockInfoVec entries, count
229   // instructions to size the InstInfo hash table.
230   for (auto &BB : F) {
231     NumInsts += BB.size();
232     auto &Info = BlockInfo[&BB];
233     Info.BB = &BB;
234     Info.Terminator = BB.getTerminator();
235     Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
236   }
237 
238   // Initialize instruction map and set pointers to block info.
239   InstInfo.reserve(NumInsts);
240   for (auto &BBInfo : BlockInfo)
241     for (Instruction &I : *BBInfo.second.BB)
242       InstInfo[&I].Block = &BBInfo.second;
243 
244   // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
245   // add any more elements to either after this point.
246   for (auto &BBInfo : BlockInfo)
247     BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
248 
249   // Collect the set of "root" instructions that are known live.
250   for (Instruction &I : instructions(F))
251     if (isAlwaysLive(I))
252       markLive(&I);
253 
254   if (!RemoveControlFlowFlag)
255     return;
256 
257   if (!RemoveLoops) {
258     // This stores state for the depth-first iterator. In addition
259     // to recording which nodes have been visited we also record whether
260     // a node is currently on the "stack" of active ancestors of the current
261     // node.
262     using StatusMap = DenseMap<BasicBlock *, bool>;
263 
264     class DFState : public StatusMap {
265     public:
266       std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
267         return StatusMap::insert(std::make_pair(BB, true));
268       }
269 
270       // Invoked after we have visited all children of a node.
271       void completed(BasicBlock *BB) { (*this)[BB] = false; }
272 
273       // Return true if \p BB is currently on the active stack
274       // of ancestors.
275       bool onStack(BasicBlock *BB) {
276         auto Iter = find(BB);
277         return Iter != end() && Iter->second;
278       }
279     } State;
280 
281     State.reserve(F.size());
282     // Iterate over blocks in depth-first pre-order and
283     // treat all edges to a block already seen as loop back edges
284     // and mark the branch live it if there is a back edge.
285     for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
286       Instruction *Term = BB->getTerminator();
287       if (isLive(Term))
288         continue;
289 
290       for (auto *Succ : successors(BB))
291         if (State.onStack(Succ)) {
292           // back edge....
293           markLive(Term);
294           break;
295         }
296     }
297   }
298 
299   // Mark blocks live if there is no path from the block to a
300   // return of the function.
301   // We do this by seeing which of the postdomtree root children exit the
302   // program, and for all others, mark the subtree live.
303   for (const auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
304     auto *BB = PDTChild->getBlock();
305     auto &Info = BlockInfo[BB];
306     // Real function return
307     if (isa<ReturnInst>(Info.Terminator)) {
308       LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
309                         << '\n';);
310       continue;
311     }
312 
313     // This child is something else, like an infinite loop.
314     for (auto *DFNode : depth_first(PDTChild))
315       markLive(BlockInfo[DFNode->getBlock()].Terminator);
316   }
317 
318   // Treat the entry block as always live
319   auto *BB = &F.getEntryBlock();
320   auto &EntryInfo = BlockInfo[BB];
321   EntryInfo.Live = true;
322   if (EntryInfo.UnconditionalBranch)
323     markLive(EntryInfo.Terminator);
324 
325   // Build initial collection of blocks with dead terminators
326   for (auto &BBInfo : BlockInfo)
327     if (!BBInfo.second.terminatorIsLive())
328       BlocksWithDeadTerminators.insert(BBInfo.second.BB);
329 }
330 
331 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
332   // TODO -- use llvm::isInstructionTriviallyDead
333   if (I.isEHPad() || I.mayHaveSideEffects()) {
334     // Skip any value profile instrumentation calls if they are
335     // instrumenting constants.
336     if (isInstrumentsConstant(I))
337       return false;
338     return true;
339   }
340   if (!I.isTerminator())
341     return false;
342   if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
343     return false;
344   return true;
345 }
346 
347 // Check if this instruction is a runtime call for value profiling and
348 // if it's instrumenting a constant.
349 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
350   // TODO -- move this test into llvm::isInstructionTriviallyDead
351   if (CallInst *CI = dyn_cast<CallInst>(&I))
352     if (Function *Callee = CI->getCalledFunction())
353       if (Callee->getName() == getInstrProfValueProfFuncName())
354         if (isa<Constant>(CI->getArgOperand(0)))
355           return true;
356   return false;
357 }
358 
359 void AggressiveDeadCodeElimination::markLiveInstructions() {
360   // Propagate liveness backwards to operands.
361   do {
362     // Worklist holds newly discovered live instructions
363     // where we need to mark the inputs as live.
364     while (!Worklist.empty()) {
365       Instruction *LiveInst = Worklist.pop_back_val();
366       LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
367 
368       for (Use &OI : LiveInst->operands())
369         if (Instruction *Inst = dyn_cast<Instruction>(OI))
370           markLive(Inst);
371 
372       if (auto *PN = dyn_cast<PHINode>(LiveInst))
373         markPhiLive(PN);
374     }
375 
376     // After data flow liveness has been identified, examine which branch
377     // decisions are required to determine live instructions are executed.
378     markLiveBranchesFromControlDependences();
379 
380   } while (!Worklist.empty());
381 }
382 
383 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
384   auto &Info = InstInfo[I];
385   if (Info.Live)
386     return;
387 
388   LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
389   Info.Live = true;
390   Worklist.push_back(I);
391 
392   // Collect the live debug info scopes attached to this instruction.
393   if (const DILocation *DL = I->getDebugLoc())
394     collectLiveScopes(*DL);
395 
396   // Mark the containing block live
397   auto &BBInfo = *Info.Block;
398   if (BBInfo.Terminator == I) {
399     BlocksWithDeadTerminators.remove(BBInfo.BB);
400     // For live terminators, mark destination blocks
401     // live to preserve this control flow edges.
402     if (!BBInfo.UnconditionalBranch)
403       for (auto *BB : successors(I->getParent()))
404         markLive(BB);
405   }
406   markLive(BBInfo);
407 }
408 
409 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
410   if (BBInfo.Live)
411     return;
412   LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
413   BBInfo.Live = true;
414   if (!BBInfo.CFLive) {
415     BBInfo.CFLive = true;
416     NewLiveBlocks.insert(BBInfo.BB);
417   }
418 
419   // Mark unconditional branches at the end of live
420   // blocks as live since there is no work to do for them later
421   if (BBInfo.UnconditionalBranch)
422     markLive(BBInfo.Terminator);
423 }
424 
425 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
426   if (!AliveScopes.insert(&LS).second)
427     return;
428 
429   if (isa<DISubprogram>(LS))
430     return;
431 
432   // Tail-recurse through the scope chain.
433   collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
434 }
435 
436 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
437   // Even though DILocations are not scopes, shove them into AliveScopes so we
438   // don't revisit them.
439   if (!AliveScopes.insert(&DL).second)
440     return;
441 
442   // Collect live scopes from the scope chain.
443   collectLiveScopes(*DL.getScope());
444 
445   // Tail-recurse through the inlined-at chain.
446   if (const DILocation *IA = DL.getInlinedAt())
447     collectLiveScopes(*IA);
448 }
449 
450 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
451   auto &Info = BlockInfo[PN->getParent()];
452   // Only need to check this once per block.
453   if (Info.HasLivePhiNodes)
454     return;
455   Info.HasLivePhiNodes = true;
456 
457   // If a predecessor block is not live, mark it as control-flow live
458   // which will trigger marking live branches upon which
459   // that block is control dependent.
460   for (auto *PredBB : predecessors(Info.BB)) {
461     auto &Info = BlockInfo[PredBB];
462     if (!Info.CFLive) {
463       Info.CFLive = true;
464       NewLiveBlocks.insert(PredBB);
465     }
466   }
467 }
468 
469 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
470   if (BlocksWithDeadTerminators.empty())
471     return;
472 
473   LLVM_DEBUG({
474     dbgs() << "new live blocks:\n";
475     for (auto *BB : NewLiveBlocks)
476       dbgs() << "\t" << BB->getName() << '\n';
477     dbgs() << "dead terminator blocks:\n";
478     for (auto *BB : BlocksWithDeadTerminators)
479       dbgs() << "\t" << BB->getName() << '\n';
480   });
481 
482   // The dominance frontier of a live block X in the reverse
483   // control graph is the set of blocks upon which X is control
484   // dependent. The following sequence computes the set of blocks
485   // which currently have dead terminators that are control
486   // dependence sources of a block which is in NewLiveBlocks.
487 
488   const SmallPtrSet<BasicBlock *, 16> BWDT{
489       BlocksWithDeadTerminators.begin(),
490       BlocksWithDeadTerminators.end()
491   };
492   SmallVector<BasicBlock *, 32> IDFBlocks;
493   ReverseIDFCalculator IDFs(PDT);
494   IDFs.setDefiningBlocks(NewLiveBlocks);
495   IDFs.setLiveInBlocks(BWDT);
496   IDFs.calculate(IDFBlocks);
497   NewLiveBlocks.clear();
498 
499   // Dead terminators which control live blocks are now marked live.
500   for (auto *BB : IDFBlocks) {
501     LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
502     markLive(BB->getTerminator());
503   }
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //
508 //  Routines to update the CFG and SSA information before removing dead code.
509 //
510 //===----------------------------------------------------------------------===//
511 ADCEChanged AggressiveDeadCodeElimination::removeDeadInstructions() {
512   ADCEChanged Changed;
513   // Updates control and dataflow around dead blocks
514   Changed.ChangedControlFlow = updateDeadRegions();
515 
516   LLVM_DEBUG({
517     for (Instruction &I : instructions(F)) {
518       // Check if the instruction is alive.
519       if (isLive(&I))
520         continue;
521 
522       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
523         // Check if the scope of this variable location is alive.
524         if (AliveScopes.count(DII->getDebugLoc()->getScope()))
525           continue;
526 
527         // If intrinsic is pointing at a live SSA value, there may be an
528         // earlier optimization bug: if we know the location of the variable,
529         // why isn't the scope of the location alive?
530         for (Value *V : DII->location_ops()) {
531           if (Instruction *II = dyn_cast<Instruction>(V)) {
532             if (isLive(II)) {
533               dbgs() << "Dropping debug info for " << *DII << "\n";
534               break;
535             }
536           }
537         }
538       }
539     }
540   });
541 
542   // The inverse of the live set is the dead set.  These are those instructions
543   // that have no side effects and do not influence the control flow or return
544   // value of the function, and may therefore be deleted safely.
545   // NOTE: We reuse the Worklist vector here for memory efficiency.
546   for (Instruction &I : llvm::reverse(instructions(F))) {
547     // With "RemoveDIs" debug-info stored in DbgVariableRecord objects,
548     // debug-info attached to this instruction, and drop any for scopes that
549     // aren't alive, like the rest of this loop does. Extending support to
550     // assignment tracking is future work.
551     for (DbgRecord &DR : make_early_inc_range(I.getDbgRecordRange())) {
552       // Avoid removing a DVR that is linked to instructions because it holds
553       // information about an existing store.
554       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
555           DVR && DVR->isDbgAssign())
556         if (!at::getAssignmentInsts(DVR).empty())
557           continue;
558       if (AliveScopes.count(DR.getDebugLoc()->getScope()))
559         continue;
560       I.dropOneDbgRecord(&DR);
561     }
562 
563     // Check if the instruction is alive.
564     if (isLive(&I))
565       continue;
566 
567     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
568       // Avoid removing a dbg.assign that is linked to instructions because it
569       // holds information about an existing store.
570       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII))
571         if (!at::getAssignmentInsts(DAI).empty())
572           continue;
573       // Check if the scope of this variable location is alive.
574       if (AliveScopes.count(DII->getDebugLoc()->getScope()))
575         continue;
576 
577       // Fallthrough and drop the intrinsic.
578     } else {
579       Changed.ChangedNonDebugInstr = true;
580     }
581 
582     // Prepare to delete.
583     Worklist.push_back(&I);
584     salvageDebugInfo(I);
585   }
586 
587   for (Instruction *&I : Worklist)
588     I->dropAllReferences();
589 
590   for (Instruction *&I : Worklist) {
591     ++NumRemoved;
592     I->eraseFromParent();
593   }
594 
595   Changed.ChangedAnything = Changed.ChangedControlFlow || !Worklist.empty();
596 
597   return Changed;
598 }
599 
600 // A dead region is the set of dead blocks with a common live post-dominator.
601 bool AggressiveDeadCodeElimination::updateDeadRegions() {
602   LLVM_DEBUG({
603     dbgs() << "final dead terminator blocks: " << '\n';
604     for (auto *BB : BlocksWithDeadTerminators)
605       dbgs() << '\t' << BB->getName()
606              << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
607   });
608 
609   // Don't compute the post ordering unless we needed it.
610   bool HavePostOrder = false;
611   bool Changed = false;
612   SmallVector<DominatorTree::UpdateType, 10> DeletedEdges;
613 
614   for (auto *BB : BlocksWithDeadTerminators) {
615     auto &Info = BlockInfo[BB];
616     if (Info.UnconditionalBranch) {
617       InstInfo[Info.Terminator].Live = true;
618       continue;
619     }
620 
621     if (!HavePostOrder) {
622       computeReversePostOrder();
623       HavePostOrder = true;
624     }
625 
626     // Add an unconditional branch to the successor closest to the
627     // end of the function which insures a path to the exit for each
628     // live edge.
629     BlockInfoType *PreferredSucc = nullptr;
630     for (auto *Succ : successors(BB)) {
631       auto *Info = &BlockInfo[Succ];
632       if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
633         PreferredSucc = Info;
634     }
635     assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
636            "Failed to find safe successor for dead branch");
637 
638     // Collect removed successors to update the (Post)DominatorTrees.
639     SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
640     bool First = true;
641     for (auto *Succ : successors(BB)) {
642       if (!First || Succ != PreferredSucc->BB) {
643         Succ->removePredecessor(BB);
644         RemovedSuccessors.insert(Succ);
645       } else
646         First = false;
647     }
648     makeUnconditional(BB, PreferredSucc->BB);
649 
650     // Inform the dominators about the deleted CFG edges.
651     for (auto *Succ : RemovedSuccessors) {
652       // It might have happened that the same successor appeared multiple times
653       // and the CFG edge wasn't really removed.
654       if (Succ != PreferredSucc->BB) {
655         LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
656                           << BB->getName() << " -> " << Succ->getName()
657                           << "\n");
658         DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
659       }
660     }
661 
662     NumBranchesRemoved += 1;
663     Changed = true;
664   }
665 
666   if (!DeletedEdges.empty())
667     DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
668         .applyUpdates(DeletedEdges);
669 
670   return Changed;
671 }
672 
673 // reverse top-sort order
674 void AggressiveDeadCodeElimination::computeReversePostOrder() {
675   // This provides a post-order numbering of the reverse control flow graph
676   // Note that it is incomplete in the presence of infinite loops but we don't
677   // need numbers blocks which don't reach the end of the functions since
678   // all branches in those blocks are forced live.
679 
680   // For each block without successors, extend the DFS from the block
681   // backward through the graph
682   SmallPtrSet<BasicBlock*, 16> Visited;
683   unsigned PostOrder = 0;
684   for (auto &BB : F) {
685     if (!succ_empty(&BB))
686       continue;
687     for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
688       BlockInfo[Block].PostOrder = PostOrder++;
689   }
690 }
691 
692 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
693                                                       BasicBlock *Target) {
694   Instruction *PredTerm = BB->getTerminator();
695   // Collect the live debug info scopes attached to this instruction.
696   if (const DILocation *DL = PredTerm->getDebugLoc())
697     collectLiveScopes(*DL);
698 
699   // Just mark live an existing unconditional branch
700   if (isUnconditionalBranch(PredTerm)) {
701     PredTerm->setSuccessor(0, Target);
702     InstInfo[PredTerm].Live = true;
703     return;
704   }
705   LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
706   NumBranchesRemoved += 1;
707   IRBuilder<> Builder(PredTerm);
708   auto *NewTerm = Builder.CreateBr(Target);
709   InstInfo[NewTerm].Live = true;
710   if (const DILocation *DL = PredTerm->getDebugLoc())
711     NewTerm->setDebugLoc(DL);
712 
713   InstInfo.erase(PredTerm);
714   PredTerm->eraseFromParent();
715 }
716 
717 //===----------------------------------------------------------------------===//
718 //
719 // Pass Manager integration code
720 //
721 //===----------------------------------------------------------------------===//
722 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
723   // ADCE does not need DominatorTree, but require DominatorTree here
724   // to update analysis if it is already available.
725   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
726   auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
727   ADCEChanged Changed =
728       AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination();
729   if (!Changed.ChangedAnything)
730     return PreservedAnalyses::all();
731 
732   PreservedAnalyses PA;
733   if (!Changed.ChangedControlFlow) {
734     PA.preserveSet<CFGAnalyses>();
735     if (!Changed.ChangedNonDebugInstr) {
736       // Only removing debug instructions does not affect MemorySSA.
737       //
738       // Therefore we preserve MemorySSA when only removing debug instructions
739       // since otherwise later passes may behave differently which then makes
740       // the presence of debug info affect code generation.
741       PA.preserve<MemorySSAAnalysis>();
742     }
743   }
744   PA.preserve<DominatorTreeAnalysis>();
745   PA.preserve<PostDominatorTreeAnalysis>();
746 
747   return PA;
748 }
749