xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Aggressive Dead Code Elimination pass.  This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include <cassert>
53 #include <cstddef>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "adce"
59 
60 STATISTIC(NumRemoved, "Number of instructions removed");
61 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
62 
63 // This is a temporary option until we change the interface to this pass based
64 // on optimization level.
65 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
66                                            cl::init(true), cl::Hidden);
67 
68 // This option enables removing of may-be-infinite loops which have no other
69 // effect.
70 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
71                                  cl::Hidden);
72 
73 namespace {
74 
75 /// Information about Instructions
76 struct InstInfoType {
77   /// True if the associated instruction is live.
78   bool Live = false;
79 
80   /// Quick access to information for block containing associated Instruction.
81   struct BlockInfoType *Block = nullptr;
82 };
83 
84 /// Information about basic blocks relevant to dead code elimination.
85 struct BlockInfoType {
86   /// True when this block contains a live instructions.
87   bool Live = false;
88 
89   /// True when this block ends in an unconditional branch.
90   bool UnconditionalBranch = false;
91 
92   /// True when this block is known to have live PHI nodes.
93   bool HasLivePhiNodes = false;
94 
95   /// Control dependence sources need to be live for this block.
96   bool CFLive = false;
97 
98   /// Quick access to the LiveInfo for the terminator,
99   /// holds the value &InstInfo[Terminator]
100   InstInfoType *TerminatorLiveInfo = nullptr;
101 
102   /// Corresponding BasicBlock.
103   BasicBlock *BB = nullptr;
104 
105   /// Cache of BB->getTerminator().
106   Instruction *Terminator = nullptr;
107 
108   /// Post-order numbering of reverse control flow graph.
109   unsigned PostOrder;
110 
111   bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
112 };
113 
114 class AggressiveDeadCodeElimination {
115   Function &F;
116 
117   // ADCE does not use DominatorTree per se, but it updates it to preserve the
118   // analysis.
119   DominatorTree *DT;
120   PostDominatorTree &PDT;
121 
122   /// Mapping of blocks to associated information, an element in BlockInfoVec.
123   /// Use MapVector to get deterministic iteration order.
124   MapVector<BasicBlock *, BlockInfoType> BlockInfo;
125   bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
126 
127   /// Mapping of instructions to associated information.
128   DenseMap<Instruction *, InstInfoType> InstInfo;
129   bool isLive(Instruction *I) { return InstInfo[I].Live; }
130 
131   /// Instructions known to be live where we need to mark
132   /// reaching definitions as live.
133   SmallVector<Instruction *, 128> Worklist;
134 
135   /// Debug info scopes around a live instruction.
136   SmallPtrSet<const Metadata *, 32> AliveScopes;
137 
138   /// Set of blocks with not known to have live terminators.
139   SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;
140 
141   /// The set of blocks which we have determined whose control
142   /// dependence sources must be live and which have not had
143   /// those dependences analyzed.
144   SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
145 
146   /// Set up auxiliary data structures for Instructions and BasicBlocks and
147   /// initialize the Worklist to the set of must-be-live Instruscions.
148   void initialize();
149 
150   /// Return true for operations which are always treated as live.
151   bool isAlwaysLive(Instruction &I);
152 
153   /// Return true for instrumentation instructions for value profiling.
154   bool isInstrumentsConstant(Instruction &I);
155 
156   /// Propagate liveness to reaching definitions.
157   void markLiveInstructions();
158 
159   /// Mark an instruction as live.
160   void markLive(Instruction *I);
161 
162   /// Mark a block as live.
163   void markLive(BlockInfoType &BB);
164   void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
165 
166   /// Mark terminators of control predecessors of a PHI node live.
167   void markPhiLive(PHINode *PN);
168 
169   /// Record the Debug Scopes which surround live debug information.
170   void collectLiveScopes(const DILocalScope &LS);
171   void collectLiveScopes(const DILocation &DL);
172 
173   /// Analyze dead branches to find those whose branches are the sources
174   /// of control dependences impacting a live block. Those branches are
175   /// marked live.
176   void markLiveBranchesFromControlDependences();
177 
178   /// Remove instructions not marked live, return if any instruction was
179   /// removed.
180   bool removeDeadInstructions();
181 
182   /// Identify connected sections of the control flow graph which have
183   /// dead terminators and rewrite the control flow graph to remove them.
184   void updateDeadRegions();
185 
186   /// Set the BlockInfo::PostOrder field based on a post-order
187   /// numbering of the reverse control flow graph.
188   void computeReversePostOrder();
189 
190   /// Make the terminator of this block an unconditional branch to \p Target.
191   void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
192 
193 public:
194   AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
195                                 PostDominatorTree &PDT)
196       : F(F), DT(DT), PDT(PDT) {}
197 
198   bool performDeadCodeElimination();
199 };
200 
201 } // end anonymous namespace
202 
203 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
204   initialize();
205   markLiveInstructions();
206   return removeDeadInstructions();
207 }
208 
209 static bool isUnconditionalBranch(Instruction *Term) {
210   auto *BR = dyn_cast<BranchInst>(Term);
211   return BR && BR->isUnconditional();
212 }
213 
214 void AggressiveDeadCodeElimination::initialize() {
215   auto NumBlocks = F.size();
216 
217   // We will have an entry in the map for each block so we grow the
218   // structure to twice that size to keep the load factor low in the hash table.
219   BlockInfo.reserve(NumBlocks);
220   size_t NumInsts = 0;
221 
222   // Iterate over blocks and initialize BlockInfoVec entries, count
223   // instructions to size the InstInfo hash table.
224   for (auto &BB : F) {
225     NumInsts += BB.size();
226     auto &Info = BlockInfo[&BB];
227     Info.BB = &BB;
228     Info.Terminator = BB.getTerminator();
229     Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
230   }
231 
232   // Initialize instruction map and set pointers to block info.
233   InstInfo.reserve(NumInsts);
234   for (auto &BBInfo : BlockInfo)
235     for (Instruction &I : *BBInfo.second.BB)
236       InstInfo[&I].Block = &BBInfo.second;
237 
238   // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
239   // add any more elements to either after this point.
240   for (auto &BBInfo : BlockInfo)
241     BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
242 
243   // Collect the set of "root" instructions that are known live.
244   for (Instruction &I : instructions(F))
245     if (isAlwaysLive(I))
246       markLive(&I);
247 
248   if (!RemoveControlFlowFlag)
249     return;
250 
251   if (!RemoveLoops) {
252     // This stores state for the depth-first iterator. In addition
253     // to recording which nodes have been visited we also record whether
254     // a node is currently on the "stack" of active ancestors of the current
255     // node.
256     using StatusMap = DenseMap<BasicBlock *, bool>;
257 
258     class DFState : public StatusMap {
259     public:
260       std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
261         return StatusMap::insert(std::make_pair(BB, true));
262       }
263 
264       // Invoked after we have visited all children of a node.
265       void completed(BasicBlock *BB) { (*this)[BB] = false; }
266 
267       // Return true if \p BB is currently on the active stack
268       // of ancestors.
269       bool onStack(BasicBlock *BB) {
270         auto Iter = find(BB);
271         return Iter != end() && Iter->second;
272       }
273     } State;
274 
275     State.reserve(F.size());
276     // Iterate over blocks in depth-first pre-order and
277     // treat all edges to a block already seen as loop back edges
278     // and mark the branch live it if there is a back edge.
279     for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
280       Instruction *Term = BB->getTerminator();
281       if (isLive(Term))
282         continue;
283 
284       for (auto *Succ : successors(BB))
285         if (State.onStack(Succ)) {
286           // back edge....
287           markLive(Term);
288           break;
289         }
290     }
291   }
292 
293   // Mark blocks live if there is no path from the block to a
294   // return of the function.
295   // We do this by seeing which of the postdomtree root children exit the
296   // program, and for all others, mark the subtree live.
297   for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
298     auto *BB = PDTChild->getBlock();
299     auto &Info = BlockInfo[BB];
300     // Real function return
301     if (isa<ReturnInst>(Info.Terminator)) {
302       LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
303                         << '\n';);
304       continue;
305     }
306 
307     // This child is something else, like an infinite loop.
308     for (auto DFNode : depth_first(PDTChild))
309       markLive(BlockInfo[DFNode->getBlock()].Terminator);
310   }
311 
312   // Treat the entry block as always live
313   auto *BB = &F.getEntryBlock();
314   auto &EntryInfo = BlockInfo[BB];
315   EntryInfo.Live = true;
316   if (EntryInfo.UnconditionalBranch)
317     markLive(EntryInfo.Terminator);
318 
319   // Build initial collection of blocks with dead terminators
320   for (auto &BBInfo : BlockInfo)
321     if (!BBInfo.second.terminatorIsLive())
322       BlocksWithDeadTerminators.insert(BBInfo.second.BB);
323 }
324 
325 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
326   // TODO -- use llvm::isInstructionTriviallyDead
327   if (I.isEHPad() || I.mayHaveSideEffects()) {
328     // Skip any value profile instrumentation calls if they are
329     // instrumenting constants.
330     if (isInstrumentsConstant(I))
331       return false;
332     return true;
333   }
334   if (!I.isTerminator())
335     return false;
336   if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
337     return false;
338   return true;
339 }
340 
341 // Check if this instruction is a runtime call for value profiling and
342 // if it's instrumenting a constant.
343 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
344   // TODO -- move this test into llvm::isInstructionTriviallyDead
345   if (CallInst *CI = dyn_cast<CallInst>(&I))
346     if (Function *Callee = CI->getCalledFunction())
347       if (Callee->getName().equals(getInstrProfValueProfFuncName()))
348         if (isa<Constant>(CI->getArgOperand(0)))
349           return true;
350   return false;
351 }
352 
353 void AggressiveDeadCodeElimination::markLiveInstructions() {
354   // Propagate liveness backwards to operands.
355   do {
356     // Worklist holds newly discovered live instructions
357     // where we need to mark the inputs as live.
358     while (!Worklist.empty()) {
359       Instruction *LiveInst = Worklist.pop_back_val();
360       LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
361 
362       for (Use &OI : LiveInst->operands())
363         if (Instruction *Inst = dyn_cast<Instruction>(OI))
364           markLive(Inst);
365 
366       if (auto *PN = dyn_cast<PHINode>(LiveInst))
367         markPhiLive(PN);
368     }
369 
370     // After data flow liveness has been identified, examine which branch
371     // decisions are required to determine live instructions are executed.
372     markLiveBranchesFromControlDependences();
373 
374   } while (!Worklist.empty());
375 }
376 
377 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
378   auto &Info = InstInfo[I];
379   if (Info.Live)
380     return;
381 
382   LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
383   Info.Live = true;
384   Worklist.push_back(I);
385 
386   // Collect the live debug info scopes attached to this instruction.
387   if (const DILocation *DL = I->getDebugLoc())
388     collectLiveScopes(*DL);
389 
390   // Mark the containing block live
391   auto &BBInfo = *Info.Block;
392   if (BBInfo.Terminator == I) {
393     BlocksWithDeadTerminators.remove(BBInfo.BB);
394     // For live terminators, mark destination blocks
395     // live to preserve this control flow edges.
396     if (!BBInfo.UnconditionalBranch)
397       for (auto *BB : successors(I->getParent()))
398         markLive(BB);
399   }
400   markLive(BBInfo);
401 }
402 
403 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
404   if (BBInfo.Live)
405     return;
406   LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
407   BBInfo.Live = true;
408   if (!BBInfo.CFLive) {
409     BBInfo.CFLive = true;
410     NewLiveBlocks.insert(BBInfo.BB);
411   }
412 
413   // Mark unconditional branches at the end of live
414   // blocks as live since there is no work to do for them later
415   if (BBInfo.UnconditionalBranch)
416     markLive(BBInfo.Terminator);
417 }
418 
419 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
420   if (!AliveScopes.insert(&LS).second)
421     return;
422 
423   if (isa<DISubprogram>(LS))
424     return;
425 
426   // Tail-recurse through the scope chain.
427   collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
428 }
429 
430 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
431   // Even though DILocations are not scopes, shove them into AliveScopes so we
432   // don't revisit them.
433   if (!AliveScopes.insert(&DL).second)
434     return;
435 
436   // Collect live scopes from the scope chain.
437   collectLiveScopes(*DL.getScope());
438 
439   // Tail-recurse through the inlined-at chain.
440   if (const DILocation *IA = DL.getInlinedAt())
441     collectLiveScopes(*IA);
442 }
443 
444 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
445   auto &Info = BlockInfo[PN->getParent()];
446   // Only need to check this once per block.
447   if (Info.HasLivePhiNodes)
448     return;
449   Info.HasLivePhiNodes = true;
450 
451   // If a predecessor block is not live, mark it as control-flow live
452   // which will trigger marking live branches upon which
453   // that block is control dependent.
454   for (auto *PredBB : predecessors(Info.BB)) {
455     auto &Info = BlockInfo[PredBB];
456     if (!Info.CFLive) {
457       Info.CFLive = true;
458       NewLiveBlocks.insert(PredBB);
459     }
460   }
461 }
462 
463 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
464   if (BlocksWithDeadTerminators.empty())
465     return;
466 
467   LLVM_DEBUG({
468     dbgs() << "new live blocks:\n";
469     for (auto *BB : NewLiveBlocks)
470       dbgs() << "\t" << BB->getName() << '\n';
471     dbgs() << "dead terminator blocks:\n";
472     for (auto *BB : BlocksWithDeadTerminators)
473       dbgs() << "\t" << BB->getName() << '\n';
474   });
475 
476   // The dominance frontier of a live block X in the reverse
477   // control graph is the set of blocks upon which X is control
478   // dependent. The following sequence computes the set of blocks
479   // which currently have dead terminators that are control
480   // dependence sources of a block which is in NewLiveBlocks.
481 
482   const SmallPtrSet<BasicBlock *, 16> BWDT{
483       BlocksWithDeadTerminators.begin(),
484       BlocksWithDeadTerminators.end()
485   };
486   SmallVector<BasicBlock *, 32> IDFBlocks;
487   ReverseIDFCalculator IDFs(PDT);
488   IDFs.setDefiningBlocks(NewLiveBlocks);
489   IDFs.setLiveInBlocks(BWDT);
490   IDFs.calculate(IDFBlocks);
491   NewLiveBlocks.clear();
492 
493   // Dead terminators which control live blocks are now marked live.
494   for (auto *BB : IDFBlocks) {
495     LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
496     markLive(BB->getTerminator());
497   }
498 }
499 
500 //===----------------------------------------------------------------------===//
501 //
502 //  Routines to update the CFG and SSA information before removing dead code.
503 //
504 //===----------------------------------------------------------------------===//
505 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
506   // Updates control and dataflow around dead blocks
507   updateDeadRegions();
508 
509   LLVM_DEBUG({
510     for (Instruction &I : instructions(F)) {
511       // Check if the instruction is alive.
512       if (isLive(&I))
513         continue;
514 
515       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
516         // Check if the scope of this variable location is alive.
517         if (AliveScopes.count(DII->getDebugLoc()->getScope()))
518           continue;
519 
520         // If intrinsic is pointing at a live SSA value, there may be an
521         // earlier optimization bug: if we know the location of the variable,
522         // why isn't the scope of the location alive?
523         if (Value *V = DII->getVariableLocation())
524           if (Instruction *II = dyn_cast<Instruction>(V))
525             if (isLive(II))
526               dbgs() << "Dropping debug info for " << *DII << "\n";
527       }
528     }
529   });
530 
531   // The inverse of the live set is the dead set.  These are those instructions
532   // that have no side effects and do not influence the control flow or return
533   // value of the function, and may therefore be deleted safely.
534   // NOTE: We reuse the Worklist vector here for memory efficiency.
535   for (Instruction &I : instructions(F)) {
536     // Check if the instruction is alive.
537     if (isLive(&I))
538       continue;
539 
540     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
541       // Check if the scope of this variable location is alive.
542       if (AliveScopes.count(DII->getDebugLoc()->getScope()))
543         continue;
544 
545       // Fallthrough and drop the intrinsic.
546     }
547 
548     // Prepare to delete.
549     Worklist.push_back(&I);
550     I.dropAllReferences();
551   }
552 
553   for (Instruction *&I : Worklist) {
554     ++NumRemoved;
555     I->eraseFromParent();
556   }
557 
558   return !Worklist.empty();
559 }
560 
561 // A dead region is the set of dead blocks with a common live post-dominator.
562 void AggressiveDeadCodeElimination::updateDeadRegions() {
563   LLVM_DEBUG({
564     dbgs() << "final dead terminator blocks: " << '\n';
565     for (auto *BB : BlocksWithDeadTerminators)
566       dbgs() << '\t' << BB->getName()
567              << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
568   });
569 
570   // Don't compute the post ordering unless we needed it.
571   bool HavePostOrder = false;
572 
573   for (auto *BB : BlocksWithDeadTerminators) {
574     auto &Info = BlockInfo[BB];
575     if (Info.UnconditionalBranch) {
576       InstInfo[Info.Terminator].Live = true;
577       continue;
578     }
579 
580     if (!HavePostOrder) {
581       computeReversePostOrder();
582       HavePostOrder = true;
583     }
584 
585     // Add an unconditional branch to the successor closest to the
586     // end of the function which insures a path to the exit for each
587     // live edge.
588     BlockInfoType *PreferredSucc = nullptr;
589     for (auto *Succ : successors(BB)) {
590       auto *Info = &BlockInfo[Succ];
591       if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
592         PreferredSucc = Info;
593     }
594     assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
595            "Failed to find safe successor for dead branch");
596 
597     // Collect removed successors to update the (Post)DominatorTrees.
598     SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
599     bool First = true;
600     for (auto *Succ : successors(BB)) {
601       if (!First || Succ != PreferredSucc->BB) {
602         Succ->removePredecessor(BB);
603         RemovedSuccessors.insert(Succ);
604       } else
605         First = false;
606     }
607     makeUnconditional(BB, PreferredSucc->BB);
608 
609     // Inform the dominators about the deleted CFG edges.
610     SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
611     for (auto *Succ : RemovedSuccessors) {
612       // It might have happened that the same successor appeared multiple times
613       // and the CFG edge wasn't really removed.
614       if (Succ != PreferredSucc->BB) {
615         LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
616                           << BB->getName() << " -> " << Succ->getName()
617                           << "\n");
618         DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
619       }
620     }
621 
622     DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
623         .applyUpdates(DeletedEdges);
624 
625     NumBranchesRemoved += 1;
626   }
627 }
628 
629 // reverse top-sort order
630 void AggressiveDeadCodeElimination::computeReversePostOrder() {
631   // This provides a post-order numbering of the reverse control flow graph
632   // Note that it is incomplete in the presence of infinite loops but we don't
633   // need numbers blocks which don't reach the end of the functions since
634   // all branches in those blocks are forced live.
635 
636   // For each block without successors, extend the DFS from the block
637   // backward through the graph
638   SmallPtrSet<BasicBlock*, 16> Visited;
639   unsigned PostOrder = 0;
640   for (auto &BB : F) {
641     if (succ_begin(&BB) != succ_end(&BB))
642       continue;
643     for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
644       BlockInfo[Block].PostOrder = PostOrder++;
645   }
646 }
647 
648 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
649                                                       BasicBlock *Target) {
650   Instruction *PredTerm = BB->getTerminator();
651   // Collect the live debug info scopes attached to this instruction.
652   if (const DILocation *DL = PredTerm->getDebugLoc())
653     collectLiveScopes(*DL);
654 
655   // Just mark live an existing unconditional branch
656   if (isUnconditionalBranch(PredTerm)) {
657     PredTerm->setSuccessor(0, Target);
658     InstInfo[PredTerm].Live = true;
659     return;
660   }
661   LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
662   NumBranchesRemoved += 1;
663   IRBuilder<> Builder(PredTerm);
664   auto *NewTerm = Builder.CreateBr(Target);
665   InstInfo[NewTerm].Live = true;
666   if (const DILocation *DL = PredTerm->getDebugLoc())
667     NewTerm->setDebugLoc(DL);
668 
669   InstInfo.erase(PredTerm);
670   PredTerm->eraseFromParent();
671 }
672 
673 //===----------------------------------------------------------------------===//
674 //
675 // Pass Manager integration code
676 //
677 //===----------------------------------------------------------------------===//
678 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
679   // ADCE does not need DominatorTree, but require DominatorTree here
680   // to update analysis if it is already available.
681   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
682   auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
683   if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
684     return PreservedAnalyses::all();
685 
686   PreservedAnalyses PA;
687   PA.preserveSet<CFGAnalyses>();
688   PA.preserve<GlobalsAA>();
689   PA.preserve<DominatorTreeAnalysis>();
690   PA.preserve<PostDominatorTreeAnalysis>();
691   return PA;
692 }
693 
694 namespace {
695 
696 struct ADCELegacyPass : public FunctionPass {
697   static char ID; // Pass identification, replacement for typeid
698 
699   ADCELegacyPass() : FunctionPass(ID) {
700     initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
701   }
702 
703   bool runOnFunction(Function &F) override {
704     if (skipFunction(F))
705       return false;
706 
707     // ADCE does not need DominatorTree, but require DominatorTree here
708     // to update analysis if it is already available.
709     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
710     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
711     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
712     return AggressiveDeadCodeElimination(F, DT, PDT)
713         .performDeadCodeElimination();
714   }
715 
716   void getAnalysisUsage(AnalysisUsage &AU) const override {
717     AU.addRequired<PostDominatorTreeWrapperPass>();
718     if (!RemoveControlFlowFlag)
719       AU.setPreservesCFG();
720     else {
721       AU.addPreserved<DominatorTreeWrapperPass>();
722       AU.addPreserved<PostDominatorTreeWrapperPass>();
723     }
724     AU.addPreserved<GlobalsAAWrapperPass>();
725   }
726 };
727 
728 } // end anonymous namespace
729 
730 char ADCELegacyPass::ID = 0;
731 
732 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
733                       "Aggressive Dead Code Elimination", false, false)
734 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
735 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
736                     false, false)
737 
738 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
739