xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp (revision 77a1348b3c1cfe8547be49a121b56299a1e18b69)
1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic
11 /// Reference Counting and is a system for managing reference counts for objects
12 /// in Objective C.
13 ///
14 /// The optimizations performed include elimination of redundant, partially
15 /// redundant, and inconsequential reference count operations, elimination of
16 /// redundant weak pointer operations, and numerous minor simplifications.
17 ///
18 /// WARNING: This file knows about certain library functions. It recognizes them
19 /// by name, and hardwires knowledge of their semantics.
20 ///
21 /// WARNING: This file knows about how certain Objective-C library functions are
22 /// used. Naive LLVM IR transformations which would otherwise be
23 /// behavior-preserving may break these assumptions.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "ARCRuntimeEntryPoints.h"
28 #include "BlotMapVector.h"
29 #include "DependencyAnalysis.h"
30 #include "ObjCARC.h"
31 #include "ProvenanceAnalysis.h"
32 #include "PtrState.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/None.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/Analysis/EHPersonalities.h"
41 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
42 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
43 #include "llvm/Analysis/ObjCARCInstKind.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CFG.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalVariable.h"
52 #include "llvm/IR/InstIterator.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <cassert>
70 #include <iterator>
71 #include <utility>
72 
73 using namespace llvm;
74 using namespace llvm::objcarc;
75 
76 #define DEBUG_TYPE "objc-arc-opts"
77 
78 static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states",
79     cl::Hidden,
80     cl::desc("Maximum number of ptr states the optimizer keeps track of"),
81     cl::init(4095));
82 
83 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
84 /// @{
85 
86 /// This is similar to GetRCIdentityRoot but it stops as soon
87 /// as it finds a value with multiple uses.
88 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
89   // ConstantData (like ConstantPointerNull and UndefValue) is used across
90   // modules.  It's never a single-use value.
91   if (isa<ConstantData>(Arg))
92     return nullptr;
93 
94   if (Arg->hasOneUse()) {
95     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
96       return FindSingleUseIdentifiedObject(BC->getOperand(0));
97     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
98       if (GEP->hasAllZeroIndices())
99         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
100     if (IsForwarding(GetBasicARCInstKind(Arg)))
101       return FindSingleUseIdentifiedObject(
102                cast<CallInst>(Arg)->getArgOperand(0));
103     if (!IsObjCIdentifiedObject(Arg))
104       return nullptr;
105     return Arg;
106   }
107 
108   // If we found an identifiable object but it has multiple uses, but they are
109   // trivial uses, we can still consider this to be a single-use value.
110   if (IsObjCIdentifiedObject(Arg)) {
111     for (const User *U : Arg->users())
112       if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
113          return nullptr;
114 
115     return Arg;
116   }
117 
118   return nullptr;
119 }
120 
121 /// @}
122 ///
123 /// \defgroup ARCOpt ARC Optimization.
124 /// @{
125 
126 // TODO: On code like this:
127 //
128 // objc_retain(%x)
129 // stuff_that_cannot_release()
130 // objc_autorelease(%x)
131 // stuff_that_cannot_release()
132 // objc_retain(%x)
133 // stuff_that_cannot_release()
134 // objc_autorelease(%x)
135 //
136 // The second retain and autorelease can be deleted.
137 
138 // TODO: It should be possible to delete
139 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
140 // pairs if nothing is actually autoreleased between them. Also, autorelease
141 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
142 // after inlining) can be turned into plain release calls.
143 
144 // TODO: Critical-edge splitting. If the optimial insertion point is
145 // a critical edge, the current algorithm has to fail, because it doesn't
146 // know how to split edges. It should be possible to make the optimizer
147 // think in terms of edges, rather than blocks, and then split critical
148 // edges on demand.
149 
150 // TODO: OptimizeSequences could generalized to be Interprocedural.
151 
152 // TODO: Recognize that a bunch of other objc runtime calls have
153 // non-escaping arguments and non-releasing arguments, and may be
154 // non-autoreleasing.
155 
156 // TODO: Sink autorelease calls as far as possible. Unfortunately we
157 // usually can't sink them past other calls, which would be the main
158 // case where it would be useful.
159 
160 // TODO: The pointer returned from objc_loadWeakRetained is retained.
161 
162 // TODO: Delete release+retain pairs (rare).
163 
164 STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
165 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
166 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
167 STATISTIC(NumRets,        "Number of return value forwarding "
168                           "retain+autoreleases eliminated");
169 STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
170 STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
171 #ifndef NDEBUG
172 STATISTIC(NumRetainsBeforeOpt,
173           "Number of retains before optimization");
174 STATISTIC(NumReleasesBeforeOpt,
175           "Number of releases before optimization");
176 STATISTIC(NumRetainsAfterOpt,
177           "Number of retains after optimization");
178 STATISTIC(NumReleasesAfterOpt,
179           "Number of releases after optimization");
180 #endif
181 
182 namespace {
183 
184   /// Per-BasicBlock state.
185   class BBState {
186     /// The number of unique control paths from the entry which can reach this
187     /// block.
188     unsigned TopDownPathCount = 0;
189 
190     /// The number of unique control paths to exits from this block.
191     unsigned BottomUpPathCount = 0;
192 
193     /// The top-down traversal uses this to record information known about a
194     /// pointer at the bottom of each block.
195     BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
196 
197     /// The bottom-up traversal uses this to record information known about a
198     /// pointer at the top of each block.
199     BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
200 
201     /// Effective predecessors of the current block ignoring ignorable edges and
202     /// ignored backedges.
203     SmallVector<BasicBlock *, 2> Preds;
204 
205     /// Effective successors of the current block ignoring ignorable edges and
206     /// ignored backedges.
207     SmallVector<BasicBlock *, 2> Succs;
208 
209   public:
210     static const unsigned OverflowOccurredValue;
211 
212     BBState() = default;
213 
214     using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
215     using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;
216 
217     top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
218     top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
219     const_top_down_ptr_iterator top_down_ptr_begin() const {
220       return PerPtrTopDown.begin();
221     }
222     const_top_down_ptr_iterator top_down_ptr_end() const {
223       return PerPtrTopDown.end();
224     }
225     bool hasTopDownPtrs() const {
226       return !PerPtrTopDown.empty();
227     }
228 
229     unsigned top_down_ptr_list_size() const {
230       return std::distance(top_down_ptr_begin(), top_down_ptr_end());
231     }
232 
233     using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
234     using const_bottom_up_ptr_iterator =
235         decltype(PerPtrBottomUp)::const_iterator;
236 
237     bottom_up_ptr_iterator bottom_up_ptr_begin() {
238       return PerPtrBottomUp.begin();
239     }
240     bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
241     const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
242       return PerPtrBottomUp.begin();
243     }
244     const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
245       return PerPtrBottomUp.end();
246     }
247     bool hasBottomUpPtrs() const {
248       return !PerPtrBottomUp.empty();
249     }
250 
251     unsigned bottom_up_ptr_list_size() const {
252       return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end());
253     }
254 
255     /// Mark this block as being an entry block, which has one path from the
256     /// entry by definition.
257     void SetAsEntry() { TopDownPathCount = 1; }
258 
259     /// Mark this block as being an exit block, which has one path to an exit by
260     /// definition.
261     void SetAsExit()  { BottomUpPathCount = 1; }
262 
263     /// Attempt to find the PtrState object describing the top down state for
264     /// pointer Arg. Return a new initialized PtrState describing the top down
265     /// state for Arg if we do not find one.
266     TopDownPtrState &getPtrTopDownState(const Value *Arg) {
267       return PerPtrTopDown[Arg];
268     }
269 
270     /// Attempt to find the PtrState object describing the bottom up state for
271     /// pointer Arg. Return a new initialized PtrState describing the bottom up
272     /// state for Arg if we do not find one.
273     BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
274       return PerPtrBottomUp[Arg];
275     }
276 
277     /// Attempt to find the PtrState object describing the bottom up state for
278     /// pointer Arg.
279     bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
280       return PerPtrBottomUp.find(Arg);
281     }
282 
283     void clearBottomUpPointers() {
284       PerPtrBottomUp.clear();
285     }
286 
287     void clearTopDownPointers() {
288       PerPtrTopDown.clear();
289     }
290 
291     void InitFromPred(const BBState &Other);
292     void InitFromSucc(const BBState &Other);
293     void MergePred(const BBState &Other);
294     void MergeSucc(const BBState &Other);
295 
296     /// Compute the number of possible unique paths from an entry to an exit
297     /// which pass through this block. This is only valid after both the
298     /// top-down and bottom-up traversals are complete.
299     ///
300     /// Returns true if overflow occurred. Returns false if overflow did not
301     /// occur.
302     bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
303       if (TopDownPathCount == OverflowOccurredValue ||
304           BottomUpPathCount == OverflowOccurredValue)
305         return true;
306       unsigned long long Product =
307         (unsigned long long)TopDownPathCount*BottomUpPathCount;
308       // Overflow occurred if any of the upper bits of Product are set or if all
309       // the lower bits of Product are all set.
310       return (Product >> 32) ||
311              ((PathCount = Product) == OverflowOccurredValue);
312     }
313 
314     // Specialized CFG utilities.
315     using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;
316 
317     edge_iterator pred_begin() const { return Preds.begin(); }
318     edge_iterator pred_end() const { return Preds.end(); }
319     edge_iterator succ_begin() const { return Succs.begin(); }
320     edge_iterator succ_end() const { return Succs.end(); }
321 
322     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
323     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
324 
325     bool isExit() const { return Succs.empty(); }
326   };
327 
328 } // end anonymous namespace
329 
330 const unsigned BBState::OverflowOccurredValue = 0xffffffff;
331 
332 namespace llvm {
333 
334 raw_ostream &operator<<(raw_ostream &OS,
335                         BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
336 
337 } // end namespace llvm
338 
339 void BBState::InitFromPred(const BBState &Other) {
340   PerPtrTopDown = Other.PerPtrTopDown;
341   TopDownPathCount = Other.TopDownPathCount;
342 }
343 
344 void BBState::InitFromSucc(const BBState &Other) {
345   PerPtrBottomUp = Other.PerPtrBottomUp;
346   BottomUpPathCount = Other.BottomUpPathCount;
347 }
348 
349 /// The top-down traversal uses this to merge information about predecessors to
350 /// form the initial state for a new block.
351 void BBState::MergePred(const BBState &Other) {
352   if (TopDownPathCount == OverflowOccurredValue)
353     return;
354 
355   // Other.TopDownPathCount can be 0, in which case it is either dead or a
356   // loop backedge. Loop backedges are special.
357   TopDownPathCount += Other.TopDownPathCount;
358 
359   // In order to be consistent, we clear the top down pointers when by adding
360   // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
361   // has not occurred.
362   if (TopDownPathCount == OverflowOccurredValue) {
363     clearTopDownPointers();
364     return;
365   }
366 
367   // Check for overflow. If we have overflow, fall back to conservative
368   // behavior.
369   if (TopDownPathCount < Other.TopDownPathCount) {
370     TopDownPathCount = OverflowOccurredValue;
371     clearTopDownPointers();
372     return;
373   }
374 
375   // For each entry in the other set, if our set has an entry with the same key,
376   // merge the entries. Otherwise, copy the entry and merge it with an empty
377   // entry.
378   for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
379        MI != ME; ++MI) {
380     auto Pair = PerPtrTopDown.insert(*MI);
381     Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
382                              /*TopDown=*/true);
383   }
384 
385   // For each entry in our set, if the other set doesn't have an entry with the
386   // same key, force it to merge with an empty entry.
387   for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
388     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
389       MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
390 }
391 
392 /// The bottom-up traversal uses this to merge information about successors to
393 /// form the initial state for a new block.
394 void BBState::MergeSucc(const BBState &Other) {
395   if (BottomUpPathCount == OverflowOccurredValue)
396     return;
397 
398   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
399   // loop backedge. Loop backedges are special.
400   BottomUpPathCount += Other.BottomUpPathCount;
401 
402   // In order to be consistent, we clear the top down pointers when by adding
403   // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
404   // has not occurred.
405   if (BottomUpPathCount == OverflowOccurredValue) {
406     clearBottomUpPointers();
407     return;
408   }
409 
410   // Check for overflow. If we have overflow, fall back to conservative
411   // behavior.
412   if (BottomUpPathCount < Other.BottomUpPathCount) {
413     BottomUpPathCount = OverflowOccurredValue;
414     clearBottomUpPointers();
415     return;
416   }
417 
418   // For each entry in the other set, if our set has an entry with the
419   // same key, merge the entries. Otherwise, copy the entry and merge
420   // it with an empty entry.
421   for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
422        MI != ME; ++MI) {
423     auto Pair = PerPtrBottomUp.insert(*MI);
424     Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
425                              /*TopDown=*/false);
426   }
427 
428   // For each entry in our set, if the other set doesn't have an entry
429   // with the same key, force it to merge with an empty entry.
430   for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
431        ++MI)
432     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
433       MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
434 }
435 
436 raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
437   // Dump the pointers we are tracking.
438   OS << "    TopDown State:\n";
439   if (!BBInfo.hasTopDownPtrs()) {
440     LLVM_DEBUG(dbgs() << "        NONE!\n");
441   } else {
442     for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
443          I != E; ++I) {
444       const PtrState &P = I->second;
445       OS << "        Ptr: " << *I->first
446          << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
447          << "\n            ImpreciseRelease: "
448            << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
449          << "            HasCFGHazards:    "
450            << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
451          << "            KnownPositive:    "
452            << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
453          << "            Seq:              "
454          << P.GetSeq() << "\n";
455     }
456   }
457 
458   OS << "    BottomUp State:\n";
459   if (!BBInfo.hasBottomUpPtrs()) {
460     LLVM_DEBUG(dbgs() << "        NONE!\n");
461   } else {
462     for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
463          I != E; ++I) {
464       const PtrState &P = I->second;
465       OS << "        Ptr: " << *I->first
466          << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
467          << "\n            ImpreciseRelease: "
468            << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
469          << "            HasCFGHazards:    "
470            << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
471          << "            KnownPositive:    "
472            << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
473          << "            Seq:              "
474          << P.GetSeq() << "\n";
475     }
476   }
477 
478   return OS;
479 }
480 
481 namespace {
482 
483   /// The main ARC optimization pass.
484   class ObjCARCOpt : public FunctionPass {
485     bool Changed;
486     ProvenanceAnalysis PA;
487 
488     /// A cache of references to runtime entry point constants.
489     ARCRuntimeEntryPoints EP;
490 
491     /// A cache of MDKinds that can be passed into other functions to propagate
492     /// MDKind identifiers.
493     ARCMDKindCache MDKindCache;
494 
495     /// A flag indicating whether this optimization pass should run.
496     bool Run;
497 
498     /// A flag indicating whether the optimization that removes or moves
499     /// retain/release pairs should be performed.
500     bool DisableRetainReleasePairing = false;
501 
502     /// Flags which determine whether each of the interesting runtime functions
503     /// is in fact used in the current function.
504     unsigned UsedInThisFunction;
505 
506     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
507     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
508                                    ARCInstKind &Class);
509     void OptimizeIndividualCalls(Function &F);
510 
511     /// Optimize an individual call, optionally passing the
512     /// GetArgRCIdentityRoot if it has already been computed.
513     void OptimizeIndividualCallImpl(
514         Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
515         Instruction *Inst, ARCInstKind Class, const Value *Arg);
516 
517     /// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV.  If the
518     /// optimization occurs, returns true to indicate that the caller should
519     /// assume the instructions are dead.
520     bool OptimizeInlinedAutoreleaseRVCall(
521         Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
522         Instruction *Inst, const Value *&Arg, ARCInstKind Class,
523         Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg);
524 
525     void CheckForCFGHazards(const BasicBlock *BB,
526                             DenseMap<const BasicBlock *, BBState> &BBStates,
527                             BBState &MyStates) const;
528     bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
529                                   BlotMapVector<Value *, RRInfo> &Retains,
530                                   BBState &MyStates);
531     bool VisitBottomUp(BasicBlock *BB,
532                        DenseMap<const BasicBlock *, BBState> &BBStates,
533                        BlotMapVector<Value *, RRInfo> &Retains);
534     bool VisitInstructionTopDown(Instruction *Inst,
535                                  DenseMap<Value *, RRInfo> &Releases,
536                                  BBState &MyStates);
537     bool VisitTopDown(BasicBlock *BB,
538                       DenseMap<const BasicBlock *, BBState> &BBStates,
539                       DenseMap<Value *, RRInfo> &Releases);
540     bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
541                BlotMapVector<Value *, RRInfo> &Retains,
542                DenseMap<Value *, RRInfo> &Releases);
543 
544     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
545                    BlotMapVector<Value *, RRInfo> &Retains,
546                    DenseMap<Value *, RRInfo> &Releases,
547                    SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
548 
549     bool
550     PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
551                              BlotMapVector<Value *, RRInfo> &Retains,
552                              DenseMap<Value *, RRInfo> &Releases, Module *M,
553                              Instruction * Retain,
554                              SmallVectorImpl<Instruction *> &DeadInsts,
555                              RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
556                              Value *Arg, bool KnownSafe,
557                              bool &AnyPairsCompletelyEliminated);
558 
559     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
560                               BlotMapVector<Value *, RRInfo> &Retains,
561                               DenseMap<Value *, RRInfo> &Releases, Module *M);
562 
563     void OptimizeWeakCalls(Function &F);
564 
565     bool OptimizeSequences(Function &F);
566 
567     void OptimizeReturns(Function &F);
568 
569 #ifndef NDEBUG
570     void GatherStatistics(Function &F, bool AfterOptimization = false);
571 #endif
572 
573     void getAnalysisUsage(AnalysisUsage &AU) const override;
574     bool doInitialization(Module &M) override;
575     bool runOnFunction(Function &F) override;
576     void releaseMemory() override;
577 
578   public:
579     static char ID;
580 
581     ObjCARCOpt() : FunctionPass(ID) {
582       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
583     }
584   };
585 
586 } // end anonymous namespace
587 
588 char ObjCARCOpt::ID = 0;
589 
590 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
591                       "objc-arc", "ObjC ARC optimization", false, false)
592 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
593 INITIALIZE_PASS_END(ObjCARCOpt,
594                     "objc-arc", "ObjC ARC optimization", false, false)
595 
596 Pass *llvm::createObjCARCOptPass() {
597   return new ObjCARCOpt();
598 }
599 
600 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
601   AU.addRequired<ObjCARCAAWrapperPass>();
602   AU.addRequired<AAResultsWrapperPass>();
603   // ARC optimization doesn't currently split critical edges.
604   AU.setPreservesCFG();
605 }
606 
607 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
608 /// not a return value.
609 bool
610 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
611   // Check for the argument being from an immediately preceding call or invoke.
612   const Value *Arg = GetArgRCIdentityRoot(RetainRV);
613   ImmutableCallSite CS(Arg);
614   if (const Instruction *Call = CS.getInstruction()) {
615     if (Call->getParent() == RetainRV->getParent()) {
616       BasicBlock::const_iterator I(Call);
617       ++I;
618       while (IsNoopInstruction(&*I))
619         ++I;
620       if (&*I == RetainRV)
621         return false;
622     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
623       BasicBlock *RetainRVParent = RetainRV->getParent();
624       if (II->getNormalDest() == RetainRVParent) {
625         BasicBlock::const_iterator I = RetainRVParent->begin();
626         while (IsNoopInstruction(&*I))
627           ++I;
628         if (&*I == RetainRV)
629           return false;
630       }
631     }
632   }
633 
634   // Turn it to a plain objc_retain.
635   Changed = true;
636   ++NumPeeps;
637 
638   LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
639                        "objc_retain since the operand is not a return value.\n"
640                        "Old = "
641                     << *RetainRV << "\n");
642 
643   Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
644   cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
645 
646   LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");
647 
648   return false;
649 }
650 
651 bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall(
652     Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
653     Instruction *Inst, const Value *&Arg, ARCInstKind Class,
654     Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) {
655   // Must be in the same basic block.
656   assert(Inst->getParent() == AutoreleaseRV->getParent());
657 
658   // Must operate on the same root.
659   Arg = GetArgRCIdentityRoot(Inst);
660   AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV);
661   if (Arg != AutoreleaseRVArg) {
662     // If there isn't an exact match, check if we have equivalent PHIs.
663     const PHINode *PN = dyn_cast<PHINode>(Arg);
664     if (!PN)
665       return false;
666 
667     SmallVector<const Value *, 4> ArgUsers;
668     getEquivalentPHIs(*PN, ArgUsers);
669     if (llvm::find(ArgUsers, AutoreleaseRVArg) == ArgUsers.end())
670       return false;
671   }
672 
673   // Okay, this is a match.  Merge them.
674   ++NumPeeps;
675   LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '"
676                     << *AutoreleaseRV << "' paired with '" << *Inst << "'\n");
677 
678   // Delete the RV pair, starting with the AutoreleaseRV.
679   AutoreleaseRV->replaceAllUsesWith(
680       cast<CallInst>(AutoreleaseRV)->getArgOperand(0));
681   EraseInstruction(AutoreleaseRV);
682   if (Class == ARCInstKind::RetainRV) {
683     // AutoreleaseRV and RetainRV cancel out.  Delete the RetainRV.
684     Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
685     EraseInstruction(Inst);
686     return true;
687   }
688 
689   // ClaimRV is a frontend peephole for RetainRV + Release.  Since the
690   // AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release.
691   assert(Class == ARCInstKind::ClaimRV);
692   Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0);
693   CallInst *Release = CallInst::Create(
694       EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst);
695   assert(IsAlwaysTail(ARCInstKind::ClaimRV) &&
696          "Expected ClaimRV to be safe to tail call");
697   Release->setTailCall();
698   Inst->replaceAllUsesWith(CallArg);
699   EraseInstruction(Inst);
700 
701   // Run the normal optimizations on Release.
702   OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release,
703                              Arg);
704   return true;
705 }
706 
707 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
708 /// used as a return value.
709 void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
710                                            Instruction *AutoreleaseRV,
711                                            ARCInstKind &Class) {
712   // Check for a return of the pointer value.
713   const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
714 
715   // If the argument is ConstantPointerNull or UndefValue, its other users
716   // aren't actually interesting to look at.
717   if (isa<ConstantData>(Ptr))
718     return;
719 
720   SmallVector<const Value *, 2> Users;
721   Users.push_back(Ptr);
722 
723   // Add PHIs that are equivalent to Ptr to Users.
724   if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
725     getEquivalentPHIs(*PN, Users);
726 
727   do {
728     Ptr = Users.pop_back_val();
729     for (const User *U : Ptr->users()) {
730       if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
731         return;
732       if (isa<BitCastInst>(U))
733         Users.push_back(U);
734     }
735   } while (!Users.empty());
736 
737   Changed = true;
738   ++NumPeeps;
739 
740   LLVM_DEBUG(
741       dbgs() << "Transforming objc_autoreleaseReturnValue => "
742                 "objc_autorelease since its operand is not used as a return "
743                 "value.\n"
744                 "Old = "
745              << *AutoreleaseRV << "\n");
746 
747   CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
748   Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
749   AutoreleaseRVCI->setCalledFunction(NewDecl);
750   AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
751   Class = ARCInstKind::Autorelease;
752 
753   LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
754 }
755 
756 namespace {
757 Instruction *
758 CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
759                    const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
760   SmallVector<OperandBundleDef, 1> OpBundles;
761   for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
762     auto Bundle = CI.getOperandBundleAt(I);
763     // Funclets will be reassociated in the future.
764     if (Bundle.getTagID() == LLVMContext::OB_funclet)
765       continue;
766     OpBundles.emplace_back(Bundle);
767   }
768 
769   if (!BlockColors.empty()) {
770     const ColorVector &CV = BlockColors.find(&BB)->second;
771     assert(CV.size() == 1 && "non-unique color for block!");
772     Instruction *EHPad = CV.front()->getFirstNonPHI();
773     if (EHPad->isEHPad())
774       OpBundles.emplace_back("funclet", EHPad);
775   }
776 
777   return CallInst::Create(&CI, OpBundles);
778 }
779 }
780 
781 /// Visit each call, one at a time, and make simplifications without doing any
782 /// additional analysis.
783 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
784   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
785   // Reset all the flags in preparation for recomputing them.
786   UsedInThisFunction = 0;
787 
788   DenseMap<BasicBlock *, ColorVector> BlockColors;
789   if (F.hasPersonalityFn() &&
790       isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
791     BlockColors = colorEHFunclets(F);
792 
793   // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired
794   // with RetainRV and ClaimRV.
795   Instruction *DelayedAutoreleaseRV = nullptr;
796   const Value *DelayedAutoreleaseRVArg = nullptr;
797   auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) {
798     assert(!DelayedAutoreleaseRV || !AutoreleaseRV);
799     DelayedAutoreleaseRV = AutoreleaseRV;
800     DelayedAutoreleaseRVArg = nullptr;
801   };
802   auto optimizeDelayedAutoreleaseRV = [&]() {
803     if (!DelayedAutoreleaseRV)
804       return;
805     OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV,
806                                ARCInstKind::AutoreleaseRV,
807                                DelayedAutoreleaseRVArg);
808     setDelayedAutoreleaseRV(nullptr);
809   };
810   auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) {
811     // Nothing to delay, but we may as well skip the logic below.
812     if (!DelayedAutoreleaseRV)
813       return true;
814 
815     // If we hit the end of the basic block we're not going to find an RV-pair.
816     // Stop delaying.
817     if (NonARCInst->isTerminator())
818       return false;
819 
820     // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and
821     // ClaimRV, it's probably safe to skip over even opaque function calls
822     // here since OptimizeInlinedAutoreleaseRVCall will confirm that they
823     // have the same RCIdentityRoot.  However, what really matters is
824     // skipping instructions or intrinsics that the inliner could leave behind;
825     // be conservative for now and don't skip over opaque calls, which could
826     // potentially include other ARC calls.
827     auto *CB = dyn_cast<CallBase>(NonARCInst);
828     if (!CB)
829       return true;
830     return CB->getIntrinsicID() != Intrinsic::not_intrinsic;
831   };
832 
833   // Visit all objc_* calls in F.
834   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
835     Instruction *Inst = &*I++;
836 
837     ARCInstKind Class = GetBasicARCInstKind(Inst);
838 
839     // Skip this loop if this instruction isn't itself an ARC intrinsic.
840     const Value *Arg = nullptr;
841     switch (Class) {
842     default:
843       optimizeDelayedAutoreleaseRV();
844       break;
845     case ARCInstKind::CallOrUser:
846     case ARCInstKind::User:
847     case ARCInstKind::None:
848       // This is a non-ARC instruction.  If we're delaying an AutoreleaseRV,
849       // check if it's safe to skip over it; if not, optimize the AutoreleaseRV
850       // now.
851       if (!shouldDelayAutoreleaseRV(Inst))
852         optimizeDelayedAutoreleaseRV();
853       continue;
854     case ARCInstKind::AutoreleaseRV:
855       optimizeDelayedAutoreleaseRV();
856       setDelayedAutoreleaseRV(Inst);
857       continue;
858     case ARCInstKind::RetainRV:
859     case ARCInstKind::ClaimRV:
860       if (DelayedAutoreleaseRV) {
861         // We have a potential RV pair.  Check if they cancel out.
862         if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class,
863                                              DelayedAutoreleaseRV,
864                                              DelayedAutoreleaseRVArg)) {
865           setDelayedAutoreleaseRV(nullptr);
866           continue;
867         }
868         optimizeDelayedAutoreleaseRV();
869       }
870       break;
871     }
872 
873     OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg);
874   }
875 
876   // Catch the final delayed AutoreleaseRV.
877   optimizeDelayedAutoreleaseRV();
878 }
879 
880 void ObjCARCOpt::OptimizeIndividualCallImpl(
881     Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
882     Instruction *Inst, ARCInstKind Class, const Value *Arg) {
883   LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
884 
885   // Some of the ARC calls can be deleted if their arguments are global
886   // variables that are inert in ARC.
887   if (IsNoopOnGlobal(Class)) {
888     Value *Opnd = Inst->getOperand(0);
889     if (auto *GV = dyn_cast<GlobalVariable>(Opnd->stripPointerCasts()))
890       if (GV->hasAttribute("objc_arc_inert")) {
891         if (!Inst->getType()->isVoidTy())
892           Inst->replaceAllUsesWith(Opnd);
893         Inst->eraseFromParent();
894         return;
895       }
896   }
897 
898   switch (Class) {
899   default:
900     break;
901 
902   // Delete no-op casts. These function calls have special semantics, but
903   // the semantics are entirely implemented via lowering in the front-end,
904   // so by the time they reach the optimizer, they are just no-op calls
905   // which return their argument.
906   //
907   // There are gray areas here, as the ability to cast reference-counted
908   // pointers to raw void* and back allows code to break ARC assumptions,
909   // however these are currently considered to be unimportant.
910   case ARCInstKind::NoopCast:
911     Changed = true;
912     ++NumNoops;
913     LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
914     EraseInstruction(Inst);
915     return;
916 
917   // If the pointer-to-weak-pointer is null, it's undefined behavior.
918   case ARCInstKind::StoreWeak:
919   case ARCInstKind::LoadWeak:
920   case ARCInstKind::LoadWeakRetained:
921   case ARCInstKind::InitWeak:
922   case ARCInstKind::DestroyWeak: {
923     CallInst *CI = cast<CallInst>(Inst);
924     if (IsNullOrUndef(CI->getArgOperand(0))) {
925       Changed = true;
926       Type *Ty = CI->getArgOperand(0)->getType();
927       new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
928                     Constant::getNullValue(Ty), CI);
929       Value *NewValue = UndefValue::get(CI->getType());
930       LLVM_DEBUG(
931           dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
932                     "\nOld = "
933                  << *CI << "\nNew = " << *NewValue << "\n");
934       CI->replaceAllUsesWith(NewValue);
935       CI->eraseFromParent();
936       return;
937     }
938     break;
939   }
940   case ARCInstKind::CopyWeak:
941   case ARCInstKind::MoveWeak: {
942     CallInst *CI = cast<CallInst>(Inst);
943     if (IsNullOrUndef(CI->getArgOperand(0)) ||
944         IsNullOrUndef(CI->getArgOperand(1))) {
945       Changed = true;
946       Type *Ty = CI->getArgOperand(0)->getType();
947       new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
948                     Constant::getNullValue(Ty), CI);
949 
950       Value *NewValue = UndefValue::get(CI->getType());
951       LLVM_DEBUG(
952           dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
953                     "\nOld = "
954                  << *CI << "\nNew = " << *NewValue << "\n");
955 
956       CI->replaceAllUsesWith(NewValue);
957       CI->eraseFromParent();
958       return;
959     }
960     break;
961   }
962   case ARCInstKind::RetainRV:
963     if (OptimizeRetainRVCall(F, Inst))
964       return;
965     break;
966   case ARCInstKind::AutoreleaseRV:
967     OptimizeAutoreleaseRVCall(F, Inst, Class);
968     break;
969   }
970 
971   // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
972   if (IsAutorelease(Class) && Inst->use_empty()) {
973     CallInst *Call = cast<CallInst>(Inst);
974     const Value *Arg = Call->getArgOperand(0);
975     Arg = FindSingleUseIdentifiedObject(Arg);
976     if (Arg) {
977       Changed = true;
978       ++NumAutoreleases;
979 
980       // Create the declaration lazily.
981       LLVMContext &C = Inst->getContext();
982 
983       Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
984       CallInst *NewCall =
985           CallInst::Create(Decl, Call->getArgOperand(0), "", Call);
986       NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
987                            MDNode::get(C, None));
988 
989       LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
990                            "since x is otherwise unused.\nOld: "
991                         << *Call << "\nNew: " << *NewCall << "\n");
992 
993       EraseInstruction(Call);
994       Inst = NewCall;
995       Class = ARCInstKind::Release;
996     }
997   }
998 
999   // For functions which can never be passed stack arguments, add
1000   // a tail keyword.
1001   if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) {
1002     Changed = true;
1003     LLVM_DEBUG(
1004         dbgs() << "Adding tail keyword to function since it can never be "
1005                   "passed stack args: "
1006                << *Inst << "\n");
1007     cast<CallInst>(Inst)->setTailCall();
1008   }
1009 
1010   // Ensure that functions that can never have a "tail" keyword due to the
1011   // semantics of ARC truly do not do so.
1012   if (IsNeverTail(Class)) {
1013     Changed = true;
1014     LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
1015                       << "\n");
1016     cast<CallInst>(Inst)->setTailCall(false);
1017   }
1018 
1019   // Set nounwind as needed.
1020   if (IsNoThrow(Class)) {
1021     Changed = true;
1022     LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
1023                       << "\n");
1024     cast<CallInst>(Inst)->setDoesNotThrow();
1025   }
1026 
1027   // Note: This catches instructions unrelated to ARC.
1028   if (!IsNoopOnNull(Class)) {
1029     UsedInThisFunction |= 1 << unsigned(Class);
1030     return;
1031   }
1032 
1033   // If we haven't already looked up the root, look it up now.
1034   if (!Arg)
1035     Arg = GetArgRCIdentityRoot(Inst);
1036 
1037   // ARC calls with null are no-ops. Delete them.
1038   if (IsNullOrUndef(Arg)) {
1039     Changed = true;
1040     ++NumNoops;
1041     LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
1042                       << "\n");
1043     EraseInstruction(Inst);
1044     return;
1045   }
1046 
1047   // Keep track of which of retain, release, autorelease, and retain_block
1048   // are actually present in this function.
1049   UsedInThisFunction |= 1 << unsigned(Class);
1050 
1051   // If Arg is a PHI, and one or more incoming values to the
1052   // PHI are null, and the call is control-equivalent to the PHI, and there
1053   // are no relevant side effects between the PHI and the call, and the call
1054   // is not a release that doesn't have the clang.imprecise_release tag, the
1055   // call could be pushed up to just those paths with non-null incoming
1056   // values. For now, don't bother splitting critical edges for this.
1057   if (Class == ARCInstKind::Release &&
1058       !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
1059     return;
1060 
1061   SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
1062   Worklist.push_back(std::make_pair(Inst, Arg));
1063   do {
1064     std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
1065     Inst = Pair.first;
1066     Arg = Pair.second;
1067 
1068     const PHINode *PN = dyn_cast<PHINode>(Arg);
1069     if (!PN)
1070       continue;
1071 
1072     // Determine if the PHI has any null operands, or any incoming
1073     // critical edges.
1074     bool HasNull = false;
1075     bool HasCriticalEdges = false;
1076     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1077       Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1078       if (IsNullOrUndef(Incoming))
1079         HasNull = true;
1080       else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() !=
1081                1) {
1082         HasCriticalEdges = true;
1083         break;
1084       }
1085     }
1086     // If we have null operands and no critical edges, optimize.
1087     if (HasCriticalEdges)
1088       continue;
1089     if (!HasNull)
1090       continue;
1091 
1092     SmallPtrSet<Instruction *, 4> DependingInstructions;
1093     SmallPtrSet<const BasicBlock *, 4> Visited;
1094 
1095     // Check that there is nothing that cares about the reference
1096     // count between the call and the phi.
1097     switch (Class) {
1098     case ARCInstKind::Retain:
1099     case ARCInstKind::RetainBlock:
1100       // These can always be moved up.
1101       break;
1102     case ARCInstKind::Release:
1103       // These can't be moved across things that care about the retain
1104       // count.
1105       FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst,
1106                        DependingInstructions, Visited, PA);
1107       break;
1108     case ARCInstKind::Autorelease:
1109       // These can't be moved across autorelease pool scope boundaries.
1110       FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst,
1111                        DependingInstructions, Visited, PA);
1112       break;
1113     case ARCInstKind::ClaimRV:
1114     case ARCInstKind::RetainRV:
1115     case ARCInstKind::AutoreleaseRV:
1116       // Don't move these; the RV optimization depends on the autoreleaseRV
1117       // being tail called, and the retainRV being immediately after a call
1118       // (which might still happen if we get lucky with codegen layout, but
1119       // it's not worth taking the chance).
1120       continue;
1121     default:
1122       llvm_unreachable("Invalid dependence flavor");
1123     }
1124 
1125     if (DependingInstructions.size() != 1)
1126       continue;
1127     if (*DependingInstructions.begin() != PN)
1128       continue;
1129 
1130     Changed = true;
1131     ++NumPartialNoops;
1132     // Clone the call into each predecessor that has a non-null value.
1133     CallInst *CInst = cast<CallInst>(Inst);
1134     Type *ParamTy = CInst->getArgOperand(0)->getType();
1135     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1136       Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1137       if (IsNullOrUndef(Incoming))
1138         continue;
1139       Value *Op = PN->getIncomingValue(i);
1140       Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
1141       CallInst *Clone = cast<CallInst>(
1142           CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors));
1143       if (Op->getType() != ParamTy)
1144         Op = new BitCastInst(Op, ParamTy, "", InsertPos);
1145       Clone->setArgOperand(0, Op);
1146       Clone->insertBefore(InsertPos);
1147 
1148       LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n"
1149                                                    "And inserting clone at "
1150                         << *InsertPos << "\n");
1151       Worklist.push_back(std::make_pair(Clone, Incoming));
1152     }
1153     // Erase the original call.
1154     LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
1155     EraseInstruction(CInst);
1156   } while (!Worklist.empty());
1157 }
1158 
1159 /// If we have a top down pointer in the S_Use state, make sure that there are
1160 /// no CFG hazards by checking the states of various bottom up pointers.
1161 static void CheckForUseCFGHazard(const Sequence SuccSSeq,
1162                                  const bool SuccSRRIKnownSafe,
1163                                  TopDownPtrState &S,
1164                                  bool &SomeSuccHasSame,
1165                                  bool &AllSuccsHaveSame,
1166                                  bool &NotAllSeqEqualButKnownSafe,
1167                                  bool &ShouldContinue) {
1168   switch (SuccSSeq) {
1169   case S_CanRelease: {
1170     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
1171       S.ClearSequenceProgress();
1172       break;
1173     }
1174     S.SetCFGHazardAfflicted(true);
1175     ShouldContinue = true;
1176     break;
1177   }
1178   case S_Use:
1179     SomeSuccHasSame = true;
1180     break;
1181   case S_Stop:
1182   case S_Release:
1183   case S_MovableRelease:
1184     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1185       AllSuccsHaveSame = false;
1186     else
1187       NotAllSeqEqualButKnownSafe = true;
1188     break;
1189   case S_Retain:
1190     llvm_unreachable("bottom-up pointer in retain state!");
1191   case S_None:
1192     llvm_unreachable("This should have been handled earlier.");
1193   }
1194 }
1195 
1196 /// If we have a Top Down pointer in the S_CanRelease state, make sure that
1197 /// there are no CFG hazards by checking the states of various bottom up
1198 /// pointers.
1199 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
1200                                         const bool SuccSRRIKnownSafe,
1201                                         TopDownPtrState &S,
1202                                         bool &SomeSuccHasSame,
1203                                         bool &AllSuccsHaveSame,
1204                                         bool &NotAllSeqEqualButKnownSafe) {
1205   switch (SuccSSeq) {
1206   case S_CanRelease:
1207     SomeSuccHasSame = true;
1208     break;
1209   case S_Stop:
1210   case S_Release:
1211   case S_MovableRelease:
1212   case S_Use:
1213     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1214       AllSuccsHaveSame = false;
1215     else
1216       NotAllSeqEqualButKnownSafe = true;
1217     break;
1218   case S_Retain:
1219     llvm_unreachable("bottom-up pointer in retain state!");
1220   case S_None:
1221     llvm_unreachable("This should have been handled earlier.");
1222   }
1223 }
1224 
1225 /// Check for critical edges, loop boundaries, irreducible control flow, or
1226 /// other CFG structures where moving code across the edge would result in it
1227 /// being executed more.
1228 void
1229 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1230                                DenseMap<const BasicBlock *, BBState> &BBStates,
1231                                BBState &MyStates) const {
1232   // If any top-down local-use or possible-dec has a succ which is earlier in
1233   // the sequence, forget it.
1234   for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1235        I != E; ++I) {
1236     TopDownPtrState &S = I->second;
1237     const Sequence Seq = I->second.GetSeq();
1238 
1239     // We only care about S_Retain, S_CanRelease, and S_Use.
1240     if (Seq == S_None)
1241       continue;
1242 
1243     // Make sure that if extra top down states are added in the future that this
1244     // code is updated to handle it.
1245     assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1246            "Unknown top down sequence state.");
1247 
1248     const Value *Arg = I->first;
1249     bool SomeSuccHasSame = false;
1250     bool AllSuccsHaveSame = true;
1251     bool NotAllSeqEqualButKnownSafe = false;
1252 
1253     for (const BasicBlock *Succ : successors(BB)) {
1254       // If VisitBottomUp has pointer information for this successor, take
1255       // what we know about it.
1256       const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1257           BBStates.find(Succ);
1258       assert(BBI != BBStates.end());
1259       const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1260       const Sequence SuccSSeq = SuccS.GetSeq();
1261 
1262       // If bottom up, the pointer is in an S_None state, clear the sequence
1263       // progress since the sequence in the bottom up state finished
1264       // suggesting a mismatch in between retains/releases. This is true for
1265       // all three cases that we are handling here: S_Retain, S_Use, and
1266       // S_CanRelease.
1267       if (SuccSSeq == S_None) {
1268         S.ClearSequenceProgress();
1269         continue;
1270       }
1271 
1272       // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1273       // checks.
1274       const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1275 
1276       // *NOTE* We do not use Seq from above here since we are allowing for
1277       // S.GetSeq() to change while we are visiting basic blocks.
1278       switch(S.GetSeq()) {
1279       case S_Use: {
1280         bool ShouldContinue = false;
1281         CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1282                              AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1283                              ShouldContinue);
1284         if (ShouldContinue)
1285           continue;
1286         break;
1287       }
1288       case S_CanRelease:
1289         CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1290                                     SomeSuccHasSame, AllSuccsHaveSame,
1291                                     NotAllSeqEqualButKnownSafe);
1292         break;
1293       case S_Retain:
1294       case S_None:
1295       case S_Stop:
1296       case S_Release:
1297       case S_MovableRelease:
1298         break;
1299       }
1300     }
1301 
1302     // If the state at the other end of any of the successor edges
1303     // matches the current state, require all edges to match. This
1304     // guards against loops in the middle of a sequence.
1305     if (SomeSuccHasSame && !AllSuccsHaveSame) {
1306       S.ClearSequenceProgress();
1307     } else if (NotAllSeqEqualButKnownSafe) {
1308       // If we would have cleared the state foregoing the fact that we are known
1309       // safe, stop code motion. This is because whether or not it is safe to
1310       // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1311       // are allowed to perform code motion.
1312       S.SetCFGHazardAfflicted(true);
1313     }
1314   }
1315 }
1316 
1317 bool ObjCARCOpt::VisitInstructionBottomUp(
1318     Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1319     BBState &MyStates) {
1320   bool NestingDetected = false;
1321   ARCInstKind Class = GetARCInstKind(Inst);
1322   const Value *Arg = nullptr;
1323 
1324   LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1325 
1326   switch (Class) {
1327   case ARCInstKind::Release: {
1328     Arg = GetArgRCIdentityRoot(Inst);
1329 
1330     BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1331     NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1332     break;
1333   }
1334   case ARCInstKind::RetainBlock:
1335     // In OptimizeIndividualCalls, we have strength reduced all optimizable
1336     // objc_retainBlocks to objc_retains. Thus at this point any
1337     // objc_retainBlocks that we see are not optimizable.
1338     break;
1339   case ARCInstKind::Retain:
1340   case ARCInstKind::RetainRV: {
1341     Arg = GetArgRCIdentityRoot(Inst);
1342     BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1343     if (S.MatchWithRetain()) {
1344       // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1345       // it's better to let it remain as the first instruction after a call.
1346       if (Class != ARCInstKind::RetainRV) {
1347         LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1348         Retains[Inst] = S.GetRRInfo();
1349       }
1350       S.ClearSequenceProgress();
1351     }
1352     // A retain moving bottom up can be a use.
1353     break;
1354   }
1355   case ARCInstKind::AutoreleasepoolPop:
1356     // Conservatively, clear MyStates for all known pointers.
1357     MyStates.clearBottomUpPointers();
1358     return NestingDetected;
1359   case ARCInstKind::AutoreleasepoolPush:
1360   case ARCInstKind::None:
1361     // These are irrelevant.
1362     return NestingDetected;
1363   default:
1364     break;
1365   }
1366 
1367   // Consider any other possible effects of this instruction on each
1368   // pointer being tracked.
1369   for (auto MI = MyStates.bottom_up_ptr_begin(),
1370             ME = MyStates.bottom_up_ptr_end();
1371        MI != ME; ++MI) {
1372     const Value *Ptr = MI->first;
1373     if (Ptr == Arg)
1374       continue; // Handled above.
1375     BottomUpPtrState &S = MI->second;
1376 
1377     if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1378       continue;
1379 
1380     S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1381   }
1382 
1383   return NestingDetected;
1384 }
1385 
1386 bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1387                                DenseMap<const BasicBlock *, BBState> &BBStates,
1388                                BlotMapVector<Value *, RRInfo> &Retains) {
1389   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1390 
1391   bool NestingDetected = false;
1392   BBState &MyStates = BBStates[BB];
1393 
1394   // Merge the states from each successor to compute the initial state
1395   // for the current block.
1396   BBState::edge_iterator SI(MyStates.succ_begin()),
1397                          SE(MyStates.succ_end());
1398   if (SI != SE) {
1399     const BasicBlock *Succ = *SI;
1400     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1401     assert(I != BBStates.end());
1402     MyStates.InitFromSucc(I->second);
1403     ++SI;
1404     for (; SI != SE; ++SI) {
1405       Succ = *SI;
1406       I = BBStates.find(Succ);
1407       assert(I != BBStates.end());
1408       MyStates.MergeSucc(I->second);
1409     }
1410   }
1411 
1412   LLVM_DEBUG(dbgs() << "Before:\n"
1413                     << BBStates[BB] << "\n"
1414                     << "Performing Dataflow:\n");
1415 
1416   // Visit all the instructions, bottom-up.
1417   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1418     Instruction *Inst = &*std::prev(I);
1419 
1420     // Invoke instructions are visited as part of their successors (below).
1421     if (isa<InvokeInst>(Inst))
1422       continue;
1423 
1424     LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
1425 
1426     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1427 
1428     // Bail out if the number of pointers being tracked becomes too large so
1429     // that this pass can complete in a reasonable amount of time.
1430     if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) {
1431       DisableRetainReleasePairing = true;
1432       return false;
1433     }
1434   }
1435 
1436   // If there's a predecessor with an invoke, visit the invoke as if it were
1437   // part of this block, since we can't insert code after an invoke in its own
1438   // block, and we don't want to split critical edges.
1439   for (BBState::edge_iterator PI(MyStates.pred_begin()),
1440        PE(MyStates.pred_end()); PI != PE; ++PI) {
1441     BasicBlock *Pred = *PI;
1442     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1443       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1444   }
1445 
1446   LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1447 
1448   return NestingDetected;
1449 }
1450 
1451 bool
1452 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1453                                     DenseMap<Value *, RRInfo> &Releases,
1454                                     BBState &MyStates) {
1455   bool NestingDetected = false;
1456   ARCInstKind Class = GetARCInstKind(Inst);
1457   const Value *Arg = nullptr;
1458 
1459   LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1460 
1461   switch (Class) {
1462   case ARCInstKind::RetainBlock:
1463     // In OptimizeIndividualCalls, we have strength reduced all optimizable
1464     // objc_retainBlocks to objc_retains. Thus at this point any
1465     // objc_retainBlocks that we see are not optimizable. We need to break since
1466     // a retain can be a potential use.
1467     break;
1468   case ARCInstKind::Retain:
1469   case ARCInstKind::RetainRV: {
1470     Arg = GetArgRCIdentityRoot(Inst);
1471     TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1472     NestingDetected |= S.InitTopDown(Class, Inst);
1473     // A retain can be a potential use; proceed to the generic checking
1474     // code below.
1475     break;
1476   }
1477   case ARCInstKind::Release: {
1478     Arg = GetArgRCIdentityRoot(Inst);
1479     TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1480     // Try to form a tentative pair in between this release instruction and the
1481     // top down pointers that we are tracking.
1482     if (S.MatchWithRelease(MDKindCache, Inst)) {
1483       // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1484       // Map}. Then we clear S.
1485       LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1486       Releases[Inst] = S.GetRRInfo();
1487       S.ClearSequenceProgress();
1488     }
1489     break;
1490   }
1491   case ARCInstKind::AutoreleasepoolPop:
1492     // Conservatively, clear MyStates for all known pointers.
1493     MyStates.clearTopDownPointers();
1494     return false;
1495   case ARCInstKind::AutoreleasepoolPush:
1496   case ARCInstKind::None:
1497     // These can not be uses of
1498     return false;
1499   default:
1500     break;
1501   }
1502 
1503   // Consider any other possible effects of this instruction on each
1504   // pointer being tracked.
1505   for (auto MI = MyStates.top_down_ptr_begin(),
1506             ME = MyStates.top_down_ptr_end();
1507        MI != ME; ++MI) {
1508     const Value *Ptr = MI->first;
1509     if (Ptr == Arg)
1510       continue; // Handled above.
1511     TopDownPtrState &S = MI->second;
1512     if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1513       continue;
1514 
1515     S.HandlePotentialUse(Inst, Ptr, PA, Class);
1516   }
1517 
1518   return NestingDetected;
1519 }
1520 
1521 bool
1522 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1523                          DenseMap<const BasicBlock *, BBState> &BBStates,
1524                          DenseMap<Value *, RRInfo> &Releases) {
1525   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1526   bool NestingDetected = false;
1527   BBState &MyStates = BBStates[BB];
1528 
1529   // Merge the states from each predecessor to compute the initial state
1530   // for the current block.
1531   BBState::edge_iterator PI(MyStates.pred_begin()),
1532                          PE(MyStates.pred_end());
1533   if (PI != PE) {
1534     const BasicBlock *Pred = *PI;
1535     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1536     assert(I != BBStates.end());
1537     MyStates.InitFromPred(I->second);
1538     ++PI;
1539     for (; PI != PE; ++PI) {
1540       Pred = *PI;
1541       I = BBStates.find(Pred);
1542       assert(I != BBStates.end());
1543       MyStates.MergePred(I->second);
1544     }
1545   }
1546 
1547   LLVM_DEBUG(dbgs() << "Before:\n"
1548                     << BBStates[BB] << "\n"
1549                     << "Performing Dataflow:\n");
1550 
1551   // Visit all the instructions, top-down.
1552   for (Instruction &Inst : *BB) {
1553     LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n");
1554 
1555     NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
1556 
1557     // Bail out if the number of pointers being tracked becomes too large so
1558     // that this pass can complete in a reasonable amount of time.
1559     if (MyStates.top_down_ptr_list_size() > MaxPtrStates) {
1560       DisableRetainReleasePairing = true;
1561       return false;
1562     }
1563   }
1564 
1565   LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
1566                     << BBStates[BB] << "\n\n");
1567   CheckForCFGHazards(BB, BBStates, MyStates);
1568   LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1569   return NestingDetected;
1570 }
1571 
1572 static void
1573 ComputePostOrders(Function &F,
1574                   SmallVectorImpl<BasicBlock *> &PostOrder,
1575                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1576                   unsigned NoObjCARCExceptionsMDKind,
1577                   DenseMap<const BasicBlock *, BBState> &BBStates) {
1578   /// The visited set, for doing DFS walks.
1579   SmallPtrSet<BasicBlock *, 16> Visited;
1580 
1581   // Do DFS, computing the PostOrder.
1582   SmallPtrSet<BasicBlock *, 16> OnStack;
1583   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1584 
1585   // Functions always have exactly one entry block, and we don't have
1586   // any other block that we treat like an entry block.
1587   BasicBlock *EntryBB = &F.getEntryBlock();
1588   BBState &MyStates = BBStates[EntryBB];
1589   MyStates.SetAsEntry();
1590   Instruction *EntryTI = EntryBB->getTerminator();
1591   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1592   Visited.insert(EntryBB);
1593   OnStack.insert(EntryBB);
1594   do {
1595   dfs_next_succ:
1596     BasicBlock *CurrBB = SuccStack.back().first;
1597     succ_iterator SE(CurrBB->getTerminator(), false);
1598 
1599     while (SuccStack.back().second != SE) {
1600       BasicBlock *SuccBB = *SuccStack.back().second++;
1601       if (Visited.insert(SuccBB).second) {
1602         SuccStack.push_back(
1603             std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator())));
1604         BBStates[CurrBB].addSucc(SuccBB);
1605         BBState &SuccStates = BBStates[SuccBB];
1606         SuccStates.addPred(CurrBB);
1607         OnStack.insert(SuccBB);
1608         goto dfs_next_succ;
1609       }
1610 
1611       if (!OnStack.count(SuccBB)) {
1612         BBStates[CurrBB].addSucc(SuccBB);
1613         BBStates[SuccBB].addPred(CurrBB);
1614       }
1615     }
1616     OnStack.erase(CurrBB);
1617     PostOrder.push_back(CurrBB);
1618     SuccStack.pop_back();
1619   } while (!SuccStack.empty());
1620 
1621   Visited.clear();
1622 
1623   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1624   // Functions may have many exits, and there also blocks which we treat
1625   // as exits due to ignored edges.
1626   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1627   for (BasicBlock &ExitBB : F) {
1628     BBState &MyStates = BBStates[&ExitBB];
1629     if (!MyStates.isExit())
1630       continue;
1631 
1632     MyStates.SetAsExit();
1633 
1634     PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
1635     Visited.insert(&ExitBB);
1636     while (!PredStack.empty()) {
1637     reverse_dfs_next_succ:
1638       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1639       while (PredStack.back().second != PE) {
1640         BasicBlock *BB = *PredStack.back().second++;
1641         if (Visited.insert(BB).second) {
1642           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1643           goto reverse_dfs_next_succ;
1644         }
1645       }
1646       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1647     }
1648   }
1649 }
1650 
1651 // Visit the function both top-down and bottom-up.
1652 bool ObjCARCOpt::Visit(Function &F,
1653                        DenseMap<const BasicBlock *, BBState> &BBStates,
1654                        BlotMapVector<Value *, RRInfo> &Retains,
1655                        DenseMap<Value *, RRInfo> &Releases) {
1656   // Use reverse-postorder traversals, because we magically know that loops
1657   // will be well behaved, i.e. they won't repeatedly call retain on a single
1658   // pointer without doing a release. We can't use the ReversePostOrderTraversal
1659   // class here because we want the reverse-CFG postorder to consider each
1660   // function exit point, and we want to ignore selected cycle edges.
1661   SmallVector<BasicBlock *, 16> PostOrder;
1662   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1663   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1664                     MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1665                     BBStates);
1666 
1667   // Use reverse-postorder on the reverse CFG for bottom-up.
1668   bool BottomUpNestingDetected = false;
1669   for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) {
1670     BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
1671     if (DisableRetainReleasePairing)
1672       return false;
1673   }
1674 
1675   // Use reverse-postorder for top-down.
1676   bool TopDownNestingDetected = false;
1677   for (BasicBlock *BB : llvm::reverse(PostOrder)) {
1678     TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
1679     if (DisableRetainReleasePairing)
1680       return false;
1681   }
1682 
1683   return TopDownNestingDetected && BottomUpNestingDetected;
1684 }
1685 
1686 /// Move the calls in RetainsToMove and ReleasesToMove.
1687 void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1688                            RRInfo &ReleasesToMove,
1689                            BlotMapVector<Value *, RRInfo> &Retains,
1690                            DenseMap<Value *, RRInfo> &Releases,
1691                            SmallVectorImpl<Instruction *> &DeadInsts,
1692                            Module *M) {
1693   Type *ArgTy = Arg->getType();
1694   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1695 
1696   LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1697 
1698   // Insert the new retain and release calls.
1699   for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1700     Value *MyArg = ArgTy == ParamTy ? Arg :
1701                    new BitCastInst(Arg, ParamTy, "", InsertPt);
1702     Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1703     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1704     Call->setDoesNotThrow();
1705     Call->setTailCall();
1706 
1707     LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
1708                       << "\n"
1709                          "At insertion point: "
1710                       << *InsertPt << "\n");
1711   }
1712   for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1713     Value *MyArg = ArgTy == ParamTy ? Arg :
1714                    new BitCastInst(Arg, ParamTy, "", InsertPt);
1715     Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1716     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1717     // Attach a clang.imprecise_release metadata tag, if appropriate.
1718     if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1719       Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1720     Call->setDoesNotThrow();
1721     if (ReleasesToMove.IsTailCallRelease)
1722       Call->setTailCall();
1723 
1724     LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
1725                       << "\n"
1726                          "At insertion point: "
1727                       << *InsertPt << "\n");
1728   }
1729 
1730   // Delete the original retain and release calls.
1731   for (Instruction *OrigRetain : RetainsToMove.Calls) {
1732     Retains.blot(OrigRetain);
1733     DeadInsts.push_back(OrigRetain);
1734     LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1735   }
1736   for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1737     Releases.erase(OrigRelease);
1738     DeadInsts.push_back(OrigRelease);
1739     LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1740   }
1741 }
1742 
1743 bool ObjCARCOpt::PairUpRetainsAndReleases(
1744     DenseMap<const BasicBlock *, BBState> &BBStates,
1745     BlotMapVector<Value *, RRInfo> &Retains,
1746     DenseMap<Value *, RRInfo> &Releases, Module *M,
1747     Instruction *Retain,
1748     SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1749     RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1750     bool &AnyPairsCompletelyEliminated) {
1751   // If a pair happens in a region where it is known that the reference count
1752   // is already incremented, we can similarly ignore possible decrements unless
1753   // we are dealing with a retainable object with multiple provenance sources.
1754   bool KnownSafeTD = true, KnownSafeBU = true;
1755   bool CFGHazardAfflicted = false;
1756 
1757   // Connect the dots between the top-down-collected RetainsToMove and
1758   // bottom-up-collected ReleasesToMove to form sets of related calls.
1759   // This is an iterative process so that we connect multiple releases
1760   // to multiple retains if needed.
1761   unsigned OldDelta = 0;
1762   unsigned NewDelta = 0;
1763   unsigned OldCount = 0;
1764   unsigned NewCount = 0;
1765   bool FirstRelease = true;
1766   for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
1767     SmallVector<Instruction *, 4> NewReleases;
1768     for (Instruction *NewRetain : NewRetains) {
1769       auto It = Retains.find(NewRetain);
1770       assert(It != Retains.end());
1771       const RRInfo &NewRetainRRI = It->second;
1772       KnownSafeTD &= NewRetainRRI.KnownSafe;
1773       CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
1774       for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1775         auto Jt = Releases.find(NewRetainRelease);
1776         if (Jt == Releases.end())
1777           return false;
1778         const RRInfo &NewRetainReleaseRRI = Jt->second;
1779 
1780         // If the release does not have a reference to the retain as well,
1781         // something happened which is unaccounted for. Do not do anything.
1782         //
1783         // This can happen if we catch an additive overflow during path count
1784         // merging.
1785         if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1786           return false;
1787 
1788         if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1789           // If we overflow when we compute the path count, don't remove/move
1790           // anything.
1791           const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1792           unsigned PathCount = BBState::OverflowOccurredValue;
1793           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1794             return false;
1795           assert(PathCount != BBState::OverflowOccurredValue &&
1796                  "PathCount at this point can not be "
1797                  "OverflowOccurredValue.");
1798           OldDelta -= PathCount;
1799 
1800           // Merge the ReleaseMetadata and IsTailCallRelease values.
1801           if (FirstRelease) {
1802             ReleasesToMove.ReleaseMetadata =
1803               NewRetainReleaseRRI.ReleaseMetadata;
1804             ReleasesToMove.IsTailCallRelease =
1805               NewRetainReleaseRRI.IsTailCallRelease;
1806             FirstRelease = false;
1807           } else {
1808             if (ReleasesToMove.ReleaseMetadata !=
1809                 NewRetainReleaseRRI.ReleaseMetadata)
1810               ReleasesToMove.ReleaseMetadata = nullptr;
1811             if (ReleasesToMove.IsTailCallRelease !=
1812                 NewRetainReleaseRRI.IsTailCallRelease)
1813               ReleasesToMove.IsTailCallRelease = false;
1814           }
1815 
1816           // Collect the optimal insertion points.
1817           if (!KnownSafe)
1818             for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1819               if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1820                 // If we overflow when we compute the path count, don't
1821                 // remove/move anything.
1822                 const BBState &RIPBBState = BBStates[RIP->getParent()];
1823                 PathCount = BBState::OverflowOccurredValue;
1824                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1825                   return false;
1826                 assert(PathCount != BBState::OverflowOccurredValue &&
1827                        "PathCount at this point can not be "
1828                        "OverflowOccurredValue.");
1829                 NewDelta -= PathCount;
1830               }
1831             }
1832           NewReleases.push_back(NewRetainRelease);
1833         }
1834       }
1835     }
1836     NewRetains.clear();
1837     if (NewReleases.empty()) break;
1838 
1839     // Back the other way.
1840     for (Instruction *NewRelease : NewReleases) {
1841       auto It = Releases.find(NewRelease);
1842       assert(It != Releases.end());
1843       const RRInfo &NewReleaseRRI = It->second;
1844       KnownSafeBU &= NewReleaseRRI.KnownSafe;
1845       CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1846       for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1847         auto Jt = Retains.find(NewReleaseRetain);
1848         if (Jt == Retains.end())
1849           return false;
1850         const RRInfo &NewReleaseRetainRRI = Jt->second;
1851 
1852         // If the retain does not have a reference to the release as well,
1853         // something happened which is unaccounted for. Do not do anything.
1854         //
1855         // This can happen if we catch an additive overflow during path count
1856         // merging.
1857         if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1858           return false;
1859 
1860         if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1861           // If we overflow when we compute the path count, don't remove/move
1862           // anything.
1863           const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1864           unsigned PathCount = BBState::OverflowOccurredValue;
1865           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1866             return false;
1867           assert(PathCount != BBState::OverflowOccurredValue &&
1868                  "PathCount at this point can not be "
1869                  "OverflowOccurredValue.");
1870           OldDelta += PathCount;
1871           OldCount += PathCount;
1872 
1873           // Collect the optimal insertion points.
1874           if (!KnownSafe)
1875             for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1876               if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1877                 // If we overflow when we compute the path count, don't
1878                 // remove/move anything.
1879                 const BBState &RIPBBState = BBStates[RIP->getParent()];
1880 
1881                 PathCount = BBState::OverflowOccurredValue;
1882                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1883                   return false;
1884                 assert(PathCount != BBState::OverflowOccurredValue &&
1885                        "PathCount at this point can not be "
1886                        "OverflowOccurredValue.");
1887                 NewDelta += PathCount;
1888                 NewCount += PathCount;
1889               }
1890             }
1891           NewRetains.push_back(NewReleaseRetain);
1892         }
1893       }
1894     }
1895     if (NewRetains.empty()) break;
1896   }
1897 
1898   // We can only remove pointers if we are known safe in both directions.
1899   bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1900   if (UnconditionallySafe) {
1901     RetainsToMove.ReverseInsertPts.clear();
1902     ReleasesToMove.ReverseInsertPts.clear();
1903     NewCount = 0;
1904   } else {
1905     // Determine whether the new insertion points we computed preserve the
1906     // balance of retain and release calls through the program.
1907     // TODO: If the fully aggressive solution isn't valid, try to find a
1908     // less aggressive solution which is.
1909     if (NewDelta != 0)
1910       return false;
1911 
1912     // At this point, we are not going to remove any RR pairs, but we still are
1913     // able to move RR pairs. If one of our pointers is afflicted with
1914     // CFGHazards, we cannot perform such code motion so exit early.
1915     const bool WillPerformCodeMotion =
1916         !RetainsToMove.ReverseInsertPts.empty() ||
1917         !ReleasesToMove.ReverseInsertPts.empty();
1918     if (CFGHazardAfflicted && WillPerformCodeMotion)
1919       return false;
1920   }
1921 
1922   // Determine whether the original call points are balanced in the retain and
1923   // release calls through the program. If not, conservatively don't touch
1924   // them.
1925   // TODO: It's theoretically possible to do code motion in this case, as
1926   // long as the existing imbalances are maintained.
1927   if (OldDelta != 0)
1928     return false;
1929 
1930   Changed = true;
1931   assert(OldCount != 0 && "Unreachable code?");
1932   NumRRs += OldCount - NewCount;
1933   // Set to true if we completely removed any RR pairs.
1934   AnyPairsCompletelyEliminated = NewCount == 0;
1935 
1936   // We can move calls!
1937   return true;
1938 }
1939 
1940 /// Identify pairings between the retains and releases, and delete and/or move
1941 /// them.
1942 bool ObjCARCOpt::PerformCodePlacement(
1943     DenseMap<const BasicBlock *, BBState> &BBStates,
1944     BlotMapVector<Value *, RRInfo> &Retains,
1945     DenseMap<Value *, RRInfo> &Releases, Module *M) {
1946   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
1947 
1948   bool AnyPairsCompletelyEliminated = false;
1949   SmallVector<Instruction *, 8> DeadInsts;
1950 
1951   // Visit each retain.
1952   for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
1953                                                       E = Retains.end();
1954        I != E; ++I) {
1955     Value *V = I->first;
1956     if (!V) continue; // blotted
1957 
1958     Instruction *Retain = cast<Instruction>(V);
1959 
1960     LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
1961 
1962     Value *Arg = GetArgRCIdentityRoot(Retain);
1963 
1964     // If the object being released is in static or stack storage, we know it's
1965     // not being managed by ObjC reference counting, so we can delete pairs
1966     // regardless of what possible decrements or uses lie between them.
1967     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
1968 
1969     // A constant pointer can't be pointing to an object on the heap. It may
1970     // be reference-counted, but it won't be deleted.
1971     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
1972       if (const GlobalVariable *GV =
1973             dyn_cast<GlobalVariable>(
1974               GetRCIdentityRoot(LI->getPointerOperand())))
1975         if (GV->isConstant())
1976           KnownSafe = true;
1977 
1978     // Connect the dots between the top-down-collected RetainsToMove and
1979     // bottom-up-collected ReleasesToMove to form sets of related calls.
1980     RRInfo RetainsToMove, ReleasesToMove;
1981 
1982     bool PerformMoveCalls = PairUpRetainsAndReleases(
1983         BBStates, Retains, Releases, M, Retain, DeadInsts,
1984         RetainsToMove, ReleasesToMove, Arg, KnownSafe,
1985         AnyPairsCompletelyEliminated);
1986 
1987     if (PerformMoveCalls) {
1988       // Ok, everything checks out and we're all set. Let's move/delete some
1989       // code!
1990       MoveCalls(Arg, RetainsToMove, ReleasesToMove,
1991                 Retains, Releases, DeadInsts, M);
1992     }
1993   }
1994 
1995   // Now that we're done moving everything, we can delete the newly dead
1996   // instructions, as we no longer need them as insert points.
1997   while (!DeadInsts.empty())
1998     EraseInstruction(DeadInsts.pop_back_val());
1999 
2000   return AnyPairsCompletelyEliminated;
2001 }
2002 
2003 /// Weak pointer optimizations.
2004 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2005   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
2006 
2007   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2008   // itself because it uses AliasAnalysis and we need to do provenance
2009   // queries instead.
2010   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2011     Instruction *Inst = &*I++;
2012 
2013     LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
2014 
2015     ARCInstKind Class = GetBasicARCInstKind(Inst);
2016     if (Class != ARCInstKind::LoadWeak &&
2017         Class != ARCInstKind::LoadWeakRetained)
2018       continue;
2019 
2020     // Delete objc_loadWeak calls with no users.
2021     if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
2022       Inst->eraseFromParent();
2023       continue;
2024     }
2025 
2026     // TODO: For now, just look for an earlier available version of this value
2027     // within the same block. Theoretically, we could do memdep-style non-local
2028     // analysis too, but that would want caching. A better approach would be to
2029     // use the technique that EarlyCSE uses.
2030     inst_iterator Current = std::prev(I);
2031     BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
2032     for (BasicBlock::iterator B = CurrentBB->begin(),
2033                               J = Current.getInstructionIterator();
2034          J != B; --J) {
2035       Instruction *EarlierInst = &*std::prev(J);
2036       ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
2037       switch (EarlierClass) {
2038       case ARCInstKind::LoadWeak:
2039       case ARCInstKind::LoadWeakRetained: {
2040         // If this is loading from the same pointer, replace this load's value
2041         // with that one.
2042         CallInst *Call = cast<CallInst>(Inst);
2043         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2044         Value *Arg = Call->getArgOperand(0);
2045         Value *EarlierArg = EarlierCall->getArgOperand(0);
2046         switch (PA.getAA()->alias(Arg, EarlierArg)) {
2047         case MustAlias:
2048           Changed = true;
2049           // If the load has a builtin retain, insert a plain retain for it.
2050           if (Class == ARCInstKind::LoadWeakRetained) {
2051             Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2052             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2053             CI->setTailCall();
2054           }
2055           // Zap the fully redundant load.
2056           Call->replaceAllUsesWith(EarlierCall);
2057           Call->eraseFromParent();
2058           goto clobbered;
2059         case MayAlias:
2060         case PartialAlias:
2061           goto clobbered;
2062         case NoAlias:
2063           break;
2064         }
2065         break;
2066       }
2067       case ARCInstKind::StoreWeak:
2068       case ARCInstKind::InitWeak: {
2069         // If this is storing to the same pointer and has the same size etc.
2070         // replace this load's value with the stored value.
2071         CallInst *Call = cast<CallInst>(Inst);
2072         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2073         Value *Arg = Call->getArgOperand(0);
2074         Value *EarlierArg = EarlierCall->getArgOperand(0);
2075         switch (PA.getAA()->alias(Arg, EarlierArg)) {
2076         case MustAlias:
2077           Changed = true;
2078           // If the load has a builtin retain, insert a plain retain for it.
2079           if (Class == ARCInstKind::LoadWeakRetained) {
2080             Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2081             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2082             CI->setTailCall();
2083           }
2084           // Zap the fully redundant load.
2085           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2086           Call->eraseFromParent();
2087           goto clobbered;
2088         case MayAlias:
2089         case PartialAlias:
2090           goto clobbered;
2091         case NoAlias:
2092           break;
2093         }
2094         break;
2095       }
2096       case ARCInstKind::MoveWeak:
2097       case ARCInstKind::CopyWeak:
2098         // TOOD: Grab the copied value.
2099         goto clobbered;
2100       case ARCInstKind::AutoreleasepoolPush:
2101       case ARCInstKind::None:
2102       case ARCInstKind::IntrinsicUser:
2103       case ARCInstKind::User:
2104         // Weak pointers are only modified through the weak entry points
2105         // (and arbitrary calls, which could call the weak entry points).
2106         break;
2107       default:
2108         // Anything else could modify the weak pointer.
2109         goto clobbered;
2110       }
2111     }
2112   clobbered:;
2113   }
2114 
2115   // Then, for each destroyWeak with an alloca operand, check to see if
2116   // the alloca and all its users can be zapped.
2117   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2118     Instruction *Inst = &*I++;
2119     ARCInstKind Class = GetBasicARCInstKind(Inst);
2120     if (Class != ARCInstKind::DestroyWeak)
2121       continue;
2122 
2123     CallInst *Call = cast<CallInst>(Inst);
2124     Value *Arg = Call->getArgOperand(0);
2125     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2126       for (User *U : Alloca->users()) {
2127         const Instruction *UserInst = cast<Instruction>(U);
2128         switch (GetBasicARCInstKind(UserInst)) {
2129         case ARCInstKind::InitWeak:
2130         case ARCInstKind::StoreWeak:
2131         case ARCInstKind::DestroyWeak:
2132           continue;
2133         default:
2134           goto done;
2135         }
2136       }
2137       Changed = true;
2138       for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
2139         CallInst *UserInst = cast<CallInst>(*UI++);
2140         switch (GetBasicARCInstKind(UserInst)) {
2141         case ARCInstKind::InitWeak:
2142         case ARCInstKind::StoreWeak:
2143           // These functions return their second argument.
2144           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
2145           break;
2146         case ARCInstKind::DestroyWeak:
2147           // No return value.
2148           break;
2149         default:
2150           llvm_unreachable("alloca really is used!");
2151         }
2152         UserInst->eraseFromParent();
2153       }
2154       Alloca->eraseFromParent();
2155     done:;
2156     }
2157   }
2158 }
2159 
2160 /// Identify program paths which execute sequences of retains and releases which
2161 /// can be eliminated.
2162 bool ObjCARCOpt::OptimizeSequences(Function &F) {
2163   // Releases, Retains - These are used to store the results of the main flow
2164   // analysis. These use Value* as the key instead of Instruction* so that the
2165   // map stays valid when we get around to rewriting code and calls get
2166   // replaced by arguments.
2167   DenseMap<Value *, RRInfo> Releases;
2168   BlotMapVector<Value *, RRInfo> Retains;
2169 
2170   // This is used during the traversal of the function to track the
2171   // states for each identified object at each block.
2172   DenseMap<const BasicBlock *, BBState> BBStates;
2173 
2174   // Analyze the CFG of the function, and all instructions.
2175   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
2176 
2177   if (DisableRetainReleasePairing)
2178     return false;
2179 
2180   // Transform.
2181   bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
2182                                                            Releases,
2183                                                            F.getParent());
2184 
2185   return AnyPairsCompletelyEliminated && NestingDetected;
2186 }
2187 
2188 /// Check if there is a dependent call earlier that does not have anything in
2189 /// between the Retain and the call that can affect the reference count of their
2190 /// shared pointer argument. Note that Retain need not be in BB.
2191 static bool
2192 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
2193                              SmallPtrSetImpl<Instruction *> &DepInsts,
2194                              SmallPtrSetImpl<const BasicBlock *> &Visited,
2195                              ProvenanceAnalysis &PA) {
2196   FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
2197                    DepInsts, Visited, PA);
2198   if (DepInsts.size() != 1)
2199     return false;
2200 
2201   auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2202 
2203   // Check that the pointer is the return value of the call.
2204   if (!Call || Arg != Call)
2205     return false;
2206 
2207   // Check that the call is a regular call.
2208   ARCInstKind Class = GetBasicARCInstKind(Call);
2209   return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call;
2210 }
2211 
2212 /// Find a dependent retain that precedes the given autorelease for which there
2213 /// is nothing in between the two instructions that can affect the ref count of
2214 /// Arg.
2215 static CallInst *
2216 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2217                                   Instruction *Autorelease,
2218                                   SmallPtrSetImpl<Instruction *> &DepInsts,
2219                                   SmallPtrSetImpl<const BasicBlock *> &Visited,
2220                                   ProvenanceAnalysis &PA) {
2221   FindDependencies(CanChangeRetainCount, Arg,
2222                    BB, Autorelease, DepInsts, Visited, PA);
2223   if (DepInsts.size() != 1)
2224     return nullptr;
2225 
2226   auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2227 
2228   // Check that we found a retain with the same argument.
2229   if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2230       GetArgRCIdentityRoot(Retain) != Arg) {
2231     return nullptr;
2232   }
2233 
2234   return Retain;
2235 }
2236 
2237 /// Look for an ``autorelease'' instruction dependent on Arg such that there are
2238 /// no instructions dependent on Arg that need a positive ref count in between
2239 /// the autorelease and the ret.
2240 static CallInst *
2241 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2242                                        ReturnInst *Ret,
2243                                        SmallPtrSetImpl<Instruction *> &DepInsts,
2244                                        SmallPtrSetImpl<const BasicBlock *> &V,
2245                                        ProvenanceAnalysis &PA) {
2246   FindDependencies(NeedsPositiveRetainCount, Arg,
2247                    BB, Ret, DepInsts, V, PA);
2248   if (DepInsts.size() != 1)
2249     return nullptr;
2250 
2251   auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2252   if (!Autorelease)
2253     return nullptr;
2254   ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2255   if (!IsAutorelease(AutoreleaseClass))
2256     return nullptr;
2257   if (GetArgRCIdentityRoot(Autorelease) != Arg)
2258     return nullptr;
2259 
2260   return Autorelease;
2261 }
2262 
2263 /// Look for this pattern:
2264 /// \code
2265 ///    %call = call i8* @something(...)
2266 ///    %2 = call i8* @objc_retain(i8* %call)
2267 ///    %3 = call i8* @objc_autorelease(i8* %2)
2268 ///    ret i8* %3
2269 /// \endcode
2270 /// And delete the retain and autorelease.
2271 void ObjCARCOpt::OptimizeReturns(Function &F) {
2272   if (!F.getReturnType()->isPointerTy())
2273     return;
2274 
2275   LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2276 
2277   SmallPtrSet<Instruction *, 4> DependingInstructions;
2278   SmallPtrSet<const BasicBlock *, 4> Visited;
2279   for (BasicBlock &BB: F) {
2280     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
2281     if (!Ret)
2282       continue;
2283 
2284     LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2285 
2286     const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2287 
2288     // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2289     // dependent on Arg such that there are no instructions dependent on Arg
2290     // that need a positive ref count in between the autorelease and Ret.
2291     CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath(
2292         Arg, &BB, Ret, DependingInstructions, Visited, PA);
2293     DependingInstructions.clear();
2294     Visited.clear();
2295 
2296     if (!Autorelease)
2297       continue;
2298 
2299     CallInst *Retain = FindPredecessorRetainWithSafePath(
2300         Arg, Autorelease->getParent(), Autorelease, DependingInstructions,
2301         Visited, PA);
2302     DependingInstructions.clear();
2303     Visited.clear();
2304 
2305     if (!Retain)
2306       continue;
2307 
2308     // Check that there is nothing that can affect the reference count
2309     // between the retain and the call.  Note that Retain need not be in BB.
2310     bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2311                                                           DependingInstructions,
2312                                                           Visited, PA);
2313     DependingInstructions.clear();
2314     Visited.clear();
2315 
2316     if (!HasSafePathToCall)
2317       continue;
2318 
2319     // If so, we can zap the retain and autorelease.
2320     Changed = true;
2321     ++NumRets;
2322     LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
2323                       << "\n");
2324     EraseInstruction(Retain);
2325     EraseInstruction(Autorelease);
2326   }
2327 }
2328 
2329 #ifndef NDEBUG
2330 void
2331 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2332   Statistic &NumRetains =
2333       AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2334   Statistic &NumReleases =
2335       AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2336 
2337   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2338     Instruction *Inst = &*I++;
2339     switch (GetBasicARCInstKind(Inst)) {
2340     default:
2341       break;
2342     case ARCInstKind::Retain:
2343       ++NumRetains;
2344       break;
2345     case ARCInstKind::Release:
2346       ++NumReleases;
2347       break;
2348     }
2349   }
2350 }
2351 #endif
2352 
2353 bool ObjCARCOpt::doInitialization(Module &M) {
2354   if (!EnableARCOpts)
2355     return false;
2356 
2357   // If nothing in the Module uses ARC, don't do anything.
2358   Run = ModuleHasARC(M);
2359   if (!Run)
2360     return false;
2361 
2362   // Intuitively, objc_retain and others are nocapture, however in practice
2363   // they are not, because they return their argument value. And objc_release
2364   // calls finalizers which can have arbitrary side effects.
2365   MDKindCache.init(&M);
2366 
2367   // Initialize our runtime entry point cache.
2368   EP.init(&M);
2369 
2370   return false;
2371 }
2372 
2373 bool ObjCARCOpt::runOnFunction(Function &F) {
2374   if (!EnableARCOpts)
2375     return false;
2376 
2377   // If nothing in the Module uses ARC, don't do anything.
2378   if (!Run)
2379     return false;
2380 
2381   Changed = false;
2382 
2383   LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
2384                     << " >>>"
2385                        "\n");
2386 
2387   PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults());
2388 
2389 #ifndef NDEBUG
2390   if (AreStatisticsEnabled()) {
2391     GatherStatistics(F, false);
2392   }
2393 #endif
2394 
2395   // This pass performs several distinct transformations. As a compile-time aid
2396   // when compiling code that isn't ObjC, skip these if the relevant ObjC
2397   // library functions aren't declared.
2398 
2399   // Preliminary optimizations. This also computes UsedInThisFunction.
2400   OptimizeIndividualCalls(F);
2401 
2402   // Optimizations for weak pointers.
2403   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2404                             (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2405                             (1 << unsigned(ARCInstKind::StoreWeak)) |
2406                             (1 << unsigned(ARCInstKind::InitWeak)) |
2407                             (1 << unsigned(ARCInstKind::CopyWeak)) |
2408                             (1 << unsigned(ARCInstKind::MoveWeak)) |
2409                             (1 << unsigned(ARCInstKind::DestroyWeak))))
2410     OptimizeWeakCalls(F);
2411 
2412   // Optimizations for retain+release pairs.
2413   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2414                             (1 << unsigned(ARCInstKind::RetainRV)) |
2415                             (1 << unsigned(ARCInstKind::RetainBlock))))
2416     if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2417       // Run OptimizeSequences until it either stops making changes or
2418       // no retain+release pair nesting is detected.
2419       while (OptimizeSequences(F)) {}
2420 
2421   // Optimizations if objc_autorelease is used.
2422   if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2423                             (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2424     OptimizeReturns(F);
2425 
2426   // Gather statistics after optimization.
2427 #ifndef NDEBUG
2428   if (AreStatisticsEnabled()) {
2429     GatherStatistics(F, true);
2430   }
2431 #endif
2432 
2433   LLVM_DEBUG(dbgs() << "\n");
2434 
2435   return Changed;
2436 }
2437 
2438 void ObjCARCOpt::releaseMemory() {
2439   PA.clear();
2440 }
2441 
2442 /// @}
2443 ///
2444