1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic 11 /// Reference Counting and is a system for managing reference counts for objects 12 /// in Objective C. 13 /// 14 /// The optimizations performed include elimination of redundant, partially 15 /// redundant, and inconsequential reference count operations, elimination of 16 /// redundant weak pointer operations, and numerous minor simplifications. 17 /// 18 /// WARNING: This file knows about certain library functions. It recognizes them 19 /// by name, and hardwires knowledge of their semantics. 20 /// 21 /// WARNING: This file knows about how certain Objective-C library functions are 22 /// used. Naive LLVM IR transformations which would otherwise be 23 /// behavior-preserving may break these assumptions. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "ARCRuntimeEntryPoints.h" 28 #include "BlotMapVector.h" 29 #include "DependencyAnalysis.h" 30 #include "ObjCARC.h" 31 #include "ProvenanceAnalysis.h" 32 #include "PtrState.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/None.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Analysis/AliasAnalysis.h" 40 #include "llvm/Analysis/EHPersonalities.h" 41 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 42 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 43 #include "llvm/Analysis/ObjCARCInstKind.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CFG.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/ObjCARC.h" 69 #include <cassert> 70 #include <iterator> 71 #include <utility> 72 73 using namespace llvm; 74 using namespace llvm::objcarc; 75 76 #define DEBUG_TYPE "objc-arc-opts" 77 78 static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states", 79 cl::Hidden, 80 cl::desc("Maximum number of ptr states the optimizer keeps track of"), 81 cl::init(4095)); 82 83 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. 84 /// @{ 85 86 /// This is similar to GetRCIdentityRoot but it stops as soon 87 /// as it finds a value with multiple uses. 88 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { 89 // ConstantData (like ConstantPointerNull and UndefValue) is used across 90 // modules. It's never a single-use value. 91 if (isa<ConstantData>(Arg)) 92 return nullptr; 93 94 if (Arg->hasOneUse()) { 95 if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) 96 return FindSingleUseIdentifiedObject(BC->getOperand(0)); 97 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) 98 if (GEP->hasAllZeroIndices()) 99 return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); 100 if (IsForwarding(GetBasicARCInstKind(Arg))) 101 return FindSingleUseIdentifiedObject( 102 cast<CallInst>(Arg)->getArgOperand(0)); 103 if (!IsObjCIdentifiedObject(Arg)) 104 return nullptr; 105 return Arg; 106 } 107 108 // If we found an identifiable object but it has multiple uses, but they are 109 // trivial uses, we can still consider this to be a single-use value. 110 if (IsObjCIdentifiedObject(Arg)) { 111 for (const User *U : Arg->users()) 112 if (!U->use_empty() || GetRCIdentityRoot(U) != Arg) 113 return nullptr; 114 115 return Arg; 116 } 117 118 return nullptr; 119 } 120 121 /// @} 122 /// 123 /// \defgroup ARCOpt ARC Optimization. 124 /// @{ 125 126 // TODO: On code like this: 127 // 128 // objc_retain(%x) 129 // stuff_that_cannot_release() 130 // objc_autorelease(%x) 131 // stuff_that_cannot_release() 132 // objc_retain(%x) 133 // stuff_that_cannot_release() 134 // objc_autorelease(%x) 135 // 136 // The second retain and autorelease can be deleted. 137 138 // TODO: It should be possible to delete 139 // objc_autoreleasePoolPush and objc_autoreleasePoolPop 140 // pairs if nothing is actually autoreleased between them. Also, autorelease 141 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code 142 // after inlining) can be turned into plain release calls. 143 144 // TODO: Critical-edge splitting. If the optimial insertion point is 145 // a critical edge, the current algorithm has to fail, because it doesn't 146 // know how to split edges. It should be possible to make the optimizer 147 // think in terms of edges, rather than blocks, and then split critical 148 // edges on demand. 149 150 // TODO: OptimizeSequences could generalized to be Interprocedural. 151 152 // TODO: Recognize that a bunch of other objc runtime calls have 153 // non-escaping arguments and non-releasing arguments, and may be 154 // non-autoreleasing. 155 156 // TODO: Sink autorelease calls as far as possible. Unfortunately we 157 // usually can't sink them past other calls, which would be the main 158 // case where it would be useful. 159 160 // TODO: The pointer returned from objc_loadWeakRetained is retained. 161 162 // TODO: Delete release+retain pairs (rare). 163 164 STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); 165 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); 166 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); 167 STATISTIC(NumRets, "Number of return value forwarding " 168 "retain+autoreleases eliminated"); 169 STATISTIC(NumRRs, "Number of retain+release paths eliminated"); 170 STATISTIC(NumPeeps, "Number of calls peephole-optimized"); 171 #ifndef NDEBUG 172 STATISTIC(NumRetainsBeforeOpt, 173 "Number of retains before optimization"); 174 STATISTIC(NumReleasesBeforeOpt, 175 "Number of releases before optimization"); 176 STATISTIC(NumRetainsAfterOpt, 177 "Number of retains after optimization"); 178 STATISTIC(NumReleasesAfterOpt, 179 "Number of releases after optimization"); 180 #endif 181 182 namespace { 183 184 /// Per-BasicBlock state. 185 class BBState { 186 /// The number of unique control paths from the entry which can reach this 187 /// block. 188 unsigned TopDownPathCount = 0; 189 190 /// The number of unique control paths to exits from this block. 191 unsigned BottomUpPathCount = 0; 192 193 /// The top-down traversal uses this to record information known about a 194 /// pointer at the bottom of each block. 195 BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown; 196 197 /// The bottom-up traversal uses this to record information known about a 198 /// pointer at the top of each block. 199 BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp; 200 201 /// Effective predecessors of the current block ignoring ignorable edges and 202 /// ignored backedges. 203 SmallVector<BasicBlock *, 2> Preds; 204 205 /// Effective successors of the current block ignoring ignorable edges and 206 /// ignored backedges. 207 SmallVector<BasicBlock *, 2> Succs; 208 209 public: 210 static const unsigned OverflowOccurredValue; 211 212 BBState() = default; 213 214 using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator; 215 using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator; 216 217 top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } 218 top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } 219 const_top_down_ptr_iterator top_down_ptr_begin() const { 220 return PerPtrTopDown.begin(); 221 } 222 const_top_down_ptr_iterator top_down_ptr_end() const { 223 return PerPtrTopDown.end(); 224 } 225 bool hasTopDownPtrs() const { 226 return !PerPtrTopDown.empty(); 227 } 228 229 unsigned top_down_ptr_list_size() const { 230 return std::distance(top_down_ptr_begin(), top_down_ptr_end()); 231 } 232 233 using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator; 234 using const_bottom_up_ptr_iterator = 235 decltype(PerPtrBottomUp)::const_iterator; 236 237 bottom_up_ptr_iterator bottom_up_ptr_begin() { 238 return PerPtrBottomUp.begin(); 239 } 240 bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } 241 const_bottom_up_ptr_iterator bottom_up_ptr_begin() const { 242 return PerPtrBottomUp.begin(); 243 } 244 const_bottom_up_ptr_iterator bottom_up_ptr_end() const { 245 return PerPtrBottomUp.end(); 246 } 247 bool hasBottomUpPtrs() const { 248 return !PerPtrBottomUp.empty(); 249 } 250 251 unsigned bottom_up_ptr_list_size() const { 252 return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end()); 253 } 254 255 /// Mark this block as being an entry block, which has one path from the 256 /// entry by definition. 257 void SetAsEntry() { TopDownPathCount = 1; } 258 259 /// Mark this block as being an exit block, which has one path to an exit by 260 /// definition. 261 void SetAsExit() { BottomUpPathCount = 1; } 262 263 /// Attempt to find the PtrState object describing the top down state for 264 /// pointer Arg. Return a new initialized PtrState describing the top down 265 /// state for Arg if we do not find one. 266 TopDownPtrState &getPtrTopDownState(const Value *Arg) { 267 return PerPtrTopDown[Arg]; 268 } 269 270 /// Attempt to find the PtrState object describing the bottom up state for 271 /// pointer Arg. Return a new initialized PtrState describing the bottom up 272 /// state for Arg if we do not find one. 273 BottomUpPtrState &getPtrBottomUpState(const Value *Arg) { 274 return PerPtrBottomUp[Arg]; 275 } 276 277 /// Attempt to find the PtrState object describing the bottom up state for 278 /// pointer Arg. 279 bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) { 280 return PerPtrBottomUp.find(Arg); 281 } 282 283 void clearBottomUpPointers() { 284 PerPtrBottomUp.clear(); 285 } 286 287 void clearTopDownPointers() { 288 PerPtrTopDown.clear(); 289 } 290 291 void InitFromPred(const BBState &Other); 292 void InitFromSucc(const BBState &Other); 293 void MergePred(const BBState &Other); 294 void MergeSucc(const BBState &Other); 295 296 /// Compute the number of possible unique paths from an entry to an exit 297 /// which pass through this block. This is only valid after both the 298 /// top-down and bottom-up traversals are complete. 299 /// 300 /// Returns true if overflow occurred. Returns false if overflow did not 301 /// occur. 302 bool GetAllPathCountWithOverflow(unsigned &PathCount) const { 303 if (TopDownPathCount == OverflowOccurredValue || 304 BottomUpPathCount == OverflowOccurredValue) 305 return true; 306 unsigned long long Product = 307 (unsigned long long)TopDownPathCount*BottomUpPathCount; 308 // Overflow occurred if any of the upper bits of Product are set or if all 309 // the lower bits of Product are all set. 310 return (Product >> 32) || 311 ((PathCount = Product) == OverflowOccurredValue); 312 } 313 314 // Specialized CFG utilities. 315 using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator; 316 317 edge_iterator pred_begin() const { return Preds.begin(); } 318 edge_iterator pred_end() const { return Preds.end(); } 319 edge_iterator succ_begin() const { return Succs.begin(); } 320 edge_iterator succ_end() const { return Succs.end(); } 321 322 void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } 323 void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } 324 325 bool isExit() const { return Succs.empty(); } 326 }; 327 328 } // end anonymous namespace 329 330 const unsigned BBState::OverflowOccurredValue = 0xffffffff; 331 332 namespace llvm { 333 334 raw_ostream &operator<<(raw_ostream &OS, 335 BBState &BBState) LLVM_ATTRIBUTE_UNUSED; 336 337 } // end namespace llvm 338 339 void BBState::InitFromPred(const BBState &Other) { 340 PerPtrTopDown = Other.PerPtrTopDown; 341 TopDownPathCount = Other.TopDownPathCount; 342 } 343 344 void BBState::InitFromSucc(const BBState &Other) { 345 PerPtrBottomUp = Other.PerPtrBottomUp; 346 BottomUpPathCount = Other.BottomUpPathCount; 347 } 348 349 /// The top-down traversal uses this to merge information about predecessors to 350 /// form the initial state for a new block. 351 void BBState::MergePred(const BBState &Other) { 352 if (TopDownPathCount == OverflowOccurredValue) 353 return; 354 355 // Other.TopDownPathCount can be 0, in which case it is either dead or a 356 // loop backedge. Loop backedges are special. 357 TopDownPathCount += Other.TopDownPathCount; 358 359 // In order to be consistent, we clear the top down pointers when by adding 360 // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow 361 // has not occurred. 362 if (TopDownPathCount == OverflowOccurredValue) { 363 clearTopDownPointers(); 364 return; 365 } 366 367 // Check for overflow. If we have overflow, fall back to conservative 368 // behavior. 369 if (TopDownPathCount < Other.TopDownPathCount) { 370 TopDownPathCount = OverflowOccurredValue; 371 clearTopDownPointers(); 372 return; 373 } 374 375 // For each entry in the other set, if our set has an entry with the same key, 376 // merge the entries. Otherwise, copy the entry and merge it with an empty 377 // entry. 378 for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); 379 MI != ME; ++MI) { 380 auto Pair = PerPtrTopDown.insert(*MI); 381 Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second, 382 /*TopDown=*/true); 383 } 384 385 // For each entry in our set, if the other set doesn't have an entry with the 386 // same key, force it to merge with an empty entry. 387 for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) 388 if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) 389 MI->second.Merge(TopDownPtrState(), /*TopDown=*/true); 390 } 391 392 /// The bottom-up traversal uses this to merge information about successors to 393 /// form the initial state for a new block. 394 void BBState::MergeSucc(const BBState &Other) { 395 if (BottomUpPathCount == OverflowOccurredValue) 396 return; 397 398 // Other.BottomUpPathCount can be 0, in which case it is either dead or a 399 // loop backedge. Loop backedges are special. 400 BottomUpPathCount += Other.BottomUpPathCount; 401 402 // In order to be consistent, we clear the top down pointers when by adding 403 // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow 404 // has not occurred. 405 if (BottomUpPathCount == OverflowOccurredValue) { 406 clearBottomUpPointers(); 407 return; 408 } 409 410 // Check for overflow. If we have overflow, fall back to conservative 411 // behavior. 412 if (BottomUpPathCount < Other.BottomUpPathCount) { 413 BottomUpPathCount = OverflowOccurredValue; 414 clearBottomUpPointers(); 415 return; 416 } 417 418 // For each entry in the other set, if our set has an entry with the 419 // same key, merge the entries. Otherwise, copy the entry and merge 420 // it with an empty entry. 421 for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); 422 MI != ME; ++MI) { 423 auto Pair = PerPtrBottomUp.insert(*MI); 424 Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second, 425 /*TopDown=*/false); 426 } 427 428 // For each entry in our set, if the other set doesn't have an entry 429 // with the same key, force it to merge with an empty entry. 430 for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; 431 ++MI) 432 if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) 433 MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false); 434 } 435 436 raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) { 437 // Dump the pointers we are tracking. 438 OS << " TopDown State:\n"; 439 if (!BBInfo.hasTopDownPtrs()) { 440 LLVM_DEBUG(dbgs() << " NONE!\n"); 441 } else { 442 for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end(); 443 I != E; ++I) { 444 const PtrState &P = I->second; 445 OS << " Ptr: " << *I->first 446 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false") 447 << "\n ImpreciseRelease: " 448 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" 449 << " HasCFGHazards: " 450 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" 451 << " KnownPositive: " 452 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" 453 << " Seq: " 454 << P.GetSeq() << "\n"; 455 } 456 } 457 458 OS << " BottomUp State:\n"; 459 if (!BBInfo.hasBottomUpPtrs()) { 460 LLVM_DEBUG(dbgs() << " NONE!\n"); 461 } else { 462 for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end(); 463 I != E; ++I) { 464 const PtrState &P = I->second; 465 OS << " Ptr: " << *I->first 466 << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false") 467 << "\n ImpreciseRelease: " 468 << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n" 469 << " HasCFGHazards: " 470 << (P.IsCFGHazardAfflicted()?"true":"false") << "\n" 471 << " KnownPositive: " 472 << (P.HasKnownPositiveRefCount()?"true":"false") << "\n" 473 << " Seq: " 474 << P.GetSeq() << "\n"; 475 } 476 } 477 478 return OS; 479 } 480 481 namespace { 482 483 /// The main ARC optimization pass. 484 class ObjCARCOpt { 485 bool Changed; 486 ProvenanceAnalysis PA; 487 488 /// A cache of references to runtime entry point constants. 489 ARCRuntimeEntryPoints EP; 490 491 /// A cache of MDKinds that can be passed into other functions to propagate 492 /// MDKind identifiers. 493 ARCMDKindCache MDKindCache; 494 495 /// A flag indicating whether this optimization pass should run. 496 bool Run; 497 498 /// A flag indicating whether the optimization that removes or moves 499 /// retain/release pairs should be performed. 500 bool DisableRetainReleasePairing = false; 501 502 /// Flags which determine whether each of the interesting runtime functions 503 /// is in fact used in the current function. 504 unsigned UsedInThisFunction; 505 506 bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); 507 void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, 508 ARCInstKind &Class); 509 void OptimizeIndividualCalls(Function &F); 510 511 /// Optimize an individual call, optionally passing the 512 /// GetArgRCIdentityRoot if it has already been computed. 513 void OptimizeIndividualCallImpl( 514 Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors, 515 Instruction *Inst, ARCInstKind Class, const Value *Arg); 516 517 /// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV. If the 518 /// optimization occurs, returns true to indicate that the caller should 519 /// assume the instructions are dead. 520 bool OptimizeInlinedAutoreleaseRVCall( 521 Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors, 522 Instruction *Inst, const Value *&Arg, ARCInstKind Class, 523 Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg); 524 525 void CheckForCFGHazards(const BasicBlock *BB, 526 DenseMap<const BasicBlock *, BBState> &BBStates, 527 BBState &MyStates) const; 528 bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, 529 BlotMapVector<Value *, RRInfo> &Retains, 530 BBState &MyStates); 531 bool VisitBottomUp(BasicBlock *BB, 532 DenseMap<const BasicBlock *, BBState> &BBStates, 533 BlotMapVector<Value *, RRInfo> &Retains); 534 bool VisitInstructionTopDown(Instruction *Inst, 535 DenseMap<Value *, RRInfo> &Releases, 536 BBState &MyStates); 537 bool VisitTopDown(BasicBlock *BB, 538 DenseMap<const BasicBlock *, BBState> &BBStates, 539 DenseMap<Value *, RRInfo> &Releases); 540 bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, 541 BlotMapVector<Value *, RRInfo> &Retains, 542 DenseMap<Value *, RRInfo> &Releases); 543 544 void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, 545 BlotMapVector<Value *, RRInfo> &Retains, 546 DenseMap<Value *, RRInfo> &Releases, 547 SmallVectorImpl<Instruction *> &DeadInsts, Module *M); 548 549 bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates, 550 BlotMapVector<Value *, RRInfo> &Retains, 551 DenseMap<Value *, RRInfo> &Releases, Module *M, 552 Instruction *Retain, 553 SmallVectorImpl<Instruction *> &DeadInsts, 554 RRInfo &RetainsToMove, RRInfo &ReleasesToMove, 555 Value *Arg, bool KnownSafe, 556 bool &AnyPairsCompletelyEliminated); 557 558 bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, 559 BlotMapVector<Value *, RRInfo> &Retains, 560 DenseMap<Value *, RRInfo> &Releases, Module *M); 561 562 void OptimizeWeakCalls(Function &F); 563 564 bool OptimizeSequences(Function &F); 565 566 void OptimizeReturns(Function &F); 567 568 #ifndef NDEBUG 569 void GatherStatistics(Function &F, bool AfterOptimization = false); 570 #endif 571 572 public: 573 void init(Module &M); 574 bool run(Function &F, AAResults &AA); 575 void releaseMemory(); 576 }; 577 578 /// The main ARC optimization pass. 579 class ObjCARCOptLegacyPass : public FunctionPass { 580 public: 581 ObjCARCOptLegacyPass() : FunctionPass(ID) { 582 initializeObjCARCOptLegacyPassPass(*PassRegistry::getPassRegistry()); 583 } 584 void getAnalysisUsage(AnalysisUsage &AU) const override; 585 bool doInitialization(Module &M) override { 586 OCAO.init(M); 587 return false; 588 } 589 bool runOnFunction(Function &F) override { 590 return OCAO.run(F, getAnalysis<AAResultsWrapperPass>().getAAResults()); 591 } 592 void releaseMemory() override { OCAO.releaseMemory(); } 593 static char ID; 594 595 private: 596 ObjCARCOpt OCAO; 597 }; 598 } // end anonymous namespace 599 600 char ObjCARCOptLegacyPass::ID = 0; 601 602 INITIALIZE_PASS_BEGIN(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization", 603 false, false) 604 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 605 INITIALIZE_PASS_END(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization", 606 false, false) 607 608 Pass *llvm::createObjCARCOptPass() { return new ObjCARCOptLegacyPass(); } 609 610 void ObjCARCOptLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 611 AU.addRequired<ObjCARCAAWrapperPass>(); 612 AU.addRequired<AAResultsWrapperPass>(); 613 // ARC optimization doesn't currently split critical edges. 614 AU.setPreservesCFG(); 615 } 616 617 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is 618 /// not a return value. 619 bool 620 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { 621 // Check for the argument being from an immediately preceding call or invoke. 622 const Value *Arg = GetArgRCIdentityRoot(RetainRV); 623 if (const Instruction *Call = dyn_cast<CallBase>(Arg)) { 624 if (Call->getParent() == RetainRV->getParent()) { 625 BasicBlock::const_iterator I(Call); 626 ++I; 627 while (IsNoopInstruction(&*I)) 628 ++I; 629 if (&*I == RetainRV) 630 return false; 631 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 632 BasicBlock *RetainRVParent = RetainRV->getParent(); 633 if (II->getNormalDest() == RetainRVParent) { 634 BasicBlock::const_iterator I = RetainRVParent->begin(); 635 while (IsNoopInstruction(&*I)) 636 ++I; 637 if (&*I == RetainRV) 638 return false; 639 } 640 } 641 } 642 643 // Turn it to a plain objc_retain. 644 Changed = true; 645 ++NumPeeps; 646 647 LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " 648 "objc_retain since the operand is not a return value.\n" 649 "Old = " 650 << *RetainRV << "\n"); 651 652 Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain); 653 cast<CallInst>(RetainRV)->setCalledFunction(NewDecl); 654 655 LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n"); 656 657 return false; 658 } 659 660 bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall( 661 Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors, 662 Instruction *Inst, const Value *&Arg, ARCInstKind Class, 663 Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) { 664 // Must be in the same basic block. 665 assert(Inst->getParent() == AutoreleaseRV->getParent()); 666 667 // Must operate on the same root. 668 Arg = GetArgRCIdentityRoot(Inst); 669 AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV); 670 if (Arg != AutoreleaseRVArg) { 671 // If there isn't an exact match, check if we have equivalent PHIs. 672 const PHINode *PN = dyn_cast<PHINode>(Arg); 673 if (!PN) 674 return false; 675 676 SmallVector<const Value *, 4> ArgUsers; 677 getEquivalentPHIs(*PN, ArgUsers); 678 if (!llvm::is_contained(ArgUsers, AutoreleaseRVArg)) 679 return false; 680 } 681 682 // Okay, this is a match. Merge them. 683 ++NumPeeps; 684 LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '" 685 << *AutoreleaseRV << "' paired with '" << *Inst << "'\n"); 686 687 // Delete the RV pair, starting with the AutoreleaseRV. 688 AutoreleaseRV->replaceAllUsesWith( 689 cast<CallInst>(AutoreleaseRV)->getArgOperand(0)); 690 Changed = true; 691 EraseInstruction(AutoreleaseRV); 692 if (Class == ARCInstKind::RetainRV) { 693 // AutoreleaseRV and RetainRV cancel out. Delete the RetainRV. 694 Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0)); 695 EraseInstruction(Inst); 696 return true; 697 } 698 699 // ClaimRV is a frontend peephole for RetainRV + Release. Since the 700 // AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release. 701 assert(Class == ARCInstKind::ClaimRV); 702 Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0); 703 CallInst *Release = CallInst::Create( 704 EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst); 705 assert(IsAlwaysTail(ARCInstKind::ClaimRV) && 706 "Expected ClaimRV to be safe to tail call"); 707 Release->setTailCall(); 708 Inst->replaceAllUsesWith(CallArg); 709 EraseInstruction(Inst); 710 711 // Run the normal optimizations on Release. 712 OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release, 713 Arg); 714 return true; 715 } 716 717 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not 718 /// used as a return value. 719 void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, 720 Instruction *AutoreleaseRV, 721 ARCInstKind &Class) { 722 // Check for a return of the pointer value. 723 const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV); 724 725 // If the argument is ConstantPointerNull or UndefValue, its other users 726 // aren't actually interesting to look at. 727 if (isa<ConstantData>(Ptr)) 728 return; 729 730 SmallVector<const Value *, 2> Users; 731 Users.push_back(Ptr); 732 733 // Add PHIs that are equivalent to Ptr to Users. 734 if (const PHINode *PN = dyn_cast<PHINode>(Ptr)) 735 getEquivalentPHIs(*PN, Users); 736 737 do { 738 Ptr = Users.pop_back_val(); 739 for (const User *U : Ptr->users()) { 740 if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV) 741 return; 742 if (isa<BitCastInst>(U)) 743 Users.push_back(U); 744 } 745 } while (!Users.empty()); 746 747 Changed = true; 748 ++NumPeeps; 749 750 LLVM_DEBUG( 751 dbgs() << "Transforming objc_autoreleaseReturnValue => " 752 "objc_autorelease since its operand is not used as a return " 753 "value.\n" 754 "Old = " 755 << *AutoreleaseRV << "\n"); 756 757 CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); 758 Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease); 759 AutoreleaseRVCI->setCalledFunction(NewDecl); 760 AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. 761 Class = ARCInstKind::Autorelease; 762 763 LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n"); 764 } 765 766 namespace { 767 Instruction * 768 CloneCallInstForBB(CallInst &CI, BasicBlock &BB, 769 const DenseMap<BasicBlock *, ColorVector> &BlockColors) { 770 SmallVector<OperandBundleDef, 1> OpBundles; 771 for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) { 772 auto Bundle = CI.getOperandBundleAt(I); 773 // Funclets will be reassociated in the future. 774 if (Bundle.getTagID() == LLVMContext::OB_funclet) 775 continue; 776 OpBundles.emplace_back(Bundle); 777 } 778 779 if (!BlockColors.empty()) { 780 const ColorVector &CV = BlockColors.find(&BB)->second; 781 assert(CV.size() == 1 && "non-unique color for block!"); 782 Instruction *EHPad = CV.front()->getFirstNonPHI(); 783 if (EHPad->isEHPad()) 784 OpBundles.emplace_back("funclet", EHPad); 785 } 786 787 return CallInst::Create(&CI, OpBundles); 788 } 789 } 790 791 /// Visit each call, one at a time, and make simplifications without doing any 792 /// additional analysis. 793 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { 794 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n"); 795 // Reset all the flags in preparation for recomputing them. 796 UsedInThisFunction = 0; 797 798 DenseMap<BasicBlock *, ColorVector> BlockColors; 799 if (F.hasPersonalityFn() && 800 isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 801 BlockColors = colorEHFunclets(F); 802 803 // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired 804 // with RetainRV and ClaimRV. 805 Instruction *DelayedAutoreleaseRV = nullptr; 806 const Value *DelayedAutoreleaseRVArg = nullptr; 807 auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) { 808 assert(!DelayedAutoreleaseRV || !AutoreleaseRV); 809 DelayedAutoreleaseRV = AutoreleaseRV; 810 DelayedAutoreleaseRVArg = nullptr; 811 }; 812 auto optimizeDelayedAutoreleaseRV = [&]() { 813 if (!DelayedAutoreleaseRV) 814 return; 815 OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV, 816 ARCInstKind::AutoreleaseRV, 817 DelayedAutoreleaseRVArg); 818 setDelayedAutoreleaseRV(nullptr); 819 }; 820 auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) { 821 // Nothing to delay, but we may as well skip the logic below. 822 if (!DelayedAutoreleaseRV) 823 return true; 824 825 // If we hit the end of the basic block we're not going to find an RV-pair. 826 // Stop delaying. 827 if (NonARCInst->isTerminator()) 828 return false; 829 830 // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and 831 // ClaimRV, it's probably safe to skip over even opaque function calls 832 // here since OptimizeInlinedAutoreleaseRVCall will confirm that they 833 // have the same RCIdentityRoot. However, what really matters is 834 // skipping instructions or intrinsics that the inliner could leave behind; 835 // be conservative for now and don't skip over opaque calls, which could 836 // potentially include other ARC calls. 837 auto *CB = dyn_cast<CallBase>(NonARCInst); 838 if (!CB) 839 return true; 840 return CB->getIntrinsicID() != Intrinsic::not_intrinsic; 841 }; 842 843 // Visit all objc_* calls in F. 844 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 845 Instruction *Inst = &*I++; 846 847 ARCInstKind Class = GetBasicARCInstKind(Inst); 848 849 // Skip this loop if this instruction isn't itself an ARC intrinsic. 850 const Value *Arg = nullptr; 851 switch (Class) { 852 default: 853 optimizeDelayedAutoreleaseRV(); 854 break; 855 case ARCInstKind::CallOrUser: 856 case ARCInstKind::User: 857 case ARCInstKind::None: 858 // This is a non-ARC instruction. If we're delaying an AutoreleaseRV, 859 // check if it's safe to skip over it; if not, optimize the AutoreleaseRV 860 // now. 861 if (!shouldDelayAutoreleaseRV(Inst)) 862 optimizeDelayedAutoreleaseRV(); 863 continue; 864 case ARCInstKind::AutoreleaseRV: 865 optimizeDelayedAutoreleaseRV(); 866 setDelayedAutoreleaseRV(Inst); 867 continue; 868 case ARCInstKind::RetainRV: 869 case ARCInstKind::ClaimRV: 870 if (DelayedAutoreleaseRV) { 871 // We have a potential RV pair. Check if they cancel out. 872 if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class, 873 DelayedAutoreleaseRV, 874 DelayedAutoreleaseRVArg)) { 875 setDelayedAutoreleaseRV(nullptr); 876 continue; 877 } 878 optimizeDelayedAutoreleaseRV(); 879 } 880 break; 881 } 882 883 OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg); 884 } 885 886 // Catch the final delayed AutoreleaseRV. 887 optimizeDelayedAutoreleaseRV(); 888 } 889 890 /// This function returns true if the value is inert. An ObjC ARC runtime call 891 /// taking an inert operand can be safely deleted. 892 static bool isInertARCValue(Value *V, SmallPtrSet<Value *, 1> &VisitedPhis) { 893 V = V->stripPointerCasts(); 894 895 if (IsNullOrUndef(V)) 896 return true; 897 898 // See if this is a global attribute annotated with an 'objc_arc_inert'. 899 if (auto *GV = dyn_cast<GlobalVariable>(V)) 900 if (GV->hasAttribute("objc_arc_inert")) 901 return true; 902 903 if (auto PN = dyn_cast<PHINode>(V)) { 904 // Ignore this phi if it has already been discovered. 905 if (!VisitedPhis.insert(PN).second) 906 return true; 907 // Look through phis's operands. 908 for (Value *Opnd : PN->incoming_values()) 909 if (!isInertARCValue(Opnd, VisitedPhis)) 910 return false; 911 return true; 912 } 913 914 return false; 915 } 916 917 void ObjCARCOpt::OptimizeIndividualCallImpl( 918 Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors, 919 Instruction *Inst, ARCInstKind Class, const Value *Arg) { 920 LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n"); 921 922 // We can delete this call if it takes an inert value. 923 SmallPtrSet<Value *, 1> VisitedPhis; 924 925 if (IsNoopOnGlobal(Class)) 926 if (isInertARCValue(Inst->getOperand(0), VisitedPhis)) { 927 if (!Inst->getType()->isVoidTy()) 928 Inst->replaceAllUsesWith(Inst->getOperand(0)); 929 Inst->eraseFromParent(); 930 Changed = true; 931 return; 932 } 933 934 switch (Class) { 935 default: 936 break; 937 938 // Delete no-op casts. These function calls have special semantics, but 939 // the semantics are entirely implemented via lowering in the front-end, 940 // so by the time they reach the optimizer, they are just no-op calls 941 // which return their argument. 942 // 943 // There are gray areas here, as the ability to cast reference-counted 944 // pointers to raw void* and back allows code to break ARC assumptions, 945 // however these are currently considered to be unimportant. 946 case ARCInstKind::NoopCast: 947 Changed = true; 948 ++NumNoops; 949 LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n"); 950 EraseInstruction(Inst); 951 return; 952 953 // If the pointer-to-weak-pointer is null, it's undefined behavior. 954 case ARCInstKind::StoreWeak: 955 case ARCInstKind::LoadWeak: 956 case ARCInstKind::LoadWeakRetained: 957 case ARCInstKind::InitWeak: 958 case ARCInstKind::DestroyWeak: { 959 CallInst *CI = cast<CallInst>(Inst); 960 if (IsNullOrUndef(CI->getArgOperand(0))) { 961 Changed = true; 962 Type *Ty = CI->getArgOperand(0)->getType(); 963 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), 964 Constant::getNullValue(Ty), CI); 965 Value *NewValue = UndefValue::get(CI->getType()); 966 LLVM_DEBUG( 967 dbgs() << "A null pointer-to-weak-pointer is undefined behavior." 968 "\nOld = " 969 << *CI << "\nNew = " << *NewValue << "\n"); 970 CI->replaceAllUsesWith(NewValue); 971 CI->eraseFromParent(); 972 return; 973 } 974 break; 975 } 976 case ARCInstKind::CopyWeak: 977 case ARCInstKind::MoveWeak: { 978 CallInst *CI = cast<CallInst>(Inst); 979 if (IsNullOrUndef(CI->getArgOperand(0)) || 980 IsNullOrUndef(CI->getArgOperand(1))) { 981 Changed = true; 982 Type *Ty = CI->getArgOperand(0)->getType(); 983 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), 984 Constant::getNullValue(Ty), CI); 985 986 Value *NewValue = UndefValue::get(CI->getType()); 987 LLVM_DEBUG( 988 dbgs() << "A null pointer-to-weak-pointer is undefined behavior." 989 "\nOld = " 990 << *CI << "\nNew = " << *NewValue << "\n"); 991 992 CI->replaceAllUsesWith(NewValue); 993 CI->eraseFromParent(); 994 return; 995 } 996 break; 997 } 998 case ARCInstKind::RetainRV: 999 if (OptimizeRetainRVCall(F, Inst)) 1000 return; 1001 break; 1002 case ARCInstKind::AutoreleaseRV: 1003 OptimizeAutoreleaseRVCall(F, Inst, Class); 1004 break; 1005 } 1006 1007 // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. 1008 if (IsAutorelease(Class) && Inst->use_empty()) { 1009 CallInst *Call = cast<CallInst>(Inst); 1010 const Value *Arg = Call->getArgOperand(0); 1011 Arg = FindSingleUseIdentifiedObject(Arg); 1012 if (Arg) { 1013 Changed = true; 1014 ++NumAutoreleases; 1015 1016 // Create the declaration lazily. 1017 LLVMContext &C = Inst->getContext(); 1018 1019 Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release); 1020 CallInst *NewCall = 1021 CallInst::Create(Decl, Call->getArgOperand(0), "", Call); 1022 NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), 1023 MDNode::get(C, None)); 1024 1025 LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " 1026 "since x is otherwise unused.\nOld: " 1027 << *Call << "\nNew: " << *NewCall << "\n"); 1028 1029 EraseInstruction(Call); 1030 Inst = NewCall; 1031 Class = ARCInstKind::Release; 1032 } 1033 } 1034 1035 // For functions which can never be passed stack arguments, add 1036 // a tail keyword. 1037 if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) { 1038 Changed = true; 1039 LLVM_DEBUG( 1040 dbgs() << "Adding tail keyword to function since it can never be " 1041 "passed stack args: " 1042 << *Inst << "\n"); 1043 cast<CallInst>(Inst)->setTailCall(); 1044 } 1045 1046 // Ensure that functions that can never have a "tail" keyword due to the 1047 // semantics of ARC truly do not do so. 1048 if (IsNeverTail(Class)) { 1049 Changed = true; 1050 LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst 1051 << "\n"); 1052 cast<CallInst>(Inst)->setTailCall(false); 1053 } 1054 1055 // Set nounwind as needed. 1056 if (IsNoThrow(Class)) { 1057 Changed = true; 1058 LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst 1059 << "\n"); 1060 cast<CallInst>(Inst)->setDoesNotThrow(); 1061 } 1062 1063 // Note: This catches instructions unrelated to ARC. 1064 if (!IsNoopOnNull(Class)) { 1065 UsedInThisFunction |= 1 << unsigned(Class); 1066 return; 1067 } 1068 1069 // If we haven't already looked up the root, look it up now. 1070 if (!Arg) 1071 Arg = GetArgRCIdentityRoot(Inst); 1072 1073 // ARC calls with null are no-ops. Delete them. 1074 if (IsNullOrUndef(Arg)) { 1075 Changed = true; 1076 ++NumNoops; 1077 LLVM_DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst 1078 << "\n"); 1079 EraseInstruction(Inst); 1080 return; 1081 } 1082 1083 // Keep track of which of retain, release, autorelease, and retain_block 1084 // are actually present in this function. 1085 UsedInThisFunction |= 1 << unsigned(Class); 1086 1087 // If Arg is a PHI, and one or more incoming values to the 1088 // PHI are null, and the call is control-equivalent to the PHI, and there 1089 // are no relevant side effects between the PHI and the call, and the call 1090 // is not a release that doesn't have the clang.imprecise_release tag, the 1091 // call could be pushed up to just those paths with non-null incoming 1092 // values. For now, don't bother splitting critical edges for this. 1093 if (Class == ARCInstKind::Release && 1094 !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease))) 1095 return; 1096 1097 SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; 1098 Worklist.push_back(std::make_pair(Inst, Arg)); 1099 do { 1100 std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); 1101 Inst = Pair.first; 1102 Arg = Pair.second; 1103 1104 const PHINode *PN = dyn_cast<PHINode>(Arg); 1105 if (!PN) 1106 continue; 1107 1108 // Determine if the PHI has any null operands, or any incoming 1109 // critical edges. 1110 bool HasNull = false; 1111 bool HasCriticalEdges = false; 1112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1113 Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i)); 1114 if (IsNullOrUndef(Incoming)) 1115 HasNull = true; 1116 else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() != 1117 1) { 1118 HasCriticalEdges = true; 1119 break; 1120 } 1121 } 1122 // If we have null operands and no critical edges, optimize. 1123 if (HasCriticalEdges) 1124 continue; 1125 if (!HasNull) 1126 continue; 1127 1128 Instruction *DepInst = nullptr; 1129 1130 // Check that there is nothing that cares about the reference 1131 // count between the call and the phi. 1132 switch (Class) { 1133 case ARCInstKind::Retain: 1134 case ARCInstKind::RetainBlock: 1135 // These can always be moved up. 1136 break; 1137 case ARCInstKind::Release: 1138 // These can't be moved across things that care about the retain 1139 // count. 1140 DepInst = findSingleDependency(NeedsPositiveRetainCount, Arg, 1141 Inst->getParent(), Inst, PA); 1142 break; 1143 case ARCInstKind::Autorelease: 1144 // These can't be moved across autorelease pool scope boundaries. 1145 DepInst = findSingleDependency(AutoreleasePoolBoundary, Arg, 1146 Inst->getParent(), Inst, PA); 1147 break; 1148 case ARCInstKind::ClaimRV: 1149 case ARCInstKind::RetainRV: 1150 case ARCInstKind::AutoreleaseRV: 1151 // Don't move these; the RV optimization depends on the autoreleaseRV 1152 // being tail called, and the retainRV being immediately after a call 1153 // (which might still happen if we get lucky with codegen layout, but 1154 // it's not worth taking the chance). 1155 continue; 1156 default: 1157 llvm_unreachable("Invalid dependence flavor"); 1158 } 1159 1160 if (DepInst != PN) 1161 continue; 1162 1163 Changed = true; 1164 ++NumPartialNoops; 1165 // Clone the call into each predecessor that has a non-null value. 1166 CallInst *CInst = cast<CallInst>(Inst); 1167 Type *ParamTy = CInst->getArgOperand(0)->getType(); 1168 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1169 Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i)); 1170 if (IsNullOrUndef(Incoming)) 1171 continue; 1172 Value *Op = PN->getIncomingValue(i); 1173 Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); 1174 CallInst *Clone = cast<CallInst>( 1175 CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors)); 1176 if (Op->getType() != ParamTy) 1177 Op = new BitCastInst(Op, ParamTy, "", InsertPos); 1178 Clone->setArgOperand(0, Op); 1179 Clone->insertBefore(InsertPos); 1180 1181 LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n" 1182 "And inserting clone at " 1183 << *InsertPos << "\n"); 1184 Worklist.push_back(std::make_pair(Clone, Incoming)); 1185 } 1186 // Erase the original call. 1187 LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); 1188 EraseInstruction(CInst); 1189 } while (!Worklist.empty()); 1190 } 1191 1192 /// If we have a top down pointer in the S_Use state, make sure that there are 1193 /// no CFG hazards by checking the states of various bottom up pointers. 1194 static void CheckForUseCFGHazard(const Sequence SuccSSeq, 1195 const bool SuccSRRIKnownSafe, 1196 TopDownPtrState &S, 1197 bool &SomeSuccHasSame, 1198 bool &AllSuccsHaveSame, 1199 bool &NotAllSeqEqualButKnownSafe, 1200 bool &ShouldContinue) { 1201 switch (SuccSSeq) { 1202 case S_CanRelease: { 1203 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { 1204 S.ClearSequenceProgress(); 1205 break; 1206 } 1207 S.SetCFGHazardAfflicted(true); 1208 ShouldContinue = true; 1209 break; 1210 } 1211 case S_Use: 1212 SomeSuccHasSame = true; 1213 break; 1214 case S_Stop: 1215 case S_Release: 1216 case S_MovableRelease: 1217 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) 1218 AllSuccsHaveSame = false; 1219 else 1220 NotAllSeqEqualButKnownSafe = true; 1221 break; 1222 case S_Retain: 1223 llvm_unreachable("bottom-up pointer in retain state!"); 1224 case S_None: 1225 llvm_unreachable("This should have been handled earlier."); 1226 } 1227 } 1228 1229 /// If we have a Top Down pointer in the S_CanRelease state, make sure that 1230 /// there are no CFG hazards by checking the states of various bottom up 1231 /// pointers. 1232 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, 1233 const bool SuccSRRIKnownSafe, 1234 TopDownPtrState &S, 1235 bool &SomeSuccHasSame, 1236 bool &AllSuccsHaveSame, 1237 bool &NotAllSeqEqualButKnownSafe) { 1238 switch (SuccSSeq) { 1239 case S_CanRelease: 1240 SomeSuccHasSame = true; 1241 break; 1242 case S_Stop: 1243 case S_Release: 1244 case S_MovableRelease: 1245 case S_Use: 1246 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) 1247 AllSuccsHaveSame = false; 1248 else 1249 NotAllSeqEqualButKnownSafe = true; 1250 break; 1251 case S_Retain: 1252 llvm_unreachable("bottom-up pointer in retain state!"); 1253 case S_None: 1254 llvm_unreachable("This should have been handled earlier."); 1255 } 1256 } 1257 1258 /// Check for critical edges, loop boundaries, irreducible control flow, or 1259 /// other CFG structures where moving code across the edge would result in it 1260 /// being executed more. 1261 void 1262 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, 1263 DenseMap<const BasicBlock *, BBState> &BBStates, 1264 BBState &MyStates) const { 1265 // If any top-down local-use or possible-dec has a succ which is earlier in 1266 // the sequence, forget it. 1267 for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); 1268 I != E; ++I) { 1269 TopDownPtrState &S = I->second; 1270 const Sequence Seq = I->second.GetSeq(); 1271 1272 // We only care about S_Retain, S_CanRelease, and S_Use. 1273 if (Seq == S_None) 1274 continue; 1275 1276 // Make sure that if extra top down states are added in the future that this 1277 // code is updated to handle it. 1278 assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && 1279 "Unknown top down sequence state."); 1280 1281 const Value *Arg = I->first; 1282 bool SomeSuccHasSame = false; 1283 bool AllSuccsHaveSame = true; 1284 bool NotAllSeqEqualButKnownSafe = false; 1285 1286 for (const BasicBlock *Succ : successors(BB)) { 1287 // If VisitBottomUp has pointer information for this successor, take 1288 // what we know about it. 1289 const DenseMap<const BasicBlock *, BBState>::iterator BBI = 1290 BBStates.find(Succ); 1291 assert(BBI != BBStates.end()); 1292 const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); 1293 const Sequence SuccSSeq = SuccS.GetSeq(); 1294 1295 // If bottom up, the pointer is in an S_None state, clear the sequence 1296 // progress since the sequence in the bottom up state finished 1297 // suggesting a mismatch in between retains/releases. This is true for 1298 // all three cases that we are handling here: S_Retain, S_Use, and 1299 // S_CanRelease. 1300 if (SuccSSeq == S_None) { 1301 S.ClearSequenceProgress(); 1302 continue; 1303 } 1304 1305 // If we have S_Use or S_CanRelease, perform our check for cfg hazard 1306 // checks. 1307 const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); 1308 1309 // *NOTE* We do not use Seq from above here since we are allowing for 1310 // S.GetSeq() to change while we are visiting basic blocks. 1311 switch(S.GetSeq()) { 1312 case S_Use: { 1313 bool ShouldContinue = false; 1314 CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, 1315 AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, 1316 ShouldContinue); 1317 if (ShouldContinue) 1318 continue; 1319 break; 1320 } 1321 case S_CanRelease: 1322 CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, 1323 SomeSuccHasSame, AllSuccsHaveSame, 1324 NotAllSeqEqualButKnownSafe); 1325 break; 1326 case S_Retain: 1327 case S_None: 1328 case S_Stop: 1329 case S_Release: 1330 case S_MovableRelease: 1331 break; 1332 } 1333 } 1334 1335 // If the state at the other end of any of the successor edges 1336 // matches the current state, require all edges to match. This 1337 // guards against loops in the middle of a sequence. 1338 if (SomeSuccHasSame && !AllSuccsHaveSame) { 1339 S.ClearSequenceProgress(); 1340 } else if (NotAllSeqEqualButKnownSafe) { 1341 // If we would have cleared the state foregoing the fact that we are known 1342 // safe, stop code motion. This is because whether or not it is safe to 1343 // remove RR pairs via KnownSafe is an orthogonal concept to whether we 1344 // are allowed to perform code motion. 1345 S.SetCFGHazardAfflicted(true); 1346 } 1347 } 1348 } 1349 1350 bool ObjCARCOpt::VisitInstructionBottomUp( 1351 Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, 1352 BBState &MyStates) { 1353 bool NestingDetected = false; 1354 ARCInstKind Class = GetARCInstKind(Inst); 1355 const Value *Arg = nullptr; 1356 1357 LLVM_DEBUG(dbgs() << " Class: " << Class << "\n"); 1358 1359 switch (Class) { 1360 case ARCInstKind::Release: { 1361 Arg = GetArgRCIdentityRoot(Inst); 1362 1363 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); 1364 NestingDetected |= S.InitBottomUp(MDKindCache, Inst); 1365 break; 1366 } 1367 case ARCInstKind::RetainBlock: 1368 // In OptimizeIndividualCalls, we have strength reduced all optimizable 1369 // objc_retainBlocks to objc_retains. Thus at this point any 1370 // objc_retainBlocks that we see are not optimizable. 1371 break; 1372 case ARCInstKind::Retain: 1373 case ARCInstKind::RetainRV: { 1374 Arg = GetArgRCIdentityRoot(Inst); 1375 BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); 1376 if (S.MatchWithRetain()) { 1377 // Don't do retain+release tracking for ARCInstKind::RetainRV, because 1378 // it's better to let it remain as the first instruction after a call. 1379 if (Class != ARCInstKind::RetainRV) { 1380 LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n"); 1381 Retains[Inst] = S.GetRRInfo(); 1382 } 1383 S.ClearSequenceProgress(); 1384 } 1385 // A retain moving bottom up can be a use. 1386 break; 1387 } 1388 case ARCInstKind::AutoreleasepoolPop: 1389 // Conservatively, clear MyStates for all known pointers. 1390 MyStates.clearBottomUpPointers(); 1391 return NestingDetected; 1392 case ARCInstKind::AutoreleasepoolPush: 1393 case ARCInstKind::None: 1394 // These are irrelevant. 1395 return NestingDetected; 1396 default: 1397 break; 1398 } 1399 1400 // Consider any other possible effects of this instruction on each 1401 // pointer being tracked. 1402 for (auto MI = MyStates.bottom_up_ptr_begin(), 1403 ME = MyStates.bottom_up_ptr_end(); 1404 MI != ME; ++MI) { 1405 const Value *Ptr = MI->first; 1406 if (Ptr == Arg) 1407 continue; // Handled above. 1408 BottomUpPtrState &S = MI->second; 1409 1410 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) 1411 continue; 1412 1413 S.HandlePotentialUse(BB, Inst, Ptr, PA, Class); 1414 } 1415 1416 return NestingDetected; 1417 } 1418 1419 bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, 1420 DenseMap<const BasicBlock *, BBState> &BBStates, 1421 BlotMapVector<Value *, RRInfo> &Retains) { 1422 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n"); 1423 1424 bool NestingDetected = false; 1425 BBState &MyStates = BBStates[BB]; 1426 1427 // Merge the states from each successor to compute the initial state 1428 // for the current block. 1429 BBState::edge_iterator SI(MyStates.succ_begin()), 1430 SE(MyStates.succ_end()); 1431 if (SI != SE) { 1432 const BasicBlock *Succ = *SI; 1433 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); 1434 assert(I != BBStates.end()); 1435 MyStates.InitFromSucc(I->second); 1436 ++SI; 1437 for (; SI != SE; ++SI) { 1438 Succ = *SI; 1439 I = BBStates.find(Succ); 1440 assert(I != BBStates.end()); 1441 MyStates.MergeSucc(I->second); 1442 } 1443 } 1444 1445 LLVM_DEBUG(dbgs() << "Before:\n" 1446 << BBStates[BB] << "\n" 1447 << "Performing Dataflow:\n"); 1448 1449 // Visit all the instructions, bottom-up. 1450 for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { 1451 Instruction *Inst = &*std::prev(I); 1452 1453 // Invoke instructions are visited as part of their successors (below). 1454 if (isa<InvokeInst>(Inst)) 1455 continue; 1456 1457 LLVM_DEBUG(dbgs() << " Visiting " << *Inst << "\n"); 1458 1459 NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); 1460 1461 // Bail out if the number of pointers being tracked becomes too large so 1462 // that this pass can complete in a reasonable amount of time. 1463 if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) { 1464 DisableRetainReleasePairing = true; 1465 return false; 1466 } 1467 } 1468 1469 // If there's a predecessor with an invoke, visit the invoke as if it were 1470 // part of this block, since we can't insert code after an invoke in its own 1471 // block, and we don't want to split critical edges. 1472 for (BBState::edge_iterator PI(MyStates.pred_begin()), 1473 PE(MyStates.pred_end()); PI != PE; ++PI) { 1474 BasicBlock *Pred = *PI; 1475 if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) 1476 NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); 1477 } 1478 1479 LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n"); 1480 1481 return NestingDetected; 1482 } 1483 1484 bool 1485 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, 1486 DenseMap<Value *, RRInfo> &Releases, 1487 BBState &MyStates) { 1488 bool NestingDetected = false; 1489 ARCInstKind Class = GetARCInstKind(Inst); 1490 const Value *Arg = nullptr; 1491 1492 LLVM_DEBUG(dbgs() << " Class: " << Class << "\n"); 1493 1494 switch (Class) { 1495 case ARCInstKind::RetainBlock: 1496 // In OptimizeIndividualCalls, we have strength reduced all optimizable 1497 // objc_retainBlocks to objc_retains. Thus at this point any 1498 // objc_retainBlocks that we see are not optimizable. We need to break since 1499 // a retain can be a potential use. 1500 break; 1501 case ARCInstKind::Retain: 1502 case ARCInstKind::RetainRV: { 1503 Arg = GetArgRCIdentityRoot(Inst); 1504 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); 1505 NestingDetected |= S.InitTopDown(Class, Inst); 1506 // A retain can be a potential use; proceed to the generic checking 1507 // code below. 1508 break; 1509 } 1510 case ARCInstKind::Release: { 1511 Arg = GetArgRCIdentityRoot(Inst); 1512 TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); 1513 // Try to form a tentative pair in between this release instruction and the 1514 // top down pointers that we are tracking. 1515 if (S.MatchWithRelease(MDKindCache, Inst)) { 1516 // If we succeed, copy S's RRInfo into the Release -> {Retain Set 1517 // Map}. Then we clear S. 1518 LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n"); 1519 Releases[Inst] = S.GetRRInfo(); 1520 S.ClearSequenceProgress(); 1521 } 1522 break; 1523 } 1524 case ARCInstKind::AutoreleasepoolPop: 1525 // Conservatively, clear MyStates for all known pointers. 1526 MyStates.clearTopDownPointers(); 1527 return false; 1528 case ARCInstKind::AutoreleasepoolPush: 1529 case ARCInstKind::None: 1530 // These can not be uses of 1531 return false; 1532 default: 1533 break; 1534 } 1535 1536 // Consider any other possible effects of this instruction on each 1537 // pointer being tracked. 1538 for (auto MI = MyStates.top_down_ptr_begin(), 1539 ME = MyStates.top_down_ptr_end(); 1540 MI != ME; ++MI) { 1541 const Value *Ptr = MI->first; 1542 if (Ptr == Arg) 1543 continue; // Handled above. 1544 TopDownPtrState &S = MI->second; 1545 if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) 1546 continue; 1547 1548 S.HandlePotentialUse(Inst, Ptr, PA, Class); 1549 } 1550 1551 return NestingDetected; 1552 } 1553 1554 bool 1555 ObjCARCOpt::VisitTopDown(BasicBlock *BB, 1556 DenseMap<const BasicBlock *, BBState> &BBStates, 1557 DenseMap<Value *, RRInfo> &Releases) { 1558 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n"); 1559 bool NestingDetected = false; 1560 BBState &MyStates = BBStates[BB]; 1561 1562 // Merge the states from each predecessor to compute the initial state 1563 // for the current block. 1564 BBState::edge_iterator PI(MyStates.pred_begin()), 1565 PE(MyStates.pred_end()); 1566 if (PI != PE) { 1567 const BasicBlock *Pred = *PI; 1568 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); 1569 assert(I != BBStates.end()); 1570 MyStates.InitFromPred(I->second); 1571 ++PI; 1572 for (; PI != PE; ++PI) { 1573 Pred = *PI; 1574 I = BBStates.find(Pred); 1575 assert(I != BBStates.end()); 1576 MyStates.MergePred(I->second); 1577 } 1578 } 1579 1580 // Check that BB and MyStates have the same number of predecessors. This 1581 // prevents retain calls that live outside a loop from being moved into the 1582 // loop. 1583 if (!BB->hasNPredecessors(MyStates.pred_end() - MyStates.pred_begin())) 1584 for (auto I = MyStates.top_down_ptr_begin(), 1585 E = MyStates.top_down_ptr_end(); 1586 I != E; ++I) 1587 I->second.SetCFGHazardAfflicted(true); 1588 1589 LLVM_DEBUG(dbgs() << "Before:\n" 1590 << BBStates[BB] << "\n" 1591 << "Performing Dataflow:\n"); 1592 1593 // Visit all the instructions, top-down. 1594 for (Instruction &Inst : *BB) { 1595 LLVM_DEBUG(dbgs() << " Visiting " << Inst << "\n"); 1596 1597 NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates); 1598 1599 // Bail out if the number of pointers being tracked becomes too large so 1600 // that this pass can complete in a reasonable amount of time. 1601 if (MyStates.top_down_ptr_list_size() > MaxPtrStates) { 1602 DisableRetainReleasePairing = true; 1603 return false; 1604 } 1605 } 1606 1607 LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n" 1608 << BBStates[BB] << "\n\n"); 1609 CheckForCFGHazards(BB, BBStates, MyStates); 1610 LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n"); 1611 return NestingDetected; 1612 } 1613 1614 static void 1615 ComputePostOrders(Function &F, 1616 SmallVectorImpl<BasicBlock *> &PostOrder, 1617 SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, 1618 unsigned NoObjCARCExceptionsMDKind, 1619 DenseMap<const BasicBlock *, BBState> &BBStates) { 1620 /// The visited set, for doing DFS walks. 1621 SmallPtrSet<BasicBlock *, 16> Visited; 1622 1623 // Do DFS, computing the PostOrder. 1624 SmallPtrSet<BasicBlock *, 16> OnStack; 1625 SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; 1626 1627 // Functions always have exactly one entry block, and we don't have 1628 // any other block that we treat like an entry block. 1629 BasicBlock *EntryBB = &F.getEntryBlock(); 1630 BBState &MyStates = BBStates[EntryBB]; 1631 MyStates.SetAsEntry(); 1632 Instruction *EntryTI = EntryBB->getTerminator(); 1633 SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); 1634 Visited.insert(EntryBB); 1635 OnStack.insert(EntryBB); 1636 do { 1637 dfs_next_succ: 1638 BasicBlock *CurrBB = SuccStack.back().first; 1639 succ_iterator SE(CurrBB->getTerminator(), false); 1640 1641 while (SuccStack.back().second != SE) { 1642 BasicBlock *SuccBB = *SuccStack.back().second++; 1643 if (Visited.insert(SuccBB).second) { 1644 SuccStack.push_back( 1645 std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator()))); 1646 BBStates[CurrBB].addSucc(SuccBB); 1647 BBState &SuccStates = BBStates[SuccBB]; 1648 SuccStates.addPred(CurrBB); 1649 OnStack.insert(SuccBB); 1650 goto dfs_next_succ; 1651 } 1652 1653 if (!OnStack.count(SuccBB)) { 1654 BBStates[CurrBB].addSucc(SuccBB); 1655 BBStates[SuccBB].addPred(CurrBB); 1656 } 1657 } 1658 OnStack.erase(CurrBB); 1659 PostOrder.push_back(CurrBB); 1660 SuccStack.pop_back(); 1661 } while (!SuccStack.empty()); 1662 1663 Visited.clear(); 1664 1665 // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. 1666 // Functions may have many exits, and there also blocks which we treat 1667 // as exits due to ignored edges. 1668 SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; 1669 for (BasicBlock &ExitBB : F) { 1670 BBState &MyStates = BBStates[&ExitBB]; 1671 if (!MyStates.isExit()) 1672 continue; 1673 1674 MyStates.SetAsExit(); 1675 1676 PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin())); 1677 Visited.insert(&ExitBB); 1678 while (!PredStack.empty()) { 1679 reverse_dfs_next_succ: 1680 BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); 1681 while (PredStack.back().second != PE) { 1682 BasicBlock *BB = *PredStack.back().second++; 1683 if (Visited.insert(BB).second) { 1684 PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); 1685 goto reverse_dfs_next_succ; 1686 } 1687 } 1688 ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); 1689 } 1690 } 1691 } 1692 1693 // Visit the function both top-down and bottom-up. 1694 bool ObjCARCOpt::Visit(Function &F, 1695 DenseMap<const BasicBlock *, BBState> &BBStates, 1696 BlotMapVector<Value *, RRInfo> &Retains, 1697 DenseMap<Value *, RRInfo> &Releases) { 1698 // Use reverse-postorder traversals, because we magically know that loops 1699 // will be well behaved, i.e. they won't repeatedly call retain on a single 1700 // pointer without doing a release. We can't use the ReversePostOrderTraversal 1701 // class here because we want the reverse-CFG postorder to consider each 1702 // function exit point, and we want to ignore selected cycle edges. 1703 SmallVector<BasicBlock *, 16> PostOrder; 1704 SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; 1705 ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, 1706 MDKindCache.get(ARCMDKindID::NoObjCARCExceptions), 1707 BBStates); 1708 1709 // Use reverse-postorder on the reverse CFG for bottom-up. 1710 bool BottomUpNestingDetected = false; 1711 for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) { 1712 BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); 1713 if (DisableRetainReleasePairing) 1714 return false; 1715 } 1716 1717 // Use reverse-postorder for top-down. 1718 bool TopDownNestingDetected = false; 1719 for (BasicBlock *BB : llvm::reverse(PostOrder)) { 1720 TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases); 1721 if (DisableRetainReleasePairing) 1722 return false; 1723 } 1724 1725 return TopDownNestingDetected && BottomUpNestingDetected; 1726 } 1727 1728 /// Move the calls in RetainsToMove and ReleasesToMove. 1729 void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, 1730 RRInfo &ReleasesToMove, 1731 BlotMapVector<Value *, RRInfo> &Retains, 1732 DenseMap<Value *, RRInfo> &Releases, 1733 SmallVectorImpl<Instruction *> &DeadInsts, 1734 Module *M) { 1735 Type *ArgTy = Arg->getType(); 1736 Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); 1737 1738 LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n"); 1739 1740 // Insert the new retain and release calls. 1741 for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) { 1742 Value *MyArg = ArgTy == ParamTy ? Arg : 1743 new BitCastInst(Arg, ParamTy, "", InsertPt); 1744 Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); 1745 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); 1746 Call->setDoesNotThrow(); 1747 Call->setTailCall(); 1748 1749 LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call 1750 << "\n" 1751 "At insertion point: " 1752 << *InsertPt << "\n"); 1753 } 1754 for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) { 1755 Value *MyArg = ArgTy == ParamTy ? Arg : 1756 new BitCastInst(Arg, ParamTy, "", InsertPt); 1757 Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release); 1758 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); 1759 // Attach a clang.imprecise_release metadata tag, if appropriate. 1760 if (MDNode *M = ReleasesToMove.ReleaseMetadata) 1761 Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M); 1762 Call->setDoesNotThrow(); 1763 if (ReleasesToMove.IsTailCallRelease) 1764 Call->setTailCall(); 1765 1766 LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call 1767 << "\n" 1768 "At insertion point: " 1769 << *InsertPt << "\n"); 1770 } 1771 1772 // Delete the original retain and release calls. 1773 for (Instruction *OrigRetain : RetainsToMove.Calls) { 1774 Retains.blot(OrigRetain); 1775 DeadInsts.push_back(OrigRetain); 1776 LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n"); 1777 } 1778 for (Instruction *OrigRelease : ReleasesToMove.Calls) { 1779 Releases.erase(OrigRelease); 1780 DeadInsts.push_back(OrigRelease); 1781 LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n"); 1782 } 1783 } 1784 1785 bool ObjCARCOpt::PairUpRetainsAndReleases( 1786 DenseMap<const BasicBlock *, BBState> &BBStates, 1787 BlotMapVector<Value *, RRInfo> &Retains, 1788 DenseMap<Value *, RRInfo> &Releases, Module *M, 1789 Instruction *Retain, 1790 SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, 1791 RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, 1792 bool &AnyPairsCompletelyEliminated) { 1793 // If a pair happens in a region where it is known that the reference count 1794 // is already incremented, we can similarly ignore possible decrements unless 1795 // we are dealing with a retainable object with multiple provenance sources. 1796 bool KnownSafeTD = true, KnownSafeBU = true; 1797 bool CFGHazardAfflicted = false; 1798 1799 // Connect the dots between the top-down-collected RetainsToMove and 1800 // bottom-up-collected ReleasesToMove to form sets of related calls. 1801 // This is an iterative process so that we connect multiple releases 1802 // to multiple retains if needed. 1803 unsigned OldDelta = 0; 1804 unsigned NewDelta = 0; 1805 unsigned OldCount = 0; 1806 unsigned NewCount = 0; 1807 bool FirstRelease = true; 1808 for (SmallVector<Instruction *, 4> NewRetains{Retain};;) { 1809 SmallVector<Instruction *, 4> NewReleases; 1810 for (Instruction *NewRetain : NewRetains) { 1811 auto It = Retains.find(NewRetain); 1812 assert(It != Retains.end()); 1813 const RRInfo &NewRetainRRI = It->second; 1814 KnownSafeTD &= NewRetainRRI.KnownSafe; 1815 CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted; 1816 for (Instruction *NewRetainRelease : NewRetainRRI.Calls) { 1817 auto Jt = Releases.find(NewRetainRelease); 1818 if (Jt == Releases.end()) 1819 return false; 1820 const RRInfo &NewRetainReleaseRRI = Jt->second; 1821 1822 // If the release does not have a reference to the retain as well, 1823 // something happened which is unaccounted for. Do not do anything. 1824 // 1825 // This can happen if we catch an additive overflow during path count 1826 // merging. 1827 if (!NewRetainReleaseRRI.Calls.count(NewRetain)) 1828 return false; 1829 1830 if (ReleasesToMove.Calls.insert(NewRetainRelease).second) { 1831 // If we overflow when we compute the path count, don't remove/move 1832 // anything. 1833 const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; 1834 unsigned PathCount = BBState::OverflowOccurredValue; 1835 if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) 1836 return false; 1837 assert(PathCount != BBState::OverflowOccurredValue && 1838 "PathCount at this point can not be " 1839 "OverflowOccurredValue."); 1840 OldDelta -= PathCount; 1841 1842 // Merge the ReleaseMetadata and IsTailCallRelease values. 1843 if (FirstRelease) { 1844 ReleasesToMove.ReleaseMetadata = 1845 NewRetainReleaseRRI.ReleaseMetadata; 1846 ReleasesToMove.IsTailCallRelease = 1847 NewRetainReleaseRRI.IsTailCallRelease; 1848 FirstRelease = false; 1849 } else { 1850 if (ReleasesToMove.ReleaseMetadata != 1851 NewRetainReleaseRRI.ReleaseMetadata) 1852 ReleasesToMove.ReleaseMetadata = nullptr; 1853 if (ReleasesToMove.IsTailCallRelease != 1854 NewRetainReleaseRRI.IsTailCallRelease) 1855 ReleasesToMove.IsTailCallRelease = false; 1856 } 1857 1858 // Collect the optimal insertion points. 1859 if (!KnownSafe) 1860 for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) { 1861 if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) { 1862 // If we overflow when we compute the path count, don't 1863 // remove/move anything. 1864 const BBState &RIPBBState = BBStates[RIP->getParent()]; 1865 PathCount = BBState::OverflowOccurredValue; 1866 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) 1867 return false; 1868 assert(PathCount != BBState::OverflowOccurredValue && 1869 "PathCount at this point can not be " 1870 "OverflowOccurredValue."); 1871 NewDelta -= PathCount; 1872 } 1873 } 1874 NewReleases.push_back(NewRetainRelease); 1875 } 1876 } 1877 } 1878 NewRetains.clear(); 1879 if (NewReleases.empty()) break; 1880 1881 // Back the other way. 1882 for (Instruction *NewRelease : NewReleases) { 1883 auto It = Releases.find(NewRelease); 1884 assert(It != Releases.end()); 1885 const RRInfo &NewReleaseRRI = It->second; 1886 KnownSafeBU &= NewReleaseRRI.KnownSafe; 1887 CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; 1888 for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) { 1889 auto Jt = Retains.find(NewReleaseRetain); 1890 if (Jt == Retains.end()) 1891 return false; 1892 const RRInfo &NewReleaseRetainRRI = Jt->second; 1893 1894 // If the retain does not have a reference to the release as well, 1895 // something happened which is unaccounted for. Do not do anything. 1896 // 1897 // This can happen if we catch an additive overflow during path count 1898 // merging. 1899 if (!NewReleaseRetainRRI.Calls.count(NewRelease)) 1900 return false; 1901 1902 if (RetainsToMove.Calls.insert(NewReleaseRetain).second) { 1903 // If we overflow when we compute the path count, don't remove/move 1904 // anything. 1905 const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; 1906 unsigned PathCount = BBState::OverflowOccurredValue; 1907 if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) 1908 return false; 1909 assert(PathCount != BBState::OverflowOccurredValue && 1910 "PathCount at this point can not be " 1911 "OverflowOccurredValue."); 1912 OldDelta += PathCount; 1913 OldCount += PathCount; 1914 1915 // Collect the optimal insertion points. 1916 if (!KnownSafe) 1917 for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) { 1918 if (RetainsToMove.ReverseInsertPts.insert(RIP).second) { 1919 // If we overflow when we compute the path count, don't 1920 // remove/move anything. 1921 const BBState &RIPBBState = BBStates[RIP->getParent()]; 1922 1923 PathCount = BBState::OverflowOccurredValue; 1924 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) 1925 return false; 1926 assert(PathCount != BBState::OverflowOccurredValue && 1927 "PathCount at this point can not be " 1928 "OverflowOccurredValue."); 1929 NewDelta += PathCount; 1930 NewCount += PathCount; 1931 } 1932 } 1933 NewRetains.push_back(NewReleaseRetain); 1934 } 1935 } 1936 } 1937 if (NewRetains.empty()) break; 1938 } 1939 1940 // We can only remove pointers if we are known safe in both directions. 1941 bool UnconditionallySafe = KnownSafeTD && KnownSafeBU; 1942 if (UnconditionallySafe) { 1943 RetainsToMove.ReverseInsertPts.clear(); 1944 ReleasesToMove.ReverseInsertPts.clear(); 1945 NewCount = 0; 1946 } else { 1947 // Determine whether the new insertion points we computed preserve the 1948 // balance of retain and release calls through the program. 1949 // TODO: If the fully aggressive solution isn't valid, try to find a 1950 // less aggressive solution which is. 1951 if (NewDelta != 0) 1952 return false; 1953 1954 // At this point, we are not going to remove any RR pairs, but we still are 1955 // able to move RR pairs. If one of our pointers is afflicted with 1956 // CFGHazards, we cannot perform such code motion so exit early. 1957 const bool WillPerformCodeMotion = 1958 !RetainsToMove.ReverseInsertPts.empty() || 1959 !ReleasesToMove.ReverseInsertPts.empty(); 1960 if (CFGHazardAfflicted && WillPerformCodeMotion) 1961 return false; 1962 } 1963 1964 // Determine whether the original call points are balanced in the retain and 1965 // release calls through the program. If not, conservatively don't touch 1966 // them. 1967 // TODO: It's theoretically possible to do code motion in this case, as 1968 // long as the existing imbalances are maintained. 1969 if (OldDelta != 0) 1970 return false; 1971 1972 Changed = true; 1973 assert(OldCount != 0 && "Unreachable code?"); 1974 NumRRs += OldCount - NewCount; 1975 // Set to true if we completely removed any RR pairs. 1976 AnyPairsCompletelyEliminated = NewCount == 0; 1977 1978 // We can move calls! 1979 return true; 1980 } 1981 1982 /// Identify pairings between the retains and releases, and delete and/or move 1983 /// them. 1984 bool ObjCARCOpt::PerformCodePlacement( 1985 DenseMap<const BasicBlock *, BBState> &BBStates, 1986 BlotMapVector<Value *, RRInfo> &Retains, 1987 DenseMap<Value *, RRInfo> &Releases, Module *M) { 1988 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n"); 1989 1990 bool AnyPairsCompletelyEliminated = false; 1991 SmallVector<Instruction *, 8> DeadInsts; 1992 1993 // Visit each retain. 1994 for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), 1995 E = Retains.end(); 1996 I != E; ++I) { 1997 Value *V = I->first; 1998 if (!V) continue; // blotted 1999 2000 Instruction *Retain = cast<Instruction>(V); 2001 2002 LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n"); 2003 2004 Value *Arg = GetArgRCIdentityRoot(Retain); 2005 2006 // If the object being released is in static or stack storage, we know it's 2007 // not being managed by ObjC reference counting, so we can delete pairs 2008 // regardless of what possible decrements or uses lie between them. 2009 bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); 2010 2011 // A constant pointer can't be pointing to an object on the heap. It may 2012 // be reference-counted, but it won't be deleted. 2013 if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) 2014 if (const GlobalVariable *GV = 2015 dyn_cast<GlobalVariable>( 2016 GetRCIdentityRoot(LI->getPointerOperand()))) 2017 if (GV->isConstant()) 2018 KnownSafe = true; 2019 2020 // Connect the dots between the top-down-collected RetainsToMove and 2021 // bottom-up-collected ReleasesToMove to form sets of related calls. 2022 RRInfo RetainsToMove, ReleasesToMove; 2023 2024 bool PerformMoveCalls = PairUpRetainsAndReleases( 2025 BBStates, Retains, Releases, M, Retain, DeadInsts, 2026 RetainsToMove, ReleasesToMove, Arg, KnownSafe, 2027 AnyPairsCompletelyEliminated); 2028 2029 if (PerformMoveCalls) { 2030 // Ok, everything checks out and we're all set. Let's move/delete some 2031 // code! 2032 MoveCalls(Arg, RetainsToMove, ReleasesToMove, 2033 Retains, Releases, DeadInsts, M); 2034 } 2035 } 2036 2037 // Now that we're done moving everything, we can delete the newly dead 2038 // instructions, as we no longer need them as insert points. 2039 while (!DeadInsts.empty()) 2040 EraseInstruction(DeadInsts.pop_back_val()); 2041 2042 return AnyPairsCompletelyEliminated; 2043 } 2044 2045 /// Weak pointer optimizations. 2046 void ObjCARCOpt::OptimizeWeakCalls(Function &F) { 2047 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n"); 2048 2049 // First, do memdep-style RLE and S2L optimizations. We can't use memdep 2050 // itself because it uses AliasAnalysis and we need to do provenance 2051 // queries instead. 2052 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 2053 Instruction *Inst = &*I++; 2054 2055 LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n"); 2056 2057 ARCInstKind Class = GetBasicARCInstKind(Inst); 2058 if (Class != ARCInstKind::LoadWeak && 2059 Class != ARCInstKind::LoadWeakRetained) 2060 continue; 2061 2062 // Delete objc_loadWeak calls with no users. 2063 if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) { 2064 Inst->eraseFromParent(); 2065 Changed = true; 2066 continue; 2067 } 2068 2069 // TODO: For now, just look for an earlier available version of this value 2070 // within the same block. Theoretically, we could do memdep-style non-local 2071 // analysis too, but that would want caching. A better approach would be to 2072 // use the technique that EarlyCSE uses. 2073 inst_iterator Current = std::prev(I); 2074 BasicBlock *CurrentBB = &*Current.getBasicBlockIterator(); 2075 for (BasicBlock::iterator B = CurrentBB->begin(), 2076 J = Current.getInstructionIterator(); 2077 J != B; --J) { 2078 Instruction *EarlierInst = &*std::prev(J); 2079 ARCInstKind EarlierClass = GetARCInstKind(EarlierInst); 2080 switch (EarlierClass) { 2081 case ARCInstKind::LoadWeak: 2082 case ARCInstKind::LoadWeakRetained: { 2083 // If this is loading from the same pointer, replace this load's value 2084 // with that one. 2085 CallInst *Call = cast<CallInst>(Inst); 2086 CallInst *EarlierCall = cast<CallInst>(EarlierInst); 2087 Value *Arg = Call->getArgOperand(0); 2088 Value *EarlierArg = EarlierCall->getArgOperand(0); 2089 switch (PA.getAA()->alias(Arg, EarlierArg)) { 2090 case MustAlias: 2091 Changed = true; 2092 // If the load has a builtin retain, insert a plain retain for it. 2093 if (Class == ARCInstKind::LoadWeakRetained) { 2094 Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); 2095 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); 2096 CI->setTailCall(); 2097 } 2098 // Zap the fully redundant load. 2099 Call->replaceAllUsesWith(EarlierCall); 2100 Call->eraseFromParent(); 2101 goto clobbered; 2102 case MayAlias: 2103 case PartialAlias: 2104 goto clobbered; 2105 case NoAlias: 2106 break; 2107 } 2108 break; 2109 } 2110 case ARCInstKind::StoreWeak: 2111 case ARCInstKind::InitWeak: { 2112 // If this is storing to the same pointer and has the same size etc. 2113 // replace this load's value with the stored value. 2114 CallInst *Call = cast<CallInst>(Inst); 2115 CallInst *EarlierCall = cast<CallInst>(EarlierInst); 2116 Value *Arg = Call->getArgOperand(0); 2117 Value *EarlierArg = EarlierCall->getArgOperand(0); 2118 switch (PA.getAA()->alias(Arg, EarlierArg)) { 2119 case MustAlias: 2120 Changed = true; 2121 // If the load has a builtin retain, insert a plain retain for it. 2122 if (Class == ARCInstKind::LoadWeakRetained) { 2123 Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain); 2124 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); 2125 CI->setTailCall(); 2126 } 2127 // Zap the fully redundant load. 2128 Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); 2129 Call->eraseFromParent(); 2130 goto clobbered; 2131 case MayAlias: 2132 case PartialAlias: 2133 goto clobbered; 2134 case NoAlias: 2135 break; 2136 } 2137 break; 2138 } 2139 case ARCInstKind::MoveWeak: 2140 case ARCInstKind::CopyWeak: 2141 // TOOD: Grab the copied value. 2142 goto clobbered; 2143 case ARCInstKind::AutoreleasepoolPush: 2144 case ARCInstKind::None: 2145 case ARCInstKind::IntrinsicUser: 2146 case ARCInstKind::User: 2147 // Weak pointers are only modified through the weak entry points 2148 // (and arbitrary calls, which could call the weak entry points). 2149 break; 2150 default: 2151 // Anything else could modify the weak pointer. 2152 goto clobbered; 2153 } 2154 } 2155 clobbered:; 2156 } 2157 2158 // Then, for each destroyWeak with an alloca operand, check to see if 2159 // the alloca and all its users can be zapped. 2160 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 2161 Instruction *Inst = &*I++; 2162 ARCInstKind Class = GetBasicARCInstKind(Inst); 2163 if (Class != ARCInstKind::DestroyWeak) 2164 continue; 2165 2166 CallInst *Call = cast<CallInst>(Inst); 2167 Value *Arg = Call->getArgOperand(0); 2168 if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { 2169 for (User *U : Alloca->users()) { 2170 const Instruction *UserInst = cast<Instruction>(U); 2171 switch (GetBasicARCInstKind(UserInst)) { 2172 case ARCInstKind::InitWeak: 2173 case ARCInstKind::StoreWeak: 2174 case ARCInstKind::DestroyWeak: 2175 continue; 2176 default: 2177 goto done; 2178 } 2179 } 2180 Changed = true; 2181 for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) { 2182 CallInst *UserInst = cast<CallInst>(*UI++); 2183 switch (GetBasicARCInstKind(UserInst)) { 2184 case ARCInstKind::InitWeak: 2185 case ARCInstKind::StoreWeak: 2186 // These functions return their second argument. 2187 UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); 2188 break; 2189 case ARCInstKind::DestroyWeak: 2190 // No return value. 2191 break; 2192 default: 2193 llvm_unreachable("alloca really is used!"); 2194 } 2195 UserInst->eraseFromParent(); 2196 } 2197 Alloca->eraseFromParent(); 2198 done:; 2199 } 2200 } 2201 } 2202 2203 /// Identify program paths which execute sequences of retains and releases which 2204 /// can be eliminated. 2205 bool ObjCARCOpt::OptimizeSequences(Function &F) { 2206 // Releases, Retains - These are used to store the results of the main flow 2207 // analysis. These use Value* as the key instead of Instruction* so that the 2208 // map stays valid when we get around to rewriting code and calls get 2209 // replaced by arguments. 2210 DenseMap<Value *, RRInfo> Releases; 2211 BlotMapVector<Value *, RRInfo> Retains; 2212 2213 // This is used during the traversal of the function to track the 2214 // states for each identified object at each block. 2215 DenseMap<const BasicBlock *, BBState> BBStates; 2216 2217 // Analyze the CFG of the function, and all instructions. 2218 bool NestingDetected = Visit(F, BBStates, Retains, Releases); 2219 2220 if (DisableRetainReleasePairing) 2221 return false; 2222 2223 // Transform. 2224 bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, 2225 Releases, 2226 F.getParent()); 2227 2228 return AnyPairsCompletelyEliminated && NestingDetected; 2229 } 2230 2231 /// Check if there is a dependent call earlier that does not have anything in 2232 /// between the Retain and the call that can affect the reference count of their 2233 /// shared pointer argument. Note that Retain need not be in BB. 2234 static CallInst *HasSafePathToPredecessorCall(const Value *Arg, 2235 Instruction *Retain, 2236 ProvenanceAnalysis &PA) { 2237 auto *Call = dyn_cast_or_null<CallInst>(findSingleDependency( 2238 CanChangeRetainCount, Arg, Retain->getParent(), Retain, PA)); 2239 2240 // Check that the pointer is the return value of the call. 2241 if (!Call || Arg != Call) 2242 return nullptr; 2243 2244 // Check that the call is a regular call. 2245 ARCInstKind Class = GetBasicARCInstKind(Call); 2246 return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call 2247 ? Call 2248 : nullptr; 2249 } 2250 2251 /// Find a dependent retain that precedes the given autorelease for which there 2252 /// is nothing in between the two instructions that can affect the ref count of 2253 /// Arg. 2254 static CallInst * 2255 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, 2256 Instruction *Autorelease, 2257 ProvenanceAnalysis &PA) { 2258 auto *Retain = dyn_cast_or_null<CallInst>( 2259 findSingleDependency(CanChangeRetainCount, Arg, BB, Autorelease, PA)); 2260 2261 // Check that we found a retain with the same argument. 2262 if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) || 2263 GetArgRCIdentityRoot(Retain) != Arg) { 2264 return nullptr; 2265 } 2266 2267 return Retain; 2268 } 2269 2270 /// Look for an ``autorelease'' instruction dependent on Arg such that there are 2271 /// no instructions dependent on Arg that need a positive ref count in between 2272 /// the autorelease and the ret. 2273 static CallInst * 2274 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, 2275 ReturnInst *Ret, 2276 ProvenanceAnalysis &PA) { 2277 SmallPtrSet<Instruction *, 4> DepInsts; 2278 auto *Autorelease = dyn_cast_or_null<CallInst>( 2279 findSingleDependency(NeedsPositiveRetainCount, Arg, BB, Ret, PA)); 2280 2281 if (!Autorelease) 2282 return nullptr; 2283 ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease); 2284 if (!IsAutorelease(AutoreleaseClass)) 2285 return nullptr; 2286 if (GetArgRCIdentityRoot(Autorelease) != Arg) 2287 return nullptr; 2288 2289 return Autorelease; 2290 } 2291 2292 /// Look for this pattern: 2293 /// \code 2294 /// %call = call i8* @something(...) 2295 /// %2 = call i8* @objc_retain(i8* %call) 2296 /// %3 = call i8* @objc_autorelease(i8* %2) 2297 /// ret i8* %3 2298 /// \endcode 2299 /// And delete the retain and autorelease. 2300 void ObjCARCOpt::OptimizeReturns(Function &F) { 2301 if (!F.getReturnType()->isPointerTy()) 2302 return; 2303 2304 LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n"); 2305 2306 for (BasicBlock &BB: F) { 2307 ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back()); 2308 if (!Ret) 2309 continue; 2310 2311 LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n"); 2312 2313 const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0)); 2314 2315 // Look for an ``autorelease'' instruction that is a predecessor of Ret and 2316 // dependent on Arg such that there are no instructions dependent on Arg 2317 // that need a positive ref count in between the autorelease and Ret. 2318 CallInst *Autorelease = 2319 FindPredecessorAutoreleaseWithSafePath(Arg, &BB, Ret, PA); 2320 2321 if (!Autorelease) 2322 continue; 2323 2324 CallInst *Retain = FindPredecessorRetainWithSafePath( 2325 Arg, Autorelease->getParent(), Autorelease, PA); 2326 2327 if (!Retain) 2328 continue; 2329 2330 // Check that there is nothing that can affect the reference count 2331 // between the retain and the call. Note that Retain need not be in BB. 2332 CallInst *Call = HasSafePathToPredecessorCall(Arg, Retain, PA); 2333 2334 // Don't remove retainRV/autoreleaseRV pairs if the call isn't a tail call. 2335 if (!Call || 2336 (!Call->isTailCall() && 2337 GetBasicARCInstKind(Retain) == ARCInstKind::RetainRV && 2338 GetBasicARCInstKind(Autorelease) == ARCInstKind::AutoreleaseRV)) 2339 continue; 2340 2341 // If so, we can zap the retain and autorelease. 2342 Changed = true; 2343 ++NumRets; 2344 LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease 2345 << "\n"); 2346 EraseInstruction(Retain); 2347 EraseInstruction(Autorelease); 2348 } 2349 } 2350 2351 #ifndef NDEBUG 2352 void 2353 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { 2354 Statistic &NumRetains = 2355 AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt; 2356 Statistic &NumReleases = 2357 AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt; 2358 2359 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 2360 Instruction *Inst = &*I++; 2361 switch (GetBasicARCInstKind(Inst)) { 2362 default: 2363 break; 2364 case ARCInstKind::Retain: 2365 ++NumRetains; 2366 break; 2367 case ARCInstKind::Release: 2368 ++NumReleases; 2369 break; 2370 } 2371 } 2372 } 2373 #endif 2374 2375 void ObjCARCOpt::init(Module &M) { 2376 if (!EnableARCOpts) 2377 return; 2378 2379 // If nothing in the Module uses ARC, don't do anything. 2380 Run = ModuleHasARC(M); 2381 if (!Run) 2382 return; 2383 2384 // Intuitively, objc_retain and others are nocapture, however in practice 2385 // they are not, because they return their argument value. And objc_release 2386 // calls finalizers which can have arbitrary side effects. 2387 MDKindCache.init(&M); 2388 2389 // Initialize our runtime entry point cache. 2390 EP.init(&M); 2391 } 2392 2393 bool ObjCARCOpt::run(Function &F, AAResults &AA) { 2394 if (!EnableARCOpts) 2395 return false; 2396 2397 // If nothing in the Module uses ARC, don't do anything. 2398 if (!Run) 2399 return false; 2400 2401 Changed = false; 2402 2403 LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() 2404 << " >>>" 2405 "\n"); 2406 2407 PA.setAA(&AA); 2408 2409 #ifndef NDEBUG 2410 if (AreStatisticsEnabled()) { 2411 GatherStatistics(F, false); 2412 } 2413 #endif 2414 2415 // This pass performs several distinct transformations. As a compile-time aid 2416 // when compiling code that isn't ObjC, skip these if the relevant ObjC 2417 // library functions aren't declared. 2418 2419 // Preliminary optimizations. This also computes UsedInThisFunction. 2420 OptimizeIndividualCalls(F); 2421 2422 // Optimizations for weak pointers. 2423 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) | 2424 (1 << unsigned(ARCInstKind::LoadWeakRetained)) | 2425 (1 << unsigned(ARCInstKind::StoreWeak)) | 2426 (1 << unsigned(ARCInstKind::InitWeak)) | 2427 (1 << unsigned(ARCInstKind::CopyWeak)) | 2428 (1 << unsigned(ARCInstKind::MoveWeak)) | 2429 (1 << unsigned(ARCInstKind::DestroyWeak)))) 2430 OptimizeWeakCalls(F); 2431 2432 // Optimizations for retain+release pairs. 2433 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) | 2434 (1 << unsigned(ARCInstKind::RetainRV)) | 2435 (1 << unsigned(ARCInstKind::RetainBlock)))) 2436 if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release))) 2437 // Run OptimizeSequences until it either stops making changes or 2438 // no retain+release pair nesting is detected. 2439 while (OptimizeSequences(F)) {} 2440 2441 // Optimizations if objc_autorelease is used. 2442 if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) | 2443 (1 << unsigned(ARCInstKind::AutoreleaseRV)))) 2444 OptimizeReturns(F); 2445 2446 // Gather statistics after optimization. 2447 #ifndef NDEBUG 2448 if (AreStatisticsEnabled()) { 2449 GatherStatistics(F, true); 2450 } 2451 #endif 2452 2453 LLVM_DEBUG(dbgs() << "\n"); 2454 2455 return Changed; 2456 } 2457 2458 void ObjCARCOpt::releaseMemory() { 2459 PA.clear(); 2460 } 2461 2462 /// @} 2463 /// 2464 2465 PreservedAnalyses ObjCARCOptPass::run(Function &F, 2466 FunctionAnalysisManager &AM) { 2467 ObjCARCOpt OCAO; 2468 OCAO.init(*F.getParent()); 2469 2470 bool Changed = OCAO.run(F, AM.getResult<AAManager>(F)); 2471 if (Changed) { 2472 PreservedAnalyses PA; 2473 PA.preserveSet<CFGAnalyses>(); 2474 return PA; 2475 } 2476 return PreservedAnalyses::all(); 2477 } 2478