xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 //   - Insert calls to run-time library before every memory access.
16 //      - Optimizations may apply to avoid instrumenting some of the accesses.
17 //   - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "tsan"
54 
55 static cl::opt<bool> ClInstrumentMemoryAccesses(
56     "tsan-instrument-memory-accesses", cl::init(true),
57     cl::desc("Instrument memory accesses"), cl::Hidden);
58 static cl::opt<bool>
59     ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
60                               cl::desc("Instrument function entry and exit"),
61                               cl::Hidden);
62 static cl::opt<bool> ClHandleCxxExceptions(
63     "tsan-handle-cxx-exceptions", cl::init(true),
64     cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
65     cl::Hidden);
66 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
67                                          cl::init(true),
68                                          cl::desc("Instrument atomics"),
69                                          cl::Hidden);
70 static cl::opt<bool> ClInstrumentMemIntrinsics(
71     "tsan-instrument-memintrinsics", cl::init(true),
72     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
73 static cl::opt<bool> ClDistinguishVolatile(
74     "tsan-distinguish-volatile", cl::init(false),
75     cl::desc("Emit special instrumentation for accesses to volatiles"),
76     cl::Hidden);
77 static cl::opt<bool> ClInstrumentReadBeforeWrite(
78     "tsan-instrument-read-before-write", cl::init(false),
79     cl::desc("Do not eliminate read instrumentation for read-before-writes"),
80     cl::Hidden);
81 static cl::opt<bool> ClCompoundReadBeforeWrite(
82     "tsan-compound-read-before-write", cl::init(false),
83     cl::desc("Emit special compound instrumentation for reads-before-writes"),
84     cl::Hidden);
85 
86 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
87 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
88 STATISTIC(NumOmittedReadsBeforeWrite,
89           "Number of reads ignored due to following writes");
90 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
91 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
92 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
93 STATISTIC(NumOmittedReadsFromConstantGlobals,
94           "Number of reads from constant globals");
95 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
96 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
97 
98 const char kTsanModuleCtorName[] = "tsan.module_ctor";
99 const char kTsanInitName[] = "__tsan_init";
100 
101 namespace {
102 
103 /// ThreadSanitizer: instrument the code in module to find races.
104 ///
105 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
106 /// declarations into the module if they don't exist already. Instantiating
107 /// ensures the __tsan_init function is in the list of global constructors for
108 /// the module.
109 struct ThreadSanitizer {
110   ThreadSanitizer() {
111     // Check options and warn user.
112     if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
113       errs()
114           << "warning: Option -tsan-compound-read-before-write has no effect "
115              "when -tsan-instrument-read-before-write is set.\n";
116     }
117   }
118 
119   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
120 
121 private:
122   // Internal Instruction wrapper that contains more information about the
123   // Instruction from prior analysis.
124   struct InstructionInfo {
125     // Instrumentation emitted for this instruction is for a compounded set of
126     // read and write operations in the same basic block.
127     static constexpr unsigned kCompoundRW = (1U << 0);
128 
129     explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
130 
131     Instruction *Inst;
132     unsigned Flags = 0;
133   };
134 
135   void initialize(Module &M, const TargetLibraryInfo &TLI);
136   bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
137   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
138   bool instrumentMemIntrinsic(Instruction *I);
139   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
140                                       SmallVectorImpl<InstructionInfo> &All,
141                                       const DataLayout &DL);
142   bool addrPointsToConstantData(Value *Addr);
143   int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
144   void InsertRuntimeIgnores(Function &F);
145 
146   Type *IntptrTy;
147   FunctionCallee TsanFuncEntry;
148   FunctionCallee TsanFuncExit;
149   FunctionCallee TsanIgnoreBegin;
150   FunctionCallee TsanIgnoreEnd;
151   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
152   static const size_t kNumberOfAccessSizes = 5;
153   FunctionCallee TsanRead[kNumberOfAccessSizes];
154   FunctionCallee TsanWrite[kNumberOfAccessSizes];
155   FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
156   FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
157   FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
158   FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
159   FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
160   FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
161   FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
162   FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
163   FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
164   FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
165   FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
166                               [kNumberOfAccessSizes];
167   FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
168   FunctionCallee TsanAtomicThreadFence;
169   FunctionCallee TsanAtomicSignalFence;
170   FunctionCallee TsanVptrUpdate;
171   FunctionCallee TsanVptrLoad;
172   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
173 };
174 
175 void insertModuleCtor(Module &M) {
176   getOrCreateSanitizerCtorAndInitFunctions(
177       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
178       /*InitArgs=*/{},
179       // This callback is invoked when the functions are created the first
180       // time. Hook them into the global ctors list in that case:
181       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
182 }
183 }  // namespace
184 
185 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
186                                            FunctionAnalysisManager &FAM) {
187   ThreadSanitizer TSan;
188   if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
189     return PreservedAnalyses::none();
190   return PreservedAnalyses::all();
191 }
192 
193 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
194                                                  ModuleAnalysisManager &MAM) {
195   insertModuleCtor(M);
196   return PreservedAnalyses::none();
197 }
198 void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
199   const DataLayout &DL = M.getDataLayout();
200   LLVMContext &Ctx = M.getContext();
201   IntptrTy = DL.getIntPtrType(Ctx);
202 
203   IRBuilder<> IRB(Ctx);
204   AttributeList Attr;
205   Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
206   // Initialize the callbacks.
207   TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
208                                         IRB.getVoidTy(), IRB.getPtrTy());
209   TsanFuncExit =
210       M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
211   TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
212                                           IRB.getVoidTy());
213   TsanIgnoreEnd =
214       M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
215   IntegerType *OrdTy = IRB.getInt32Ty();
216   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
217     const unsigned ByteSize = 1U << i;
218     const unsigned BitSize = ByteSize * 8;
219     std::string ByteSizeStr = utostr(ByteSize);
220     std::string BitSizeStr = utostr(BitSize);
221     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
222     TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
223                                         IRB.getPtrTy());
224 
225     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
226     TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
227                                          IRB.getPtrTy());
228 
229     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
230     TsanUnalignedRead[i] = M.getOrInsertFunction(
231         UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
232 
233     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
234     TsanUnalignedWrite[i] = M.getOrInsertFunction(
235         UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
236 
237     SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
238     TsanVolatileRead[i] = M.getOrInsertFunction(
239         VolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
240 
241     SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
242     TsanVolatileWrite[i] = M.getOrInsertFunction(
243         VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
244 
245     SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
246                                               ByteSizeStr);
247     TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
248         UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
249 
250     SmallString<64> UnalignedVolatileWriteName(
251         "__tsan_unaligned_volatile_write" + ByteSizeStr);
252     TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
253         UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
254 
255     SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
256     TsanCompoundRW[i] = M.getOrInsertFunction(
257         CompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
258 
259     SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
260                                             ByteSizeStr);
261     TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
262         UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
263 
264     Type *Ty = Type::getIntNTy(Ctx, BitSize);
265     Type *PtrTy = PointerType::get(Ctx, 0);
266     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
267     TsanAtomicLoad[i] =
268         M.getOrInsertFunction(AtomicLoadName,
269                               TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
270                                               /*Ret=*/BitSize <= 32, Attr),
271                               Ty, PtrTy, OrdTy);
272 
273     // Args of type Ty need extension only when BitSize is 32 or less.
274     using Idxs = std::vector<unsigned>;
275     Idxs Idxs2Or12   ((BitSize <= 32) ? Idxs({1, 2})       : Idxs({2}));
276     Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
277     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
278     TsanAtomicStore[i] = M.getOrInsertFunction(
279         AtomicStoreName,
280         TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
281         IRB.getVoidTy(), PtrTy, Ty, OrdTy);
282 
283     for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
284          Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
285       TsanAtomicRMW[Op][i] = nullptr;
286       const char *NamePart = nullptr;
287       if (Op == AtomicRMWInst::Xchg)
288         NamePart = "_exchange";
289       else if (Op == AtomicRMWInst::Add)
290         NamePart = "_fetch_add";
291       else if (Op == AtomicRMWInst::Sub)
292         NamePart = "_fetch_sub";
293       else if (Op == AtomicRMWInst::And)
294         NamePart = "_fetch_and";
295       else if (Op == AtomicRMWInst::Or)
296         NamePart = "_fetch_or";
297       else if (Op == AtomicRMWInst::Xor)
298         NamePart = "_fetch_xor";
299       else if (Op == AtomicRMWInst::Nand)
300         NamePart = "_fetch_nand";
301       else
302         continue;
303       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
304       TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
305           RMWName,
306           TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
307                           /*Ret=*/BitSize <= 32, Attr),
308           Ty, PtrTy, Ty, OrdTy);
309     }
310 
311     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
312                                   "_compare_exchange_val");
313     TsanAtomicCAS[i] = M.getOrInsertFunction(
314         AtomicCASName,
315         TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
316                         /*Ret=*/BitSize <= 32, Attr),
317         Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
318   }
319   TsanVptrUpdate =
320       M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
321                             IRB.getPtrTy(), IRB.getPtrTy());
322   TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
323                                        IRB.getVoidTy(), IRB.getPtrTy());
324   TsanAtomicThreadFence = M.getOrInsertFunction(
325       "__tsan_atomic_thread_fence",
326       TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
327       IRB.getVoidTy(), OrdTy);
328 
329   TsanAtomicSignalFence = M.getOrInsertFunction(
330       "__tsan_atomic_signal_fence",
331       TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
332       IRB.getVoidTy(), OrdTy);
333 
334   MemmoveFn =
335       M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getPtrTy(),
336                             IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
337   MemcpyFn =
338       M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getPtrTy(),
339                             IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
340   MemsetFn = M.getOrInsertFunction(
341       "__tsan_memset",
342       TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
343       IRB.getPtrTy(), IRB.getPtrTy(), IRB.getInt32Ty(), IntptrTy);
344 }
345 
346 static bool isVtableAccess(Instruction *I) {
347   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
348     return Tag->isTBAAVtableAccess();
349   return false;
350 }
351 
352 // Do not instrument known races/"benign races" that come from compiler
353 // instrumentatin. The user has no way of suppressing them.
354 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
355   // Peel off GEPs and BitCasts.
356   Addr = Addr->stripInBoundsOffsets();
357 
358   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
359     if (GV->hasSection()) {
360       StringRef SectionName = GV->getSection();
361       // Check if the global is in the PGO counters section.
362       auto OF = Triple(M->getTargetTriple()).getObjectFormat();
363       if (SectionName.ends_with(
364               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
365         return false;
366     }
367   }
368 
369   // Do not instrument accesses from different address spaces; we cannot deal
370   // with them.
371   if (Addr) {
372     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
373     if (PtrTy->getPointerAddressSpace() != 0)
374       return false;
375   }
376 
377   return true;
378 }
379 
380 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
381   // If this is a GEP, just analyze its pointer operand.
382   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
383     Addr = GEP->getPointerOperand();
384 
385   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
386     if (GV->isConstant()) {
387       // Reads from constant globals can not race with any writes.
388       NumOmittedReadsFromConstantGlobals++;
389       return true;
390     }
391   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
392     if (isVtableAccess(L)) {
393       // Reads from a vtable pointer can not race with any writes.
394       NumOmittedReadsFromVtable++;
395       return true;
396     }
397   }
398   return false;
399 }
400 
401 // Instrumenting some of the accesses may be proven redundant.
402 // Currently handled:
403 //  - read-before-write (within same BB, no calls between)
404 //  - not captured variables
405 //
406 // We do not handle some of the patterns that should not survive
407 // after the classic compiler optimizations.
408 // E.g. two reads from the same temp should be eliminated by CSE,
409 // two writes should be eliminated by DSE, etc.
410 //
411 // 'Local' is a vector of insns within the same BB (no calls between).
412 // 'All' is a vector of insns that will be instrumented.
413 void ThreadSanitizer::chooseInstructionsToInstrument(
414     SmallVectorImpl<Instruction *> &Local,
415     SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
416   DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
417   // Iterate from the end.
418   for (Instruction *I : reverse(Local)) {
419     const bool IsWrite = isa<StoreInst>(*I);
420     Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
421                           : cast<LoadInst>(I)->getPointerOperand();
422 
423     if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
424       continue;
425 
426     if (!IsWrite) {
427       const auto WriteEntry = WriteTargets.find(Addr);
428       if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
429         auto &WI = All[WriteEntry->second];
430         // If we distinguish volatile accesses and if either the read or write
431         // is volatile, do not omit any instrumentation.
432         const bool AnyVolatile =
433             ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
434                                       cast<StoreInst>(WI.Inst)->isVolatile());
435         if (!AnyVolatile) {
436           // We will write to this temp, so no reason to analyze the read.
437           // Mark the write instruction as compound.
438           WI.Flags |= InstructionInfo::kCompoundRW;
439           NumOmittedReadsBeforeWrite++;
440           continue;
441         }
442       }
443 
444       if (addrPointsToConstantData(Addr)) {
445         // Addr points to some constant data -- it can not race with any writes.
446         continue;
447       }
448     }
449 
450     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
451         !PointerMayBeCaptured(Addr, true, true)) {
452       // The variable is addressable but not captured, so it cannot be
453       // referenced from a different thread and participate in a data race
454       // (see llvm/Analysis/CaptureTracking.h for details).
455       NumOmittedNonCaptured++;
456       continue;
457     }
458 
459     // Instrument this instruction.
460     All.emplace_back(I);
461     if (IsWrite) {
462       // For read-before-write and compound instrumentation we only need one
463       // write target, and we can override any previous entry if it exists.
464       WriteTargets[Addr] = All.size() - 1;
465     }
466   }
467   Local.clear();
468 }
469 
470 static bool isTsanAtomic(const Instruction *I) {
471   // TODO: Ask TTI whether synchronization scope is between threads.
472   auto SSID = getAtomicSyncScopeID(I);
473   if (!SSID)
474     return false;
475   if (isa<LoadInst>(I) || isa<StoreInst>(I))
476     return *SSID != SyncScope::SingleThread;
477   return true;
478 }
479 
480 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
481   InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
482   IRB.CreateCall(TsanIgnoreBegin);
483   EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
484   while (IRBuilder<> *AtExit = EE.Next()) {
485     InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
486     AtExit->CreateCall(TsanIgnoreEnd);
487   }
488 }
489 
490 bool ThreadSanitizer::sanitizeFunction(Function &F,
491                                        const TargetLibraryInfo &TLI) {
492   // This is required to prevent instrumenting call to __tsan_init from within
493   // the module constructor.
494   if (F.getName() == kTsanModuleCtorName)
495     return false;
496   // Naked functions can not have prologue/epilogue
497   // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
498   // all.
499   if (F.hasFnAttribute(Attribute::Naked))
500     return false;
501 
502   // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
503   // instrumentation.
504   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
505     return false;
506 
507   initialize(*F.getParent(), TLI);
508   SmallVector<InstructionInfo, 8> AllLoadsAndStores;
509   SmallVector<Instruction*, 8> LocalLoadsAndStores;
510   SmallVector<Instruction*, 8> AtomicAccesses;
511   SmallVector<Instruction*, 8> MemIntrinCalls;
512   bool Res = false;
513   bool HasCalls = false;
514   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
515   const DataLayout &DL = F.getParent()->getDataLayout();
516 
517   // Traverse all instructions, collect loads/stores/returns, check for calls.
518   for (auto &BB : F) {
519     for (auto &Inst : BB) {
520       // Skip instructions inserted by another instrumentation.
521       if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
522         continue;
523       if (isTsanAtomic(&Inst))
524         AtomicAccesses.push_back(&Inst);
525       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
526         LocalLoadsAndStores.push_back(&Inst);
527       else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
528                isa<InvokeInst>(Inst)) {
529         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
530           maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
531         if (isa<MemIntrinsic>(Inst))
532           MemIntrinCalls.push_back(&Inst);
533         HasCalls = true;
534         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
535                                        DL);
536       }
537     }
538     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
539   }
540 
541   // We have collected all loads and stores.
542   // FIXME: many of these accesses do not need to be checked for races
543   // (e.g. variables that do not escape, etc).
544 
545   // Instrument memory accesses only if we want to report bugs in the function.
546   if (ClInstrumentMemoryAccesses && SanitizeFunction)
547     for (const auto &II : AllLoadsAndStores) {
548       Res |= instrumentLoadOrStore(II, DL);
549     }
550 
551   // Instrument atomic memory accesses in any case (they can be used to
552   // implement synchronization).
553   if (ClInstrumentAtomics)
554     for (auto *Inst : AtomicAccesses) {
555       Res |= instrumentAtomic(Inst, DL);
556     }
557 
558   if (ClInstrumentMemIntrinsics && SanitizeFunction)
559     for (auto *Inst : MemIntrinCalls) {
560       Res |= instrumentMemIntrinsic(Inst);
561     }
562 
563   if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
564     assert(!F.hasFnAttribute(Attribute::SanitizeThread));
565     if (HasCalls)
566       InsertRuntimeIgnores(F);
567   }
568 
569   // Instrument function entry/exit points if there were instrumented accesses.
570   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
571     InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
572     Value *ReturnAddress = IRB.CreateCall(
573         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
574         IRB.getInt32(0));
575     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
576 
577     EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
578     while (IRBuilder<> *AtExit = EE.Next()) {
579       InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
580       AtExit->CreateCall(TsanFuncExit, {});
581     }
582     Res = true;
583   }
584   return Res;
585 }
586 
587 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
588                                             const DataLayout &DL) {
589   InstrumentationIRBuilder IRB(II.Inst);
590   const bool IsWrite = isa<StoreInst>(*II.Inst);
591   Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
592                         : cast<LoadInst>(II.Inst)->getPointerOperand();
593   Type *OrigTy = getLoadStoreType(II.Inst);
594 
595   // swifterror memory addresses are mem2reg promoted by instruction selection.
596   // As such they cannot have regular uses like an instrumentation function and
597   // it makes no sense to track them as memory.
598   if (Addr->isSwiftError())
599     return false;
600 
601   int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
602   if (Idx < 0)
603     return false;
604   if (IsWrite && isVtableAccess(II.Inst)) {
605     LLVM_DEBUG(dbgs() << "  VPTR : " << *II.Inst << "\n");
606     Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
607     // StoredValue may be a vector type if we are storing several vptrs at once.
608     // In this case, just take the first element of the vector since this is
609     // enough to find vptr races.
610     if (isa<VectorType>(StoredValue->getType()))
611       StoredValue = IRB.CreateExtractElement(
612           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
613     if (StoredValue->getType()->isIntegerTy())
614       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getPtrTy());
615     // Call TsanVptrUpdate.
616     IRB.CreateCall(TsanVptrUpdate, {Addr, StoredValue});
617     NumInstrumentedVtableWrites++;
618     return true;
619   }
620   if (!IsWrite && isVtableAccess(II.Inst)) {
621     IRB.CreateCall(TsanVptrLoad, Addr);
622     NumInstrumentedVtableReads++;
623     return true;
624   }
625 
626   const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
627                                   : cast<LoadInst>(II.Inst)->getAlign();
628   const bool IsCompoundRW =
629       ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
630   const bool IsVolatile = ClDistinguishVolatile &&
631                           (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
632                                    : cast<LoadInst>(II.Inst)->isVolatile());
633   assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
634 
635   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
636   FunctionCallee OnAccessFunc = nullptr;
637   if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
638     if (IsCompoundRW)
639       OnAccessFunc = TsanCompoundRW[Idx];
640     else if (IsVolatile)
641       OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
642     else
643       OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
644   } else {
645     if (IsCompoundRW)
646       OnAccessFunc = TsanUnalignedCompoundRW[Idx];
647     else if (IsVolatile)
648       OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
649                              : TsanUnalignedVolatileRead[Idx];
650     else
651       OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
652   }
653   IRB.CreateCall(OnAccessFunc, Addr);
654   if (IsCompoundRW || IsWrite)
655     NumInstrumentedWrites++;
656   if (IsCompoundRW || !IsWrite)
657     NumInstrumentedReads++;
658   return true;
659 }
660 
661 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
662   uint32_t v = 0;
663   switch (ord) {
664     case AtomicOrdering::NotAtomic:
665       llvm_unreachable("unexpected atomic ordering!");
666     case AtomicOrdering::Unordered:              [[fallthrough]];
667     case AtomicOrdering::Monotonic:              v = 0; break;
668     // Not specified yet:
669     // case AtomicOrdering::Consume:                v = 1; break;
670     case AtomicOrdering::Acquire:                v = 2; break;
671     case AtomicOrdering::Release:                v = 3; break;
672     case AtomicOrdering::AcquireRelease:         v = 4; break;
673     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
674   }
675   return IRB->getInt32(v);
676 }
677 
678 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
679 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
680 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
681 // instead we simply replace them with regular function calls, which are then
682 // intercepted by the run-time.
683 // Since tsan is running after everyone else, the calls should not be
684 // replaced back with intrinsics. If that becomes wrong at some point,
685 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
686 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
687   InstrumentationIRBuilder IRB(I);
688   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
689     Value *Cast1 = IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false);
690     Value *Cast2 = IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false);
691     IRB.CreateCall(
692         MemsetFn,
693         {M->getArgOperand(0),
694          Cast1,
695          Cast2});
696     I->eraseFromParent();
697   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
698     IRB.CreateCall(
699         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
700         {M->getArgOperand(0),
701          M->getArgOperand(1),
702          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
703     I->eraseFromParent();
704   }
705   return false;
706 }
707 
708 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
709 // standards.  For background see C++11 standard.  A slightly older, publicly
710 // available draft of the standard (not entirely up-to-date, but close enough
711 // for casual browsing) is available here:
712 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
713 // The following page contains more background information:
714 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
715 
716 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
717   InstrumentationIRBuilder IRB(I);
718   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
719     Value *Addr = LI->getPointerOperand();
720     Type *OrigTy = LI->getType();
721     int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
722     if (Idx < 0)
723       return false;
724     Value *Args[] = {Addr,
725                      createOrdering(&IRB, LI->getOrdering())};
726     Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
727     Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
728     I->replaceAllUsesWith(Cast);
729   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
730     Value *Addr = SI->getPointerOperand();
731     int Idx =
732         getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
733     if (Idx < 0)
734       return false;
735     const unsigned ByteSize = 1U << Idx;
736     const unsigned BitSize = ByteSize * 8;
737     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
738     Value *Args[] = {Addr,
739                      IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
740                      createOrdering(&IRB, SI->getOrdering())};
741     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
742     ReplaceInstWithInst(I, C);
743   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
744     Value *Addr = RMWI->getPointerOperand();
745     int Idx =
746         getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
747     if (Idx < 0)
748       return false;
749     FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
750     if (!F)
751       return false;
752     const unsigned ByteSize = 1U << Idx;
753     const unsigned BitSize = ByteSize * 8;
754     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
755     Value *Val = RMWI->getValOperand();
756     Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(Val, Ty),
757                      createOrdering(&IRB, RMWI->getOrdering())};
758     Value *C = IRB.CreateCall(F, Args);
759     I->replaceAllUsesWith(IRB.CreateBitOrPointerCast(C, Val->getType()));
760     I->eraseFromParent();
761   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
762     Value *Addr = CASI->getPointerOperand();
763     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
764     int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
765     if (Idx < 0)
766       return false;
767     const unsigned ByteSize = 1U << Idx;
768     const unsigned BitSize = ByteSize * 8;
769     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
770     Value *CmpOperand =
771       IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
772     Value *NewOperand =
773       IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
774     Value *Args[] = {Addr,
775                      CmpOperand,
776                      NewOperand,
777                      createOrdering(&IRB, CASI->getSuccessOrdering()),
778                      createOrdering(&IRB, CASI->getFailureOrdering())};
779     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
780     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
781     Value *OldVal = C;
782     if (Ty != OrigOldValTy) {
783       // The value is a pointer, so we need to cast the return value.
784       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
785     }
786 
787     Value *Res =
788       IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
789     Res = IRB.CreateInsertValue(Res, Success, 1);
790 
791     I->replaceAllUsesWith(Res);
792     I->eraseFromParent();
793   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
794     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
795     FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
796                            ? TsanAtomicSignalFence
797                            : TsanAtomicThreadFence;
798     CallInst *C = CallInst::Create(F, Args);
799     ReplaceInstWithInst(I, C);
800   }
801   return true;
802 }
803 
804 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
805                                               const DataLayout &DL) {
806   assert(OrigTy->isSized());
807   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
808   if (TypeSize != 8  && TypeSize != 16 &&
809       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
810     NumAccessesWithBadSize++;
811     // Ignore all unusual sizes.
812     return -1;
813   }
814   size_t Idx = llvm::countr_zero(TypeSize / 8);
815   assert(Idx < kNumberOfAccessSizes);
816   return Idx;
817 }
818