1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer, a race detector. 10 // 11 // The tool is under development, for the details about previous versions see 12 // http://code.google.com/p/data-race-test 13 // 14 // The instrumentation phase is quite simple: 15 // - Insert calls to run-time library before every memory access. 16 // - Optimizations may apply to avoid instrumenting some of the accesses. 17 // - Insert calls at function entry/exit. 18 // The rest is handled by the run-time library. 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/ProfileData/InstrProf.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Instrumentation.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/ModuleUtils.h" 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "tsan" 55 56 static cl::opt<bool> ClInstrumentMemoryAccesses( 57 "tsan-instrument-memory-accesses", cl::init(true), 58 cl::desc("Instrument memory accesses"), cl::Hidden); 59 static cl::opt<bool> 60 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true), 61 cl::desc("Instrument function entry and exit"), 62 cl::Hidden); 63 static cl::opt<bool> ClHandleCxxExceptions( 64 "tsan-handle-cxx-exceptions", cl::init(true), 65 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 66 cl::Hidden); 67 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics", 68 cl::init(true), 69 cl::desc("Instrument atomics"), 70 cl::Hidden); 71 static cl::opt<bool> ClInstrumentMemIntrinsics( 72 "tsan-instrument-memintrinsics", cl::init(true), 73 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 74 static cl::opt<bool> ClDistinguishVolatile( 75 "tsan-distinguish-volatile", cl::init(false), 76 cl::desc("Emit special instrumentation for accesses to volatiles"), 77 cl::Hidden); 78 static cl::opt<bool> ClInstrumentReadBeforeWrite( 79 "tsan-instrument-read-before-write", cl::init(false), 80 cl::desc("Do not eliminate read instrumentation for read-before-writes"), 81 cl::Hidden); 82 static cl::opt<bool> ClCompoundReadBeforeWrite( 83 "tsan-compound-read-before-write", cl::init(false), 84 cl::desc("Emit special compound instrumentation for reads-before-writes"), 85 cl::Hidden); 86 87 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 88 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 89 STATISTIC(NumOmittedReadsBeforeWrite, 90 "Number of reads ignored due to following writes"); 91 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 92 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 93 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 94 STATISTIC(NumOmittedReadsFromConstantGlobals, 95 "Number of reads from constant globals"); 96 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 97 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 98 99 const char kTsanModuleCtorName[] = "tsan.module_ctor"; 100 const char kTsanInitName[] = "__tsan_init"; 101 102 namespace { 103 104 /// ThreadSanitizer: instrument the code in module to find races. 105 /// 106 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function 107 /// declarations into the module if they don't exist already. Instantiating 108 /// ensures the __tsan_init function is in the list of global constructors for 109 /// the module. 110 struct ThreadSanitizer { 111 ThreadSanitizer() { 112 // Check options and warn user. 113 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { 114 errs() 115 << "warning: Option -tsan-compound-read-before-write has no effect " 116 "when -tsan-instrument-read-before-write is set.\n"; 117 } 118 } 119 120 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); 121 122 private: 123 // Internal Instruction wrapper that contains more information about the 124 // Instruction from prior analysis. 125 struct InstructionInfo { 126 // Instrumentation emitted for this instruction is for a compounded set of 127 // read and write operations in the same basic block. 128 static constexpr unsigned kCompoundRW = (1U << 0); 129 130 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {} 131 132 Instruction *Inst; 133 unsigned Flags = 0; 134 }; 135 136 void initialize(Module &M); 137 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); 138 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 139 bool instrumentMemIntrinsic(Instruction *I); 140 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 141 SmallVectorImpl<InstructionInfo> &All, 142 const DataLayout &DL); 143 bool addrPointsToConstantData(Value *Addr); 144 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL); 145 void InsertRuntimeIgnores(Function &F); 146 147 Type *IntptrTy; 148 FunctionCallee TsanFuncEntry; 149 FunctionCallee TsanFuncExit; 150 FunctionCallee TsanIgnoreBegin; 151 FunctionCallee TsanIgnoreEnd; 152 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 153 static const size_t kNumberOfAccessSizes = 5; 154 FunctionCallee TsanRead[kNumberOfAccessSizes]; 155 FunctionCallee TsanWrite[kNumberOfAccessSizes]; 156 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; 157 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; 158 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; 159 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; 160 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; 161 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; 162 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; 163 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; 164 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; 165 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; 166 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] 167 [kNumberOfAccessSizes]; 168 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; 169 FunctionCallee TsanAtomicThreadFence; 170 FunctionCallee TsanAtomicSignalFence; 171 FunctionCallee TsanVptrUpdate; 172 FunctionCallee TsanVptrLoad; 173 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 174 }; 175 176 void insertModuleCtor(Module &M) { 177 getOrCreateSanitizerCtorAndInitFunctions( 178 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 179 /*InitArgs=*/{}, 180 // This callback is invoked when the functions are created the first 181 // time. Hook them into the global ctors list in that case: 182 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); 183 } 184 } // namespace 185 186 PreservedAnalyses ThreadSanitizerPass::run(Function &F, 187 FunctionAnalysisManager &FAM) { 188 ThreadSanitizer TSan; 189 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 190 return PreservedAnalyses::none(); 191 return PreservedAnalyses::all(); 192 } 193 194 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M, 195 ModuleAnalysisManager &MAM) { 196 insertModuleCtor(M); 197 return PreservedAnalyses::none(); 198 } 199 void ThreadSanitizer::initialize(Module &M) { 200 const DataLayout &DL = M.getDataLayout(); 201 IntptrTy = DL.getIntPtrType(M.getContext()); 202 203 IRBuilder<> IRB(M.getContext()); 204 AttributeList Attr; 205 Attr = Attr.addFnAttribute(M.getContext(), Attribute::NoUnwind); 206 // Initialize the callbacks. 207 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, 208 IRB.getVoidTy(), IRB.getInt8PtrTy()); 209 TsanFuncExit = 210 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); 211 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, 212 IRB.getVoidTy()); 213 TsanIgnoreEnd = 214 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); 215 IntegerType *OrdTy = IRB.getInt32Ty(); 216 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 217 const unsigned ByteSize = 1U << i; 218 const unsigned BitSize = ByteSize * 8; 219 std::string ByteSizeStr = utostr(ByteSize); 220 std::string BitSizeStr = utostr(BitSize); 221 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 222 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), 223 IRB.getInt8PtrTy()); 224 225 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 226 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), 227 IRB.getInt8PtrTy()); 228 229 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 230 TsanUnalignedRead[i] = M.getOrInsertFunction( 231 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 232 233 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 234 TsanUnalignedWrite[i] = M.getOrInsertFunction( 235 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 236 237 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); 238 TsanVolatileRead[i] = M.getOrInsertFunction( 239 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 240 241 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); 242 TsanVolatileWrite[i] = M.getOrInsertFunction( 243 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 244 245 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + 246 ByteSizeStr); 247 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( 248 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 249 250 SmallString<64> UnalignedVolatileWriteName( 251 "__tsan_unaligned_volatile_write" + ByteSizeStr); 252 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( 253 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 254 255 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); 256 TsanCompoundRW[i] = M.getOrInsertFunction( 257 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 258 259 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" + 260 ByteSizeStr); 261 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( 262 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 263 264 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 265 Type *PtrTy = Ty->getPointerTo(); 266 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 267 { 268 AttributeList AL = Attr; 269 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 270 TsanAtomicLoad[i] = 271 M.getOrInsertFunction(AtomicLoadName, AL, Ty, PtrTy, OrdTy); 272 } 273 274 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 275 { 276 AttributeList AL = Attr; 277 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 278 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 279 TsanAtomicStore[i] = M.getOrInsertFunction( 280 AtomicStoreName, AL, IRB.getVoidTy(), PtrTy, Ty, OrdTy); 281 } 282 283 for (unsigned Op = AtomicRMWInst::FIRST_BINOP; 284 Op <= AtomicRMWInst::LAST_BINOP; ++Op) { 285 TsanAtomicRMW[Op][i] = nullptr; 286 const char *NamePart = nullptr; 287 if (Op == AtomicRMWInst::Xchg) 288 NamePart = "_exchange"; 289 else if (Op == AtomicRMWInst::Add) 290 NamePart = "_fetch_add"; 291 else if (Op == AtomicRMWInst::Sub) 292 NamePart = "_fetch_sub"; 293 else if (Op == AtomicRMWInst::And) 294 NamePart = "_fetch_and"; 295 else if (Op == AtomicRMWInst::Or) 296 NamePart = "_fetch_or"; 297 else if (Op == AtomicRMWInst::Xor) 298 NamePart = "_fetch_xor"; 299 else if (Op == AtomicRMWInst::Nand) 300 NamePart = "_fetch_nand"; 301 else 302 continue; 303 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 304 { 305 AttributeList AL = Attr; 306 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 307 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 308 TsanAtomicRMW[Op][i] = 309 M.getOrInsertFunction(RMWName, AL, Ty, PtrTy, Ty, OrdTy); 310 } 311 } 312 313 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 314 "_compare_exchange_val"); 315 { 316 AttributeList AL = Attr; 317 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 318 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 319 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 320 AL = AL.addParamAttribute(M.getContext(), 4, Attribute::ZExt); 321 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, AL, Ty, PtrTy, Ty, 322 Ty, OrdTy, OrdTy); 323 } 324 } 325 TsanVptrUpdate = 326 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 327 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 328 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, 329 IRB.getVoidTy(), IRB.getInt8PtrTy()); 330 { 331 AttributeList AL = Attr; 332 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 333 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", 334 AL, IRB.getVoidTy(), OrdTy); 335 } 336 { 337 AttributeList AL = Attr; 338 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 339 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", 340 AL, IRB.getVoidTy(), OrdTy); 341 } 342 343 MemmoveFn = 344 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), 345 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 346 MemcpyFn = 347 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), 348 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 349 MemsetFn = 350 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), 351 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 352 } 353 354 static bool isVtableAccess(Instruction *I) { 355 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 356 return Tag->isTBAAVtableAccess(); 357 return false; 358 } 359 360 // Do not instrument known races/"benign races" that come from compiler 361 // instrumentatin. The user has no way of suppressing them. 362 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 363 // Peel off GEPs and BitCasts. 364 Addr = Addr->stripInBoundsOffsets(); 365 366 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 367 if (GV->hasSection()) { 368 StringRef SectionName = GV->getSection(); 369 // Check if the global is in the PGO counters section. 370 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 371 if (SectionName.endswith( 372 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 373 return false; 374 } 375 376 // Check if the global is private gcov data. 377 if (GV->getName().startswith("__llvm_gcov") || 378 GV->getName().startswith("__llvm_gcda")) 379 return false; 380 } 381 382 // Do not instrument acesses from different address spaces; we cannot deal 383 // with them. 384 if (Addr) { 385 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 386 if (PtrTy->getPointerAddressSpace() != 0) 387 return false; 388 } 389 390 return true; 391 } 392 393 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 394 // If this is a GEP, just analyze its pointer operand. 395 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 396 Addr = GEP->getPointerOperand(); 397 398 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 399 if (GV->isConstant()) { 400 // Reads from constant globals can not race with any writes. 401 NumOmittedReadsFromConstantGlobals++; 402 return true; 403 } 404 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 405 if (isVtableAccess(L)) { 406 // Reads from a vtable pointer can not race with any writes. 407 NumOmittedReadsFromVtable++; 408 return true; 409 } 410 } 411 return false; 412 } 413 414 // Instrumenting some of the accesses may be proven redundant. 415 // Currently handled: 416 // - read-before-write (within same BB, no calls between) 417 // - not captured variables 418 // 419 // We do not handle some of the patterns that should not survive 420 // after the classic compiler optimizations. 421 // E.g. two reads from the same temp should be eliminated by CSE, 422 // two writes should be eliminated by DSE, etc. 423 // 424 // 'Local' is a vector of insns within the same BB (no calls between). 425 // 'All' is a vector of insns that will be instrumented. 426 void ThreadSanitizer::chooseInstructionsToInstrument( 427 SmallVectorImpl<Instruction *> &Local, 428 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { 429 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All 430 // Iterate from the end. 431 for (Instruction *I : reverse(Local)) { 432 const bool IsWrite = isa<StoreInst>(*I); 433 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() 434 : cast<LoadInst>(I)->getPointerOperand(); 435 436 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 437 continue; 438 439 if (!IsWrite) { 440 const auto WriteEntry = WriteTargets.find(Addr); 441 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) { 442 auto &WI = All[WriteEntry->second]; 443 // If we distinguish volatile accesses and if either the read or write 444 // is volatile, do not omit any instrumentation. 445 const bool AnyVolatile = 446 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() || 447 cast<StoreInst>(WI.Inst)->isVolatile()); 448 if (!AnyVolatile) { 449 // We will write to this temp, so no reason to analyze the read. 450 // Mark the write instruction as compound. 451 WI.Flags |= InstructionInfo::kCompoundRW; 452 NumOmittedReadsBeforeWrite++; 453 continue; 454 } 455 } 456 457 if (addrPointsToConstantData(Addr)) { 458 // Addr points to some constant data -- it can not race with any writes. 459 continue; 460 } 461 } 462 463 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 464 !PointerMayBeCaptured(Addr, true, true)) { 465 // The variable is addressable but not captured, so it cannot be 466 // referenced from a different thread and participate in a data race 467 // (see llvm/Analysis/CaptureTracking.h for details). 468 NumOmittedNonCaptured++; 469 continue; 470 } 471 472 // Instrument this instruction. 473 All.emplace_back(I); 474 if (IsWrite) { 475 // For read-before-write and compound instrumentation we only need one 476 // write target, and we can override any previous entry if it exists. 477 WriteTargets[Addr] = All.size() - 1; 478 } 479 } 480 Local.clear(); 481 } 482 483 static bool isTsanAtomic(const Instruction *I) { 484 // TODO: Ask TTI whether synchronization scope is between threads. 485 auto SSID = getAtomicSyncScopeID(I); 486 if (!SSID) 487 return false; 488 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 489 return SSID.value() != SyncScope::SingleThread; 490 return true; 491 } 492 493 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 494 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI()); 495 IRB.CreateCall(TsanIgnoreBegin); 496 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 497 while (IRBuilder<> *AtExit = EE.Next()) { 498 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F); 499 AtExit->CreateCall(TsanIgnoreEnd); 500 } 501 } 502 503 bool ThreadSanitizer::sanitizeFunction(Function &F, 504 const TargetLibraryInfo &TLI) { 505 // This is required to prevent instrumenting call to __tsan_init from within 506 // the module constructor. 507 if (F.getName() == kTsanModuleCtorName) 508 return false; 509 // Naked functions can not have prologue/epilogue 510 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at 511 // all. 512 if (F.hasFnAttribute(Attribute::Naked)) 513 return false; 514 515 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of 516 // instrumentation. 517 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 518 return false; 519 520 initialize(*F.getParent()); 521 SmallVector<InstructionInfo, 8> AllLoadsAndStores; 522 SmallVector<Instruction*, 8> LocalLoadsAndStores; 523 SmallVector<Instruction*, 8> AtomicAccesses; 524 SmallVector<Instruction*, 8> MemIntrinCalls; 525 bool Res = false; 526 bool HasCalls = false; 527 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 528 const DataLayout &DL = F.getParent()->getDataLayout(); 529 530 // Traverse all instructions, collect loads/stores/returns, check for calls. 531 for (auto &BB : F) { 532 for (auto &Inst : BB) { 533 if (isTsanAtomic(&Inst)) 534 AtomicAccesses.push_back(&Inst); 535 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 536 LocalLoadsAndStores.push_back(&Inst); 537 else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) || 538 isa<InvokeInst>(Inst)) { 539 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 540 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); 541 if (isa<MemIntrinsic>(Inst)) 542 MemIntrinCalls.push_back(&Inst); 543 HasCalls = true; 544 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 545 DL); 546 } 547 } 548 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 549 } 550 551 // We have collected all loads and stores. 552 // FIXME: many of these accesses do not need to be checked for races 553 // (e.g. variables that do not escape, etc). 554 555 // Instrument memory accesses only if we want to report bugs in the function. 556 if (ClInstrumentMemoryAccesses && SanitizeFunction) 557 for (const auto &II : AllLoadsAndStores) { 558 Res |= instrumentLoadOrStore(II, DL); 559 } 560 561 // Instrument atomic memory accesses in any case (they can be used to 562 // implement synchronization). 563 if (ClInstrumentAtomics) 564 for (auto Inst : AtomicAccesses) { 565 Res |= instrumentAtomic(Inst, DL); 566 } 567 568 if (ClInstrumentMemIntrinsics && SanitizeFunction) 569 for (auto Inst : MemIntrinCalls) { 570 Res |= instrumentMemIntrinsic(Inst); 571 } 572 573 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 574 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 575 if (HasCalls) 576 InsertRuntimeIgnores(F); 577 } 578 579 // Instrument function entry/exit points if there were instrumented accesses. 580 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 581 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI()); 582 Value *ReturnAddress = IRB.CreateCall( 583 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 584 IRB.getInt32(0)); 585 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 586 587 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 588 while (IRBuilder<> *AtExit = EE.Next()) { 589 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F); 590 AtExit->CreateCall(TsanFuncExit, {}); 591 } 592 Res = true; 593 } 594 return Res; 595 } 596 597 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, 598 const DataLayout &DL) { 599 InstrumentationIRBuilder IRB(II.Inst); 600 const bool IsWrite = isa<StoreInst>(*II.Inst); 601 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand() 602 : cast<LoadInst>(II.Inst)->getPointerOperand(); 603 Type *OrigTy = getLoadStoreType(II.Inst); 604 605 // swifterror memory addresses are mem2reg promoted by instruction selection. 606 // As such they cannot have regular uses like an instrumentation function and 607 // it makes no sense to track them as memory. 608 if (Addr->isSwiftError()) 609 return false; 610 611 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 612 if (Idx < 0) 613 return false; 614 if (IsWrite && isVtableAccess(II.Inst)) { 615 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n"); 616 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand(); 617 // StoredValue may be a vector type if we are storing several vptrs at once. 618 // In this case, just take the first element of the vector since this is 619 // enough to find vptr races. 620 if (isa<VectorType>(StoredValue->getType())) 621 StoredValue = IRB.CreateExtractElement( 622 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 623 if (StoredValue->getType()->isIntegerTy()) 624 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 625 // Call TsanVptrUpdate. 626 IRB.CreateCall(TsanVptrUpdate, 627 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 628 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 629 NumInstrumentedVtableWrites++; 630 return true; 631 } 632 if (!IsWrite && isVtableAccess(II.Inst)) { 633 IRB.CreateCall(TsanVptrLoad, 634 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 635 NumInstrumentedVtableReads++; 636 return true; 637 } 638 639 const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign() 640 : cast<LoadInst>(II.Inst)->getAlign(); 641 const bool IsCompoundRW = 642 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW); 643 const bool IsVolatile = ClDistinguishVolatile && 644 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile() 645 : cast<LoadInst>(II.Inst)->isVolatile()); 646 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!"); 647 648 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 649 FunctionCallee OnAccessFunc = nullptr; 650 if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) { 651 if (IsCompoundRW) 652 OnAccessFunc = TsanCompoundRW[Idx]; 653 else if (IsVolatile) 654 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; 655 else 656 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 657 } else { 658 if (IsCompoundRW) 659 OnAccessFunc = TsanUnalignedCompoundRW[Idx]; 660 else if (IsVolatile) 661 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] 662 : TsanUnalignedVolatileRead[Idx]; 663 else 664 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 665 } 666 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 667 if (IsCompoundRW || IsWrite) 668 NumInstrumentedWrites++; 669 if (IsCompoundRW || !IsWrite) 670 NumInstrumentedReads++; 671 return true; 672 } 673 674 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 675 uint32_t v = 0; 676 switch (ord) { 677 case AtomicOrdering::NotAtomic: 678 llvm_unreachable("unexpected atomic ordering!"); 679 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; 680 case AtomicOrdering::Monotonic: v = 0; break; 681 // Not specified yet: 682 // case AtomicOrdering::Consume: v = 1; break; 683 case AtomicOrdering::Acquire: v = 2; break; 684 case AtomicOrdering::Release: v = 3; break; 685 case AtomicOrdering::AcquireRelease: v = 4; break; 686 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 687 } 688 return IRB->getInt32(v); 689 } 690 691 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 692 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 693 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 694 // instead we simply replace them with regular function calls, which are then 695 // intercepted by the run-time. 696 // Since tsan is running after everyone else, the calls should not be 697 // replaced back with intrinsics. If that becomes wrong at some point, 698 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 699 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 700 IRBuilder<> IRB(I); 701 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 702 IRB.CreateCall( 703 MemsetFn, 704 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 705 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 706 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 707 I->eraseFromParent(); 708 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 709 IRB.CreateCall( 710 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 711 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 712 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 713 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 714 I->eraseFromParent(); 715 } 716 return false; 717 } 718 719 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 720 // standards. For background see C++11 standard. A slightly older, publicly 721 // available draft of the standard (not entirely up-to-date, but close enough 722 // for casual browsing) is available here: 723 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 724 // The following page contains more background information: 725 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 726 727 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 728 InstrumentationIRBuilder IRB(I); 729 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 730 Value *Addr = LI->getPointerOperand(); 731 Type *OrigTy = LI->getType(); 732 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 733 if (Idx < 0) 734 return false; 735 const unsigned ByteSize = 1U << Idx; 736 const unsigned BitSize = ByteSize * 8; 737 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 738 Type *PtrTy = Ty->getPointerTo(); 739 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 740 createOrdering(&IRB, LI->getOrdering())}; 741 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 742 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 743 I->replaceAllUsesWith(Cast); 744 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 745 Value *Addr = SI->getPointerOperand(); 746 int Idx = 747 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL); 748 if (Idx < 0) 749 return false; 750 const unsigned ByteSize = 1U << Idx; 751 const unsigned BitSize = ByteSize * 8; 752 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 753 Type *PtrTy = Ty->getPointerTo(); 754 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 755 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 756 createOrdering(&IRB, SI->getOrdering())}; 757 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 758 ReplaceInstWithInst(I, C); 759 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 760 Value *Addr = RMWI->getPointerOperand(); 761 int Idx = 762 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL); 763 if (Idx < 0) 764 return false; 765 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 766 if (!F) 767 return false; 768 const unsigned ByteSize = 1U << Idx; 769 const unsigned BitSize = ByteSize * 8; 770 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 771 Type *PtrTy = Ty->getPointerTo(); 772 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 773 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 774 createOrdering(&IRB, RMWI->getOrdering())}; 775 CallInst *C = CallInst::Create(F, Args); 776 ReplaceInstWithInst(I, C); 777 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 778 Value *Addr = CASI->getPointerOperand(); 779 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 780 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL); 781 if (Idx < 0) 782 return false; 783 const unsigned ByteSize = 1U << Idx; 784 const unsigned BitSize = ByteSize * 8; 785 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 786 Type *PtrTy = Ty->getPointerTo(); 787 Value *CmpOperand = 788 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 789 Value *NewOperand = 790 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 791 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 792 CmpOperand, 793 NewOperand, 794 createOrdering(&IRB, CASI->getSuccessOrdering()), 795 createOrdering(&IRB, CASI->getFailureOrdering())}; 796 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 797 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 798 Value *OldVal = C; 799 if (Ty != OrigOldValTy) { 800 // The value is a pointer, so we need to cast the return value. 801 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 802 } 803 804 Value *Res = 805 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 806 Res = IRB.CreateInsertValue(Res, Success, 1); 807 808 I->replaceAllUsesWith(Res); 809 I->eraseFromParent(); 810 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 811 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 812 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread 813 ? TsanAtomicSignalFence 814 : TsanAtomicThreadFence; 815 CallInst *C = CallInst::Create(F, Args); 816 ReplaceInstWithInst(I, C); 817 } 818 return true; 819 } 820 821 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, 822 const DataLayout &DL) { 823 assert(OrigTy->isSized()); 824 assert( 825 cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy)); 826 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 827 if (TypeSize != 8 && TypeSize != 16 && 828 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 829 NumAccessesWithBadSize++; 830 // Ignore all unusual sizes. 831 return -1; 832 } 833 size_t Idx = countTrailingZeros(TypeSize / 8); 834 assert(Idx < kNumberOfAccessSizes); 835 return Idx; 836 } 837