xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===- PoisonChecking.cpp - -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit.  That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef.  There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language.   If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
16 //
17 // The rewritten semantics of each instruction will include the following
18 // components:
19 //
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 //    state of each input to whether the dynamic output of the instruction
23 //    produces poison.
24 // 3) A creation rule which validates any poison producing flags on the
25 //    instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 //    execute undefined behavior given the poison state of it's inputs.
28 //
29 // This is a must analysis based transform; that is, the resulting code may
30 // produce a false negative result (not report UB when actually exists
31 // according to the LangRef spec), but should never produce a false positive
32 // (report UB where it doesn't exist).
33 //
34 // Use cases for this pass include:
35 // - Understanding (and testing!) the implications of the definition of poison
36 //   from the LangRef.
37 // - Validating the output of a IR fuzzer to ensure that all programs produced
38 //   are well defined on the specific input used.
39 // - Finding/confirming poison specific miscompiles by checking the poison
40 //   status of an input/IR pair is the same before and after an optimization
41 //   transform.
42 // - Checking that a bugpoint reduction does not introduce UB which didn't
43 //   exist in the original program being reduced.
44 //
45 // The major sources of inaccuracy are currently:
46 // - Most validation rules not yet implemented for instructions with poison
47 //   relavant flags.  At the moment, only nsw/nuw on add/sub are supported.
48 // - UB which is control dependent on a branch on poison is not yet
49 //   reported. Currently, only data flow dependence is modeled.
50 // - Poison which is propagated through memory is not modeled.  As such,
51 //   storing poison to memory and then reloading it will cause a false negative
52 //   as we consider the reloaded value to not be poisoned.
53 // - Poison propagation across function boundaries is not modeled.  At the
54 //   moment, all arguments and return values are assumed not to be poison.
55 // - Undef is not modeled.  In particular, the optimizer's freedom to pick
56 //   concrete values for undef bits so as to maximize potential for producing
57 //   poison is not modeled.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/Support/CommandLine.h"
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "poison-checking"
71 
72 static cl::opt<bool>
73 LocalCheck("poison-checking-function-local",
74            cl::init(false),
75            cl::desc("Check that returns are non-poison (for testing)"));
76 
77 
78 static bool isConstantFalse(Value* V) {
79   assert(V->getType()->isIntegerTy(1));
80   if (auto *CI = dyn_cast<ConstantInt>(V))
81     return CI->isZero();
82   return false;
83 }
84 
85 static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
86   if (Ops.size() == 0)
87     return B.getFalse();
88   unsigned i = 0;
89   for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
90   if (i == Ops.size())
91     return B.getFalse();
92   Value *Accum = Ops[i++];
93   for (Value *Op : llvm::drop_begin(Ops, i))
94     if (!isConstantFalse(Op))
95       Accum = B.CreateOr(Accum, Op);
96   return Accum;
97 }
98 
99 static void generateCreationChecksForBinOp(Instruction &I,
100                                            SmallVectorImpl<Value*> &Checks) {
101   assert(isa<BinaryOperator>(I));
102 
103   IRBuilder<> B(&I);
104   Value *LHS = I.getOperand(0);
105   Value *RHS = I.getOperand(1);
106   switch (I.getOpcode()) {
107   default:
108     return;
109   case Instruction::Add: {
110     if (I.hasNoSignedWrap()) {
111       auto *OverflowOp =
112         B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
113       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
114     }
115     if (I.hasNoUnsignedWrap()) {
116       auto *OverflowOp =
117         B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
118       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
119     }
120     break;
121   }
122   case Instruction::Sub: {
123     if (I.hasNoSignedWrap()) {
124       auto *OverflowOp =
125         B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
126       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
127     }
128     if (I.hasNoUnsignedWrap()) {
129       auto *OverflowOp =
130         B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
131       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
132     }
133     break;
134   }
135   case Instruction::Mul: {
136     if (I.hasNoSignedWrap()) {
137       auto *OverflowOp =
138         B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
139       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
140     }
141     if (I.hasNoUnsignedWrap()) {
142       auto *OverflowOp =
143         B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
144       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
145     }
146     break;
147   }
148   case Instruction::UDiv: {
149     if (I.isExact()) {
150       auto *Check =
151         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
152                      ConstantInt::get(LHS->getType(), 0));
153       Checks.push_back(Check);
154     }
155     break;
156   }
157   case Instruction::SDiv: {
158     if (I.isExact()) {
159       auto *Check =
160         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
161                      ConstantInt::get(LHS->getType(), 0));
162       Checks.push_back(Check);
163     }
164     break;
165   }
166   case Instruction::AShr:
167   case Instruction::LShr:
168   case Instruction::Shl: {
169     Value *ShiftCheck =
170       B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
171                    ConstantInt::get(RHS->getType(),
172                                     LHS->getType()->getScalarSizeInBits()));
173     Checks.push_back(ShiftCheck);
174     break;
175   }
176   };
177 }
178 
179 /// Given an instruction which can produce poison on non-poison inputs
180 /// (i.e. canCreatePoison returns true), generate runtime checks to produce
181 /// boolean indicators of when poison would result.
182 static void generateCreationChecks(Instruction &I,
183                                    SmallVectorImpl<Value*> &Checks) {
184   IRBuilder<> B(&I);
185   if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
186     generateCreationChecksForBinOp(I, Checks);
187 
188   // Handle non-binops separately
189   switch (I.getOpcode()) {
190   default:
191     // Note there are a couple of missing cases here, once implemented, this
192     // should become an llvm_unreachable.
193     break;
194   case Instruction::ExtractElement: {
195     Value *Vec = I.getOperand(0);
196     auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
197     if (!VecVTy)
198       break;
199     Value *Idx = I.getOperand(1);
200     unsigned NumElts = VecVTy->getNumElements();
201     Value *Check =
202       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
203                    ConstantInt::get(Idx->getType(), NumElts));
204     Checks.push_back(Check);
205     break;
206   }
207   case Instruction::InsertElement: {
208     Value *Vec = I.getOperand(0);
209     auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
210     if (!VecVTy)
211       break;
212     Value *Idx = I.getOperand(2);
213     unsigned NumElts = VecVTy->getNumElements();
214     Value *Check =
215       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
216                    ConstantInt::get(Idx->getType(), NumElts));
217     Checks.push_back(Check);
218     break;
219   }
220   };
221 }
222 
223 static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
224   auto Itr = ValToPoison.find(V);
225   if (Itr != ValToPoison.end())
226     return Itr->second;
227   if (isa<Constant>(V)) {
228     return ConstantInt::getFalse(V->getContext());
229   }
230   // Return false for unknwon values - this implements a non-strict mode where
231   // unhandled IR constructs are simply considered to never produce poison.  At
232   // some point in the future, we probably want a "strict mode" for testing if
233   // nothing else.
234   return ConstantInt::getFalse(V->getContext());
235 }
236 
237 static void CreateAssert(IRBuilder<> &B, Value *Cond) {
238   assert(Cond->getType()->isIntegerTy(1));
239   if (auto *CI = dyn_cast<ConstantInt>(Cond))
240     if (CI->isAllOnesValue())
241       return;
242 
243   Module *M = B.GetInsertBlock()->getModule();
244   M->getOrInsertFunction("__poison_checker_assert",
245                          Type::getVoidTy(M->getContext()),
246                          Type::getInt1Ty(M->getContext()));
247   Function *TrapFunc = M->getFunction("__poison_checker_assert");
248   B.CreateCall(TrapFunc, Cond);
249 }
250 
251 static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
252   assert(Cond->getType()->isIntegerTy(1));
253   CreateAssert(B, B.CreateNot(Cond));
254 }
255 
256 static bool rewrite(Function &F) {
257   auto * const Int1Ty = Type::getInt1Ty(F.getContext());
258 
259   DenseMap<Value *, Value *> ValToPoison;
260 
261   for (BasicBlock &BB : F)
262     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
263       auto *OldPHI = cast<PHINode>(&*I);
264       auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues());
265       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
266         NewPHI->addIncoming(UndefValue::get(Int1Ty),
267                             OldPHI->getIncomingBlock(i));
268       NewPHI->insertBefore(OldPHI);
269       ValToPoison[OldPHI] = NewPHI;
270     }
271 
272   for (BasicBlock &BB : F)
273     for (Instruction &I : BB) {
274       if (isa<PHINode>(I)) continue;
275 
276       IRBuilder<> B(cast<Instruction>(&I));
277 
278       // Note: There are many more sources of documented UB, but this pass only
279       // attempts to find UB triggered by propagation of poison.
280       SmallVector<const Value *, 4> NonPoisonOps;
281       SmallPtrSet<const Value *, 4> SeenNonPoisonOps;
282       getGuaranteedNonPoisonOps(&I, NonPoisonOps);
283       for (const Value *Op : NonPoisonOps)
284         if (SeenNonPoisonOps.insert(Op).second)
285           CreateAssertNot(B,
286                           getPoisonFor(ValToPoison, const_cast<Value *>(Op)));
287 
288       if (LocalCheck)
289         if (auto *RI = dyn_cast<ReturnInst>(&I))
290           if (RI->getNumOperands() != 0) {
291             Value *Op = RI->getOperand(0);
292             CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
293           }
294 
295       SmallVector<Value*, 4> Checks;
296       for (const Use &U : I.operands()) {
297         if (ValToPoison.count(U) && propagatesPoison(U))
298           Checks.push_back(getPoisonFor(ValToPoison, U));
299       }
300 
301       if (canCreatePoison(cast<Operator>(&I)))
302         generateCreationChecks(I, Checks);
303       ValToPoison[&I] = buildOrChain(B, Checks);
304     }
305 
306   for (BasicBlock &BB : F)
307     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
308       auto *OldPHI = cast<PHINode>(&*I);
309       if (!ValToPoison.count(OldPHI))
310         continue; // skip the newly inserted phis
311       auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
312       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
313         auto *OldVal = OldPHI->getIncomingValue(i);
314         NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
315       }
316     }
317   return true;
318 }
319 
320 
321 PreservedAnalyses PoisonCheckingPass::run(Module &M,
322                                           ModuleAnalysisManager &AM) {
323   bool Changed = false;
324   for (auto &F : M)
325     Changed |= rewrite(F);
326 
327   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
328 }
329 
330 PreservedAnalyses PoisonCheckingPass::run(Function &F,
331                                           FunctionAnalysisManager &AM) {
332   return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
333 }
334 
335 /* Major TODO Items:
336    - Control dependent poison UB
337    - Strict mode - (i.e. must analyze every operand)
338      - Poison through memory
339      - Function ABIs
340      - Full coverage of intrinsics, etc.. (ouch)
341 
342    Instructions w/Unclear Semantics:
343    - shufflevector - It would seem reasonable for an out of bounds mask element
344      to produce poison, but the LangRef does not state.
345    - all binary ops w/vector operands - The likely interpretation would be that
346      any element overflowing should produce poison for the entire result, but
347      the LangRef does not state.
348    - Floating point binary ops w/fmf flags other than (nnan, noinfs).  It seems
349      strange that only certian flags should be documented as producing poison.
350 
351    Cases of clear poison semantics not yet implemented:
352    - Exact flags on ashr/lshr produce poison
353    - NSW/NUW flags on shl produce poison
354    - Inbounds flag on getelementptr produce poison
355    - fptosi/fptoui (out of bounds input) produce poison
356    - Scalable vector types for insertelement/extractelement
357    - Floating point binary ops w/fmf nnan/noinfs flags produce poison
358  */
359