xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- PoisonChecking.cpp - -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit.  That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef.  There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language.   If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
16 //
17 // The rewritten semantics of each instruction will include the following
18 // components:
19 //
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 //    state of each input to whether the dynamic output of the instruction
23 //    produces poison.
24 // 3) A creation rule which validates any poison producing flags on the
25 //    instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 //    execute undefined behavior given the poison state of it's inputs.
28 //
29 // This is a must analysis based transform; that is, the resulting code may
30 // produce a false negative result (not report UB when actually exists
31 // according to the LangRef spec), but should never produce a false positive
32 // (report UB where it doesn't exist).
33 //
34 // Use cases for this pass include:
35 // - Understanding (and testing!) the implications of the definition of poison
36 //   from the LangRef.
37 // - Validating the output of a IR fuzzer to ensure that all programs produced
38 //   are well defined on the specific input used.
39 // - Finding/confirming poison specific miscompiles by checking the poison
40 //   status of an input/IR pair is the same before and after an optimization
41 //   transform.
42 // - Checking that a bugpoint reduction does not introduce UB which didn't
43 //   exist in the original program being reduced.
44 //
45 // The major sources of inaccuracy are currently:
46 // - Most validation rules not yet implemented for instructions with poison
47 //   relavant flags.  At the moment, only nsw/nuw on add/sub are supported.
48 // - UB which is control dependent on a branch on poison is not yet
49 //   reported. Currently, only data flow dependence is modeled.
50 // - Poison which is propagated through memory is not modeled.  As such,
51 //   storing poison to memory and then reloading it will cause a false negative
52 //   as we consider the reloaded value to not be poisoned.
53 // - Poison propagation across function boundaries is not modeled.  At the
54 //   moment, all arguments and return values are assumed not to be poison.
55 // - Undef is not modeled.  In particular, the optimizer's freedom to pick
56 //   concrete values for undef bits so as to maximize potential for producing
57 //   poison is not modeled.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/Support/CommandLine.h"
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "poison-checking"
70 
71 static cl::opt<bool>
72 LocalCheck("poison-checking-function-local",
73            cl::init(false),
74            cl::desc("Check that returns are non-poison (for testing)"));
75 
76 
77 static bool isConstantFalse(Value* V) {
78   assert(V->getType()->isIntegerTy(1));
79   if (auto *CI = dyn_cast<ConstantInt>(V))
80     return CI->isZero();
81   return false;
82 }
83 
84 static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
85   if (Ops.size() == 0)
86     return B.getFalse();
87   unsigned i = 0;
88   for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
89   if (i == Ops.size())
90     return B.getFalse();
91   Value *Accum = Ops[i++];
92   for (Value *Op : llvm::drop_begin(Ops, i))
93     if (!isConstantFalse(Op))
94       Accum = B.CreateOr(Accum, Op);
95   return Accum;
96 }
97 
98 static void generateCreationChecksForBinOp(Instruction &I,
99                                            SmallVectorImpl<Value*> &Checks) {
100   assert(isa<BinaryOperator>(I));
101 
102   IRBuilder<> B(&I);
103   Value *LHS = I.getOperand(0);
104   Value *RHS = I.getOperand(1);
105   switch (I.getOpcode()) {
106   default:
107     return;
108   case Instruction::Add: {
109     if (I.hasNoSignedWrap()) {
110       auto *OverflowOp =
111         B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
112       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
113     }
114     if (I.hasNoUnsignedWrap()) {
115       auto *OverflowOp =
116         B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
117       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
118     }
119     break;
120   }
121   case Instruction::Sub: {
122     if (I.hasNoSignedWrap()) {
123       auto *OverflowOp =
124         B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
125       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
126     }
127     if (I.hasNoUnsignedWrap()) {
128       auto *OverflowOp =
129         B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
130       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
131     }
132     break;
133   }
134   case Instruction::Mul: {
135     if (I.hasNoSignedWrap()) {
136       auto *OverflowOp =
137         B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
138       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
139     }
140     if (I.hasNoUnsignedWrap()) {
141       auto *OverflowOp =
142         B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
143       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
144     }
145     break;
146   }
147   case Instruction::UDiv: {
148     if (I.isExact()) {
149       auto *Check =
150         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
151                      ConstantInt::get(LHS->getType(), 0));
152       Checks.push_back(Check);
153     }
154     break;
155   }
156   case Instruction::SDiv: {
157     if (I.isExact()) {
158       auto *Check =
159         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
160                      ConstantInt::get(LHS->getType(), 0));
161       Checks.push_back(Check);
162     }
163     break;
164   }
165   case Instruction::AShr:
166   case Instruction::LShr:
167   case Instruction::Shl: {
168     Value *ShiftCheck =
169       B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
170                    ConstantInt::get(RHS->getType(),
171                                     LHS->getType()->getScalarSizeInBits()));
172     Checks.push_back(ShiftCheck);
173     break;
174   }
175   };
176 }
177 
178 /// Given an instruction which can produce poison on non-poison inputs
179 /// (i.e. canCreatePoison returns true), generate runtime checks to produce
180 /// boolean indicators of when poison would result.
181 static void generateCreationChecks(Instruction &I,
182                                    SmallVectorImpl<Value*> &Checks) {
183   IRBuilder<> B(&I);
184   if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
185     generateCreationChecksForBinOp(I, Checks);
186 
187   // Handle non-binops separately
188   switch (I.getOpcode()) {
189   default:
190     // Note there are a couple of missing cases here, once implemented, this
191     // should become an llvm_unreachable.
192     break;
193   case Instruction::ExtractElement: {
194     Value *Vec = I.getOperand(0);
195     auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
196     if (!VecVTy)
197       break;
198     Value *Idx = I.getOperand(1);
199     unsigned NumElts = VecVTy->getNumElements();
200     Value *Check =
201       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
202                    ConstantInt::get(Idx->getType(), NumElts));
203     Checks.push_back(Check);
204     break;
205   }
206   case Instruction::InsertElement: {
207     Value *Vec = I.getOperand(0);
208     auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
209     if (!VecVTy)
210       break;
211     Value *Idx = I.getOperand(2);
212     unsigned NumElts = VecVTy->getNumElements();
213     Value *Check =
214       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
215                    ConstantInt::get(Idx->getType(), NumElts));
216     Checks.push_back(Check);
217     break;
218   }
219   };
220 }
221 
222 static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
223   auto Itr = ValToPoison.find(V);
224   if (Itr != ValToPoison.end())
225     return Itr->second;
226   if (isa<Constant>(V)) {
227     return ConstantInt::getFalse(V->getContext());
228   }
229   // Return false for unknwon values - this implements a non-strict mode where
230   // unhandled IR constructs are simply considered to never produce poison.  At
231   // some point in the future, we probably want a "strict mode" for testing if
232   // nothing else.
233   return ConstantInt::getFalse(V->getContext());
234 }
235 
236 static void CreateAssert(IRBuilder<> &B, Value *Cond) {
237   assert(Cond->getType()->isIntegerTy(1));
238   if (auto *CI = dyn_cast<ConstantInt>(Cond))
239     if (CI->isAllOnesValue())
240       return;
241 
242   Module *M = B.GetInsertBlock()->getModule();
243   M->getOrInsertFunction("__poison_checker_assert",
244                          Type::getVoidTy(M->getContext()),
245                          Type::getInt1Ty(M->getContext()));
246   Function *TrapFunc = M->getFunction("__poison_checker_assert");
247   B.CreateCall(TrapFunc, Cond);
248 }
249 
250 static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
251   assert(Cond->getType()->isIntegerTy(1));
252   CreateAssert(B, B.CreateNot(Cond));
253 }
254 
255 static bool rewrite(Function &F) {
256   auto * const Int1Ty = Type::getInt1Ty(F.getContext());
257 
258   DenseMap<Value *, Value *> ValToPoison;
259 
260   for (BasicBlock &BB : F)
261     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
262       auto *OldPHI = cast<PHINode>(&*I);
263       auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues());
264       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
265         NewPHI->addIncoming(UndefValue::get(Int1Ty),
266                             OldPHI->getIncomingBlock(i));
267       NewPHI->insertBefore(OldPHI);
268       ValToPoison[OldPHI] = NewPHI;
269     }
270 
271   for (BasicBlock &BB : F)
272     for (Instruction &I : BB) {
273       if (isa<PHINode>(I)) continue;
274 
275       IRBuilder<> B(cast<Instruction>(&I));
276 
277       // Note: There are many more sources of documented UB, but this pass only
278       // attempts to find UB triggered by propagation of poison.
279       SmallVector<const Value *, 4> NonPoisonOps;
280       SmallPtrSet<const Value *, 4> SeenNonPoisonOps;
281       getGuaranteedNonPoisonOps(&I, NonPoisonOps);
282       for (const Value *Op : NonPoisonOps)
283         if (SeenNonPoisonOps.insert(Op).second)
284           CreateAssertNot(B,
285                           getPoisonFor(ValToPoison, const_cast<Value *>(Op)));
286 
287       if (LocalCheck)
288         if (auto *RI = dyn_cast<ReturnInst>(&I))
289           if (RI->getNumOperands() != 0) {
290             Value *Op = RI->getOperand(0);
291             CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
292           }
293 
294       SmallVector<Value*, 4> Checks;
295       for (const Use &U : I.operands()) {
296         if (ValToPoison.count(U) && propagatesPoison(U))
297           Checks.push_back(getPoisonFor(ValToPoison, U));
298       }
299 
300       if (canCreatePoison(cast<Operator>(&I)))
301         generateCreationChecks(I, Checks);
302       ValToPoison[&I] = buildOrChain(B, Checks);
303     }
304 
305   for (BasicBlock &BB : F)
306     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
307       auto *OldPHI = cast<PHINode>(&*I);
308       if (!ValToPoison.count(OldPHI))
309         continue; // skip the newly inserted phis
310       auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
311       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
312         auto *OldVal = OldPHI->getIncomingValue(i);
313         NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
314       }
315     }
316   return true;
317 }
318 
319 
320 PreservedAnalyses PoisonCheckingPass::run(Module &M,
321                                           ModuleAnalysisManager &AM) {
322   bool Changed = false;
323   for (auto &F : M)
324     Changed |= rewrite(F);
325 
326   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
327 }
328 
329 PreservedAnalyses PoisonCheckingPass::run(Function &F,
330                                           FunctionAnalysisManager &AM) {
331   return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
332 }
333 
334 /* Major TODO Items:
335    - Control dependent poison UB
336    - Strict mode - (i.e. must analyze every operand)
337      - Poison through memory
338      - Function ABIs
339      - Full coverage of intrinsics, etc.. (ouch)
340 
341    Instructions w/Unclear Semantics:
342    - shufflevector - It would seem reasonable for an out of bounds mask element
343      to produce poison, but the LangRef does not state.
344    - all binary ops w/vector operands - The likely interpretation would be that
345      any element overflowing should produce poison for the entire result, but
346      the LangRef does not state.
347    - Floating point binary ops w/fmf flags other than (nnan, noinfs).  It seems
348      strange that only certian flags should be documented as producing poison.
349 
350    Cases of clear poison semantics not yet implemented:
351    - Exact flags on ashr/lshr produce poison
352    - NSW/NUW flags on shl produce poison
353    - Inbounds flag on getelementptr produce poison
354    - fptosi/fptoui (out of bounds input) produce poison
355    - Scalable vector types for insertelement/extractelement
356    - Floating point binary ops w/fmf nnan/noinfs flags produce poison
357  */
358