xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/PGOInstrumentation.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 //   [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 //   for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 //   Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
19 //
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
24 //
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
32 //
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
40 //
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "ValueProfileCollector.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Twine.h"
59 #include "llvm/ADT/iterator.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/BlockFrequencyInfo.h"
62 #include "llvm/Analysis/BranchProbabilityInfo.h"
63 #include "llvm/Analysis/CFG.h"
64 #include "llvm/Analysis/LoopInfo.h"
65 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
66 #include "llvm/Analysis/ProfileSummaryInfo.h"
67 #include "llvm/Analysis/TargetLibraryInfo.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/Comdat.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/EHPersonalities.h"
77 #include "llvm/IR/Function.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalValue.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/IRBuilder.h"
82 #include "llvm/IR/InstVisitor.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/MDBuilder.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/PassManager.h"
92 #include "llvm/IR/ProfDataUtils.h"
93 #include "llvm/IR/ProfileSummary.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/ProfileData/InstrProf.h"
97 #include "llvm/ProfileData/InstrProfReader.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/CRC.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/DOTGraphTraits.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/Error.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/GraphWriter.h"
107 #include "llvm/Support/VirtualFileSystem.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/TargetParser/Triple.h"
110 #include "llvm/Transforms/Instrumentation.h"
111 #include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
112 #include "llvm/Transforms/Instrumentation/CFGMST.h"
113 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
114 #include "llvm/Transforms/Utils/MisExpect.h"
115 #include "llvm/Transforms/Utils/ModuleUtils.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstdint>
119 #include <memory>
120 #include <numeric>
121 #include <optional>
122 #include <string>
123 #include <unordered_map>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 using ProfileCount = Function::ProfileCount;
129 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
130 
131 #define DEBUG_TYPE "pgo-instrumentation"
132 
133 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
134 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
135 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
136 STATISTIC(NumOfPGOEdge, "Number of edges.");
137 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
138 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
139 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
140 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
141 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
142 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
143 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
144 STATISTIC(NumOfCSPGOSelectInsts,
145           "Number of select instruction instrumented in CSPGO.");
146 STATISTIC(NumOfCSPGOMemIntrinsics,
147           "Number of mem intrinsics instrumented in CSPGO.");
148 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
149 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
150 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
151 STATISTIC(NumOfCSPGOFunc,
152           "Number of functions having valid profile counts in CSPGO.");
153 STATISTIC(NumOfCSPGOMismatch,
154           "Number of functions having mismatch profile in CSPGO.");
155 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
156 STATISTIC(NumCoveredBlocks, "Number of basic blocks that were executed");
157 
158 // Command line option to specify the file to read profile from. This is
159 // mainly used for testing.
160 static cl::opt<std::string>
161     PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
162                        cl::value_desc("filename"),
163                        cl::desc("Specify the path of profile data file. This is"
164                                 "mainly for test purpose."));
165 static cl::opt<std::string> PGOTestProfileRemappingFile(
166     "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
167     cl::value_desc("filename"),
168     cl::desc("Specify the path of profile remapping file. This is mainly for "
169              "test purpose."));
170 
171 // Command line option to disable value profiling. The default is false:
172 // i.e. value profiling is enabled by default. This is for debug purpose.
173 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
174                                            cl::Hidden,
175                                            cl::desc("Disable Value Profiling"));
176 
177 // Command line option to set the maximum number of VP annotations to write to
178 // the metadata for a single indirect call callsite.
179 static cl::opt<unsigned> MaxNumAnnotations(
180     "icp-max-annotations", cl::init(3), cl::Hidden,
181     cl::desc("Max number of annotations for a single indirect "
182              "call callsite"));
183 
184 // Command line option to set the maximum number of value annotations
185 // to write to the metadata for a single memop intrinsic.
186 static cl::opt<unsigned> MaxNumMemOPAnnotations(
187     "memop-max-annotations", cl::init(4), cl::Hidden,
188     cl::desc("Max number of preicise value annotations for a single memop"
189              "intrinsic"));
190 
191 // Command line option to control appending FunctionHash to the name of a COMDAT
192 // function. This is to avoid the hash mismatch caused by the preinliner.
193 static cl::opt<bool> DoComdatRenaming(
194     "do-comdat-renaming", cl::init(false), cl::Hidden,
195     cl::desc("Append function hash to the name of COMDAT function to avoid "
196              "function hash mismatch due to the preinliner"));
197 
198 namespace llvm {
199 // Command line option to enable/disable the warning about missing profile
200 // information.
201 cl::opt<bool> PGOWarnMissing("pgo-warn-missing-function", cl::init(false),
202                              cl::Hidden,
203                              cl::desc("Use this option to turn on/off "
204                                       "warnings about missing profile data for "
205                                       "functions."));
206 
207 // Command line option to enable/disable the warning about a hash mismatch in
208 // the profile data.
209 cl::opt<bool>
210     NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
211                       cl::desc("Use this option to turn off/on "
212                                "warnings about profile cfg mismatch."));
213 
214 // Command line option to enable/disable the warning about a hash mismatch in
215 // the profile data for Comdat functions, which often turns out to be false
216 // positive due to the pre-instrumentation inline.
217 cl::opt<bool> NoPGOWarnMismatchComdatWeak(
218     "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden,
219     cl::desc("The option is used to turn on/off "
220              "warnings about hash mismatch for comdat "
221              "or weak functions."));
222 } // namespace llvm
223 
224 // Command line option to enable/disable select instruction instrumentation.
225 static cl::opt<bool>
226     PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
227                    cl::desc("Use this option to turn on/off SELECT "
228                             "instruction instrumentation. "));
229 
230 // Command line option to turn on CFG dot or text dump of raw profile counts
231 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
232     "pgo-view-raw-counts", cl::Hidden,
233     cl::desc("A boolean option to show CFG dag or text "
234              "with raw profile counts from "
235              "profile data. See also option "
236              "-pgo-view-counts. To limit graph "
237              "display to only one function, use "
238              "filtering option -view-bfi-func-name."),
239     cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
240                clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
241                clEnumValN(PGOVCT_Text, "text", "show in text.")));
242 
243 // Command line option to enable/disable memop intrinsic call.size profiling.
244 static cl::opt<bool>
245     PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
246                   cl::desc("Use this option to turn on/off "
247                            "memory intrinsic size profiling."));
248 
249 // Emit branch probability as optimization remarks.
250 static cl::opt<bool>
251     EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
252                           cl::desc("When this option is on, the annotated "
253                                    "branch probability will be emitted as "
254                                    "optimization remarks: -{Rpass|"
255                                    "pass-remarks}=pgo-instrumentation"));
256 
257 static cl::opt<bool> PGOInstrumentEntry(
258     "pgo-instrument-entry", cl::init(false), cl::Hidden,
259     cl::desc("Force to instrument function entry basicblock."));
260 
261 static cl::opt<bool> PGOFunctionEntryCoverage(
262     "pgo-function-entry-coverage", cl::Hidden,
263     cl::desc(
264         "Use this option to enable function entry coverage instrumentation."));
265 
266 static cl::opt<bool> PGOBlockCoverage(
267     "pgo-block-coverage",
268     cl::desc("Use this option to enable basic block coverage instrumentation"));
269 
270 static cl::opt<bool>
271     PGOViewBlockCoverageGraph("pgo-view-block-coverage-graph",
272                               cl::desc("Create a dot file of CFGs with block "
273                                        "coverage inference information"));
274 
275 static cl::opt<bool> PGOTemporalInstrumentation(
276     "pgo-temporal-instrumentation",
277     cl::desc("Use this option to enable temporal instrumentation"));
278 
279 static cl::opt<bool>
280     PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
281                      cl::desc("Fix function entry count in profile use."));
282 
283 static cl::opt<bool> PGOVerifyHotBFI(
284     "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
285     cl::desc("Print out the non-match BFI count if a hot raw profile count "
286              "becomes non-hot, or a cold raw profile count becomes hot. "
287              "The print is enabled under -Rpass-analysis=pgo, or "
288              "internal option -pass-remakrs-analysis=pgo."));
289 
290 static cl::opt<bool> PGOVerifyBFI(
291     "pgo-verify-bfi", cl::init(false), cl::Hidden,
292     cl::desc("Print out mismatched BFI counts after setting profile metadata "
293              "The print is enabled under -Rpass-analysis=pgo, or "
294              "internal option -pass-remakrs-analysis=pgo."));
295 
296 static cl::opt<unsigned> PGOVerifyBFIRatio(
297     "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden,
298     cl::desc("Set the threshold for pgo-verify-bfi:  only print out "
299              "mismatched BFI if the difference percentage is greater than "
300              "this value (in percentage)."));
301 
302 static cl::opt<unsigned> PGOVerifyBFICutoff(
303     "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden,
304     cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose "
305              "profile count value is below."));
306 
307 static cl::opt<std::string> PGOTraceFuncHash(
308     "pgo-trace-func-hash", cl::init("-"), cl::Hidden,
309     cl::value_desc("function name"),
310     cl::desc("Trace the hash of the function with this name."));
311 
312 static cl::opt<unsigned> PGOFunctionSizeThreshold(
313     "pgo-function-size-threshold", cl::Hidden,
314     cl::desc("Do not instrument functions smaller than this threshold."));
315 
316 static cl::opt<unsigned> PGOFunctionCriticalEdgeThreshold(
317     "pgo-critical-edge-threshold", cl::init(20000), cl::Hidden,
318     cl::desc("Do not instrument functions with the number of critical edges "
319              " greater than this threshold."));
320 
321 namespace llvm {
322 // Command line option to turn on CFG dot dump after profile annotation.
323 // Defined in Analysis/BlockFrequencyInfo.cpp:  -pgo-view-counts
324 extern cl::opt<PGOViewCountsType> PGOViewCounts;
325 
326 // Command line option to specify the name of the function for CFG dump
327 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
328 extern cl::opt<std::string> ViewBlockFreqFuncName;
329 
330 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
331 } // namespace llvm
332 
333 // Return a string describing the branch condition that can be
334 // used in static branch probability heuristics:
335 static std::string getBranchCondString(Instruction *TI) {
336   BranchInst *BI = dyn_cast<BranchInst>(TI);
337   if (!BI || !BI->isConditional())
338     return std::string();
339 
340   Value *Cond = BI->getCondition();
341   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
342   if (!CI)
343     return std::string();
344 
345   std::string result;
346   raw_string_ostream OS(result);
347   OS << CI->getPredicate() << "_";
348   CI->getOperand(0)->getType()->print(OS, true);
349 
350   Value *RHS = CI->getOperand(1);
351   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
352   if (CV) {
353     if (CV->isZero())
354       OS << "_Zero";
355     else if (CV->isOne())
356       OS << "_One";
357     else if (CV->isMinusOne())
358       OS << "_MinusOne";
359     else
360       OS << "_Const";
361   }
362   OS.flush();
363   return result;
364 }
365 
366 static const char *ValueProfKindDescr[] = {
367 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
368 #include "llvm/ProfileData/InstrProfData.inc"
369 };
370 
371 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
372 // aware this is an ir_level profile so it can set the version flag.
373 static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
374   const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
375   Type *IntTy64 = Type::getInt64Ty(M.getContext());
376   uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
377   if (IsCS)
378     ProfileVersion |= VARIANT_MASK_CSIR_PROF;
379   if (PGOInstrumentEntry)
380     ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
381   if (DebugInfoCorrelate || ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO)
382     ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
383   if (PGOFunctionEntryCoverage)
384     ProfileVersion |=
385         VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
386   if (PGOBlockCoverage)
387     ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE;
388   if (PGOTemporalInstrumentation)
389     ProfileVersion |= VARIANT_MASK_TEMPORAL_PROF;
390   auto IRLevelVersionVariable = new GlobalVariable(
391       M, IntTy64, true, GlobalValue::WeakAnyLinkage,
392       Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
393   IRLevelVersionVariable->setVisibility(GlobalValue::HiddenVisibility);
394   Triple TT(M.getTargetTriple());
395   if (TT.supportsCOMDAT()) {
396     IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
397     IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
398   }
399   return IRLevelVersionVariable;
400 }
401 
402 namespace {
403 
404 /// The select instruction visitor plays three roles specified
405 /// by the mode. In \c VM_counting mode, it simply counts the number of
406 /// select instructions. In \c VM_instrument mode, it inserts code to count
407 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
408 /// it reads the profile data and annotate the select instruction with metadata.
409 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
410 class PGOUseFunc;
411 
412 /// Instruction Visitor class to visit select instructions.
413 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
414   Function &F;
415   unsigned NSIs = 0;             // Number of select instructions instrumented.
416   VisitMode Mode = VM_counting;  // Visiting mode.
417   unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
418   unsigned TotalNumCtrs = 0;     // Total number of counters
419   GlobalVariable *FuncNameVar = nullptr;
420   uint64_t FuncHash = 0;
421   PGOUseFunc *UseFunc = nullptr;
422   bool HasSingleByteCoverage;
423 
424   SelectInstVisitor(Function &Func, bool HasSingleByteCoverage)
425       : F(Func), HasSingleByteCoverage(HasSingleByteCoverage) {}
426 
427   void countSelects() {
428     NSIs = 0;
429     Mode = VM_counting;
430     visit(F);
431   }
432 
433   // Visit the IR stream and instrument all select instructions. \p
434   // Ind is a pointer to the counter index variable; \p TotalNC
435   // is the total number of counters; \p FNV is the pointer to the
436   // PGO function name var; \p FHash is the function hash.
437   void instrumentSelects(unsigned *Ind, unsigned TotalNC, GlobalVariable *FNV,
438                          uint64_t FHash) {
439     Mode = VM_instrument;
440     CurCtrIdx = Ind;
441     TotalNumCtrs = TotalNC;
442     FuncHash = FHash;
443     FuncNameVar = FNV;
444     visit(F);
445   }
446 
447   // Visit the IR stream and annotate all select instructions.
448   void annotateSelects(PGOUseFunc *UF, unsigned *Ind) {
449     Mode = VM_annotate;
450     UseFunc = UF;
451     CurCtrIdx = Ind;
452     visit(F);
453   }
454 
455   void instrumentOneSelectInst(SelectInst &SI);
456   void annotateOneSelectInst(SelectInst &SI);
457 
458   // Visit \p SI instruction and perform tasks according to visit mode.
459   void visitSelectInst(SelectInst &SI);
460 
461   // Return the number of select instructions. This needs be called after
462   // countSelects().
463   unsigned getNumOfSelectInsts() const { return NSIs; }
464 };
465 
466 /// This class implements the CFG edges for the Minimum Spanning Tree (MST)
467 /// based instrumentation.
468 /// Note that the CFG can be a multi-graph. So there might be multiple edges
469 /// with the same SrcBB and DestBB.
470 struct PGOEdge {
471   BasicBlock *SrcBB;
472   BasicBlock *DestBB;
473   uint64_t Weight;
474   bool InMST = false;
475   bool Removed = false;
476   bool IsCritical = false;
477 
478   PGOEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W = 1)
479       : SrcBB(Src), DestBB(Dest), Weight(W) {}
480 
481   /// Return the information string of an edge.
482   std::string infoString() const {
483     return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
484             (IsCritical ? "c" : " ") + "  W=" + Twine(Weight))
485         .str();
486   }
487 };
488 
489 /// This class stores the auxiliary information for each BB in the MST.
490 struct PGOBBInfo {
491   PGOBBInfo *Group;
492   uint32_t Index;
493   uint32_t Rank = 0;
494 
495   PGOBBInfo(unsigned IX) : Group(this), Index(IX) {}
496 
497   /// Return the information string of this object.
498   std::string infoString() const {
499     return (Twine("Index=") + Twine(Index)).str();
500   }
501 };
502 
503 // This class implements the CFG edges. Note the CFG can be a multi-graph.
504 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
505 private:
506   Function &F;
507 
508   // Is this is context-sensitive instrumentation.
509   bool IsCS;
510 
511   // A map that stores the Comdat group in function F.
512   std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
513 
514   ValueProfileCollector VPC;
515 
516   void computeCFGHash();
517   void renameComdatFunction();
518 
519 public:
520   const TargetLibraryInfo &TLI;
521   std::vector<std::vector<VPCandidateInfo>> ValueSites;
522   SelectInstVisitor SIVisitor;
523   std::string FuncName;
524   std::string DeprecatedFuncName;
525   GlobalVariable *FuncNameVar;
526 
527   // CFG hash value for this function.
528   uint64_t FunctionHash = 0;
529 
530   // The Minimum Spanning Tree of function CFG.
531   CFGMST<Edge, BBInfo> MST;
532 
533   const std::optional<BlockCoverageInference> BCI;
534 
535   static std::optional<BlockCoverageInference>
536   constructBCI(Function &Func, bool HasSingleByteCoverage,
537                bool InstrumentFuncEntry) {
538     if (HasSingleByteCoverage)
539       return BlockCoverageInference(Func, InstrumentFuncEntry);
540     return {};
541   }
542 
543   // Collect all the BBs that will be instrumented, and store them in
544   // InstrumentBBs.
545   void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
546 
547   // Give an edge, find the BB that will be instrumented.
548   // Return nullptr if there is no BB to be instrumented.
549   BasicBlock *getInstrBB(Edge *E);
550 
551   // Return the auxiliary BB information.
552   BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
553 
554   // Return the auxiliary BB information if available.
555   BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
556 
557   // Dump edges and BB information.
558   void dumpInfo(StringRef Str = "") const {
559     MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName +
560                               " Hash: " + Twine(FunctionHash) + "\t" + Str);
561   }
562 
563   FuncPGOInstrumentation(
564       Function &Func, TargetLibraryInfo &TLI,
565       std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
566       bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
567       BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
568       bool InstrumentFuncEntry = true, bool HasSingleByteCoverage = false)
569       : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
570         TLI(TLI), ValueSites(IPVK_Last + 1),
571         SIVisitor(Func, HasSingleByteCoverage),
572         MST(F, InstrumentFuncEntry, BPI, BFI),
573         BCI(constructBCI(Func, HasSingleByteCoverage, InstrumentFuncEntry)) {
574     if (BCI && PGOViewBlockCoverageGraph)
575       BCI->viewBlockCoverageGraph();
576     // This should be done before CFG hash computation.
577     SIVisitor.countSelects();
578     ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
579     if (!IsCS) {
580       NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
581       NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
582       NumOfPGOBB += MST.bbInfoSize();
583       ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
584     } else {
585       NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
586       NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
587       NumOfCSPGOBB += MST.bbInfoSize();
588     }
589 
590     FuncName = getIRPGOFuncName(F);
591     DeprecatedFuncName = getPGOFuncName(F);
592     computeCFGHash();
593     if (!ComdatMembers.empty())
594       renameComdatFunction();
595     LLVM_DEBUG(dumpInfo("after CFGMST"));
596 
597     for (const auto &E : MST.allEdges()) {
598       if (E->Removed)
599         continue;
600       IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
601       if (!E->InMST)
602         IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
603     }
604 
605     if (CreateGlobalVar)
606       FuncNameVar = createPGOFuncNameVar(F, FuncName);
607   }
608 };
609 
610 } // end anonymous namespace
611 
612 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
613 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
614 // of selects, indirect calls, mem ops and edges.
615 template <class Edge, class BBInfo>
616 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
617   std::vector<uint8_t> Indexes;
618   JamCRC JC;
619   for (auto &BB : F) {
620     for (BasicBlock *Succ : successors(&BB)) {
621       auto BI = findBBInfo(Succ);
622       if (BI == nullptr)
623         continue;
624       uint32_t Index = BI->Index;
625       for (int J = 0; J < 4; J++)
626         Indexes.push_back((uint8_t)(Index >> (J * 8)));
627     }
628   }
629   JC.update(Indexes);
630 
631   JamCRC JCH;
632   // The higher 32 bits.
633   auto updateJCH = [&JCH](uint64_t Num) {
634     uint8_t Data[8];
635     support::endian::write64le(Data, Num);
636     JCH.update(Data);
637   };
638   updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
639   updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
640   updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
641   if (BCI) {
642     updateJCH(BCI->getInstrumentedBlocksHash());
643   } else {
644     updateJCH((uint64_t)MST.numEdges());
645   }
646 
647   // Hash format for context sensitive profile. Reserve 4 bits for other
648   // information.
649   FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
650 
651   // Reserve bit 60-63 for other information purpose.
652   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
653   if (IsCS)
654     NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
655   LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
656                     << " CRC = " << JC.getCRC()
657                     << ", Selects = " << SIVisitor.getNumOfSelectInsts()
658                     << ", Edges = " << MST.numEdges() << ", ICSites = "
659                     << ValueSites[IPVK_IndirectCallTarget].size()
660                     << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
661                     << ", High32 CRC = " << JCH.getCRC()
662                     << ", Hash = " << FunctionHash << "\n";);
663 
664   if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash))
665     dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash
666            << " in building " << F.getParent()->getSourceFileName() << "\n";
667 }
668 
669 // Check if we can safely rename this Comdat function.
670 static bool canRenameComdat(
671     Function &F,
672     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
673   if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
674     return false;
675 
676   // FIXME: Current only handle those Comdat groups that only containing one
677   // function.
678   // (1) For a Comdat group containing multiple functions, we need to have a
679   // unique postfix based on the hashes for each function. There is a
680   // non-trivial code refactoring to do this efficiently.
681   // (2) Variables can not be renamed, so we can not rename Comdat function in a
682   // group including global vars.
683   Comdat *C = F.getComdat();
684   for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
685     assert(!isa<GlobalAlias>(CM.second));
686     Function *FM = dyn_cast<Function>(CM.second);
687     if (FM != &F)
688       return false;
689   }
690   return true;
691 }
692 
693 // Append the CFGHash to the Comdat function name.
694 template <class Edge, class BBInfo>
695 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
696   if (!canRenameComdat(F, ComdatMembers))
697     return;
698   std::string OrigName = F.getName().str();
699   std::string NewFuncName =
700       Twine(F.getName() + "." + Twine(FunctionHash)).str();
701   F.setName(Twine(NewFuncName));
702   GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
703   FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
704   Comdat *NewComdat;
705   Module *M = F.getParent();
706   // For AvailableExternallyLinkage functions, change the linkage to
707   // LinkOnceODR and put them into comdat. This is because after renaming, there
708   // is no backup external copy available for the function.
709   if (!F.hasComdat()) {
710     assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
711     NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
712     F.setLinkage(GlobalValue::LinkOnceODRLinkage);
713     F.setComdat(NewComdat);
714     return;
715   }
716 
717   // This function belongs to a single function Comdat group.
718   Comdat *OrigComdat = F.getComdat();
719   std::string NewComdatName =
720       Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
721   NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
722   NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
723 
724   for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
725     // Must be a function.
726     cast<Function>(CM.second)->setComdat(NewComdat);
727   }
728 }
729 
730 /// Collect all the BBs that will be instruments and add them to
731 /// `InstrumentBBs`.
732 template <class Edge, class BBInfo>
733 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
734     std::vector<BasicBlock *> &InstrumentBBs) {
735   if (BCI) {
736     for (auto &BB : F)
737       if (BCI->shouldInstrumentBlock(BB))
738         InstrumentBBs.push_back(&BB);
739     return;
740   }
741 
742   // Use a worklist as we will update the vector during the iteration.
743   std::vector<Edge *> EdgeList;
744   EdgeList.reserve(MST.numEdges());
745   for (const auto &E : MST.allEdges())
746     EdgeList.push_back(E.get());
747 
748   for (auto &E : EdgeList) {
749     BasicBlock *InstrBB = getInstrBB(E);
750     if (InstrBB)
751       InstrumentBBs.push_back(InstrBB);
752   }
753 }
754 
755 // Given a CFG E to be instrumented, find which BB to place the instrumented
756 // code. The function will split the critical edge if necessary.
757 template <class Edge, class BBInfo>
758 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
759   if (E->InMST || E->Removed)
760     return nullptr;
761 
762   BasicBlock *SrcBB = E->SrcBB;
763   BasicBlock *DestBB = E->DestBB;
764   // For a fake edge, instrument the real BB.
765   if (SrcBB == nullptr)
766     return DestBB;
767   if (DestBB == nullptr)
768     return SrcBB;
769 
770   auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
771     // There are basic blocks (such as catchswitch) cannot be instrumented.
772     // If the returned first insertion point is the end of BB, skip this BB.
773     if (BB->getFirstInsertionPt() == BB->end())
774       return nullptr;
775     return BB;
776   };
777 
778   // Instrument the SrcBB if it has a single successor,
779   // otherwise, the DestBB if this is not a critical edge.
780   Instruction *TI = SrcBB->getTerminator();
781   if (TI->getNumSuccessors() <= 1)
782     return canInstrument(SrcBB);
783   if (!E->IsCritical)
784     return canInstrument(DestBB);
785 
786   // Some IndirectBr critical edges cannot be split by the previous
787   // SplitIndirectBrCriticalEdges call. Bail out.
788   unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
789   BasicBlock *InstrBB =
790       isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
791   if (!InstrBB) {
792     LLVM_DEBUG(
793         dbgs() << "Fail to split critical edge: not instrument this edge.\n");
794     return nullptr;
795   }
796   // For a critical edge, we have to split. Instrument the newly
797   // created BB.
798   IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
799   LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
800                     << " --> " << getBBInfo(DestBB).Index << "\n");
801   // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
802   MST.addEdge(SrcBB, InstrBB, 0);
803   // Second one: Add new edge of InstrBB->DestBB.
804   Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
805   NewEdge1.InMST = true;
806   E->Removed = true;
807 
808   return canInstrument(InstrBB);
809 }
810 
811 // When generating value profiling calls on Windows routines that make use of
812 // handler funclets for exception processing an operand bundle needs to attached
813 // to the called function. This routine will set \p OpBundles to contain the
814 // funclet information, if any is needed, that should be placed on the generated
815 // value profiling call for the value profile candidate call.
816 static void
817 populateEHOperandBundle(VPCandidateInfo &Cand,
818                         DenseMap<BasicBlock *, ColorVector> &BlockColors,
819                         SmallVectorImpl<OperandBundleDef> &OpBundles) {
820   auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
821   if (!OrigCall)
822     return;
823 
824   if (!isa<IntrinsicInst>(OrigCall)) {
825     // The instrumentation call should belong to the same funclet as a
826     // non-intrinsic call, so just copy the operand bundle, if any exists.
827     std::optional<OperandBundleUse> ParentFunclet =
828         OrigCall->getOperandBundle(LLVMContext::OB_funclet);
829     if (ParentFunclet)
830       OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
831   } else {
832     // Intrinsics or other instructions do not get funclet information from the
833     // front-end. Need to use the BlockColors that was computed by the routine
834     // colorEHFunclets to determine whether a funclet is needed.
835     if (!BlockColors.empty()) {
836       const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
837       assert(CV.size() == 1 && "non-unique color for block!");
838       Instruction *EHPad = CV.front()->getFirstNonPHI();
839       if (EHPad->isEHPad())
840         OpBundles.emplace_back("funclet", EHPad);
841     }
842   }
843 }
844 
845 // Visit all edge and instrument the edges not in MST, and do value profiling.
846 // Critical edges will be split.
847 static void instrumentOneFunc(
848     Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
849     BlockFrequencyInfo *BFI,
850     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
851     bool IsCS) {
852   if (!PGOBlockCoverage) {
853     // Split indirectbr critical edges here before computing the MST rather than
854     // later in getInstrBB() to avoid invalidating it.
855     SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
856   }
857 
858   FuncPGOInstrumentation<PGOEdge, PGOBBInfo> FuncInfo(
859       F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry,
860       PGOBlockCoverage);
861 
862   auto Name = FuncInfo.FuncNameVar;
863   auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()),
864                                   FuncInfo.FunctionHash);
865   if (PGOFunctionEntryCoverage) {
866     auto &EntryBB = F.getEntryBlock();
867     IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
868     // llvm.instrprof.cover(i8* <name>, i64 <hash>, i32 <num-counters>,
869     //                      i32 <index>)
870     Builder.CreateCall(
871         Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover),
872         {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)});
873     return;
874   }
875 
876   std::vector<BasicBlock *> InstrumentBBs;
877   FuncInfo.getInstrumentBBs(InstrumentBBs);
878   unsigned NumCounters =
879       InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
880 
881   uint32_t I = 0;
882   if (PGOTemporalInstrumentation) {
883     NumCounters += PGOBlockCoverage ? 8 : 1;
884     auto &EntryBB = F.getEntryBlock();
885     IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
886     // llvm.instrprof.timestamp(i8* <name>, i64 <hash>, i32 <num-counters>,
887     //                          i32 <index>)
888     Builder.CreateCall(
889         Intrinsic::getDeclaration(M, Intrinsic::instrprof_timestamp),
890         {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I)});
891     I += PGOBlockCoverage ? 8 : 1;
892   }
893 
894   for (auto *InstrBB : InstrumentBBs) {
895     IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
896     assert(Builder.GetInsertPoint() != InstrBB->end() &&
897            "Cannot get the Instrumentation point");
898     // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
899     //                          i32 <index>)
900     Builder.CreateCall(
901         Intrinsic::getDeclaration(M, PGOBlockCoverage
902                                          ? Intrinsic::instrprof_cover
903                                          : Intrinsic::instrprof_increment),
904         {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
905   }
906 
907   // Now instrument select instructions:
908   FuncInfo.SIVisitor.instrumentSelects(&I, NumCounters, FuncInfo.FuncNameVar,
909                                        FuncInfo.FunctionHash);
910   assert(I == NumCounters);
911 
912   if (DisableValueProfiling)
913     return;
914 
915   NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
916 
917   // Intrinsic function calls do not have funclet operand bundles needed for
918   // Windows exception handling attached to them. However, if value profiling is
919   // inserted for one of these calls, then a funclet value will need to be set
920   // on the instrumentation call based on the funclet coloring.
921   DenseMap<BasicBlock *, ColorVector> BlockColors;
922   if (F.hasPersonalityFn() &&
923       isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
924     BlockColors = colorEHFunclets(F);
925 
926   // For each VP Kind, walk the VP candidates and instrument each one.
927   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
928     unsigned SiteIndex = 0;
929     if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
930       continue;
931 
932     for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
933       LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
934                         << " site: CallSite Index = " << SiteIndex << "\n");
935 
936       IRBuilder<> Builder(Cand.InsertPt);
937       assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
938              "Cannot get the Instrumentation point");
939 
940       Value *ToProfile = nullptr;
941       if (Cand.V->getType()->isIntegerTy())
942         ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
943       else if (Cand.V->getType()->isPointerTy())
944         ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
945       assert(ToProfile && "value profiling Value is of unexpected type");
946 
947       SmallVector<OperandBundleDef, 1> OpBundles;
948       populateEHOperandBundle(Cand, BlockColors, OpBundles);
949       Builder.CreateCall(
950           Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
951           {FuncInfo.FuncNameVar, Builder.getInt64(FuncInfo.FunctionHash),
952            ToProfile, Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
953           OpBundles);
954     }
955   } // IPVK_First <= Kind <= IPVK_Last
956 }
957 
958 namespace {
959 
960 // This class represents a CFG edge in profile use compilation.
961 struct PGOUseEdge : public PGOEdge {
962   using PGOEdge::PGOEdge;
963 
964   bool CountValid = false;
965   uint64_t CountValue = 0;
966 
967   // Set edge count value
968   void setEdgeCount(uint64_t Value) {
969     CountValue = Value;
970     CountValid = true;
971   }
972 
973   // Return the information string for this object.
974   std::string infoString() const {
975     if (!CountValid)
976       return PGOEdge::infoString();
977     return (Twine(PGOEdge::infoString()) + "  Count=" + Twine(CountValue))
978         .str();
979   }
980 };
981 
982 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
983 
984 // This class stores the auxiliary information for each BB.
985 struct PGOUseBBInfo : public PGOBBInfo {
986   uint64_t CountValue = 0;
987   bool CountValid;
988   int32_t UnknownCountInEdge = 0;
989   int32_t UnknownCountOutEdge = 0;
990   DirectEdges InEdges;
991   DirectEdges OutEdges;
992 
993   PGOUseBBInfo(unsigned IX) : PGOBBInfo(IX), CountValid(false) {}
994 
995   // Set the profile count value for this BB.
996   void setBBInfoCount(uint64_t Value) {
997     CountValue = Value;
998     CountValid = true;
999   }
1000 
1001   // Return the information string of this object.
1002   std::string infoString() const {
1003     if (!CountValid)
1004       return PGOBBInfo::infoString();
1005     return (Twine(PGOBBInfo::infoString()) + "  Count=" + Twine(CountValue))
1006         .str();
1007   }
1008 
1009   // Add an OutEdge and update the edge count.
1010   void addOutEdge(PGOUseEdge *E) {
1011     OutEdges.push_back(E);
1012     UnknownCountOutEdge++;
1013   }
1014 
1015   // Add an InEdge and update the edge count.
1016   void addInEdge(PGOUseEdge *E) {
1017     InEdges.push_back(E);
1018     UnknownCountInEdge++;
1019   }
1020 };
1021 
1022 } // end anonymous namespace
1023 
1024 // Sum up the count values for all the edges.
1025 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
1026   uint64_t Total = 0;
1027   for (const auto &E : Edges) {
1028     if (E->Removed)
1029       continue;
1030     Total += E->CountValue;
1031   }
1032   return Total;
1033 }
1034 
1035 namespace {
1036 
1037 class PGOUseFunc {
1038 public:
1039   PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1040              std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1041              BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1042              ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry,
1043              bool HasSingleByteCoverage)
1044       : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1045         FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1046                  InstrumentFuncEntry, HasSingleByteCoverage),
1047         FreqAttr(FFA_Normal), IsCS(IsCS) {}
1048 
1049   void handleInstrProfError(Error Err, uint64_t MismatchedFuncSum);
1050 
1051   // Read counts for the instrumented BB from profile.
1052   bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1053                     InstrProfRecord::CountPseudoKind &PseudoKind);
1054 
1055   // Populate the counts for all BBs.
1056   void populateCounters();
1057 
1058   // Set block coverage based on profile coverage values.
1059   void populateCoverage(IndexedInstrProfReader *PGOReader);
1060 
1061   // Set the branch weights based on the count values.
1062   void setBranchWeights();
1063 
1064   // Annotate the value profile call sites for all value kind.
1065   void annotateValueSites();
1066 
1067   // Annotate the value profile call sites for one value kind.
1068   void annotateValueSites(uint32_t Kind);
1069 
1070   // Annotate the irreducible loop header weights.
1071   void annotateIrrLoopHeaderWeights();
1072 
1073   // The hotness of the function from the profile count.
1074   enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1075 
1076   // Return the function hotness from the profile.
1077   FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1078 
1079   // Return the function hash.
1080   uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1081 
1082   // Return the profile record for this function;
1083   InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1084 
1085   // Return the auxiliary BB information.
1086   PGOUseBBInfo &getBBInfo(const BasicBlock *BB) const {
1087     return FuncInfo.getBBInfo(BB);
1088   }
1089 
1090   // Return the auxiliary BB information if available.
1091   PGOUseBBInfo *findBBInfo(const BasicBlock *BB) const {
1092     return FuncInfo.findBBInfo(BB);
1093   }
1094 
1095   Function &getFunc() const { return F; }
1096 
1097   void dumpInfo(StringRef Str = "") const { FuncInfo.dumpInfo(Str); }
1098 
1099   uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1100 
1101 private:
1102   Function &F;
1103   Module *M;
1104   BlockFrequencyInfo *BFI;
1105   ProfileSummaryInfo *PSI;
1106 
1107   // This member stores the shared information with class PGOGenFunc.
1108   FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> FuncInfo;
1109 
1110   // The maximum count value in the profile. This is only used in PGO use
1111   // compilation.
1112   uint64_t ProgramMaxCount;
1113 
1114   // Position of counter that remains to be read.
1115   uint32_t CountPosition = 0;
1116 
1117   // Total size of the profile count for this function.
1118   uint32_t ProfileCountSize = 0;
1119 
1120   // ProfileRecord for this function.
1121   InstrProfRecord ProfileRecord;
1122 
1123   // Function hotness info derived from profile.
1124   FuncFreqAttr FreqAttr;
1125 
1126   // Is to use the context sensitive profile.
1127   bool IsCS;
1128 
1129   // Find the Instrumented BB and set the value. Return false on error.
1130   bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1131 
1132   // Set the edge counter value for the unknown edge -- there should be only
1133   // one unknown edge.
1134   void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1135 
1136   // Set the hot/cold inline hints based on the count values.
1137   // FIXME: This function should be removed once the functionality in
1138   // the inliner is implemented.
1139   void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1140     if (PSI->isHotCount(EntryCount))
1141       FreqAttr = FFA_Hot;
1142     else if (PSI->isColdCount(MaxCount))
1143       FreqAttr = FFA_Cold;
1144   }
1145 };
1146 
1147 } // end anonymous namespace
1148 
1149 /// Set up InEdges/OutEdges for all BBs in the MST.
1150 static void setupBBInfoEdges(
1151     const FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> &FuncInfo) {
1152   // This is not required when there is block coverage inference.
1153   if (FuncInfo.BCI)
1154     return;
1155   for (const auto &E : FuncInfo.MST.allEdges()) {
1156     if (E->Removed)
1157       continue;
1158     const BasicBlock *SrcBB = E->SrcBB;
1159     const BasicBlock *DestBB = E->DestBB;
1160     PGOUseBBInfo &SrcInfo = FuncInfo.getBBInfo(SrcBB);
1161     PGOUseBBInfo &DestInfo = FuncInfo.getBBInfo(DestBB);
1162     SrcInfo.addOutEdge(E.get());
1163     DestInfo.addInEdge(E.get());
1164   }
1165 }
1166 
1167 // Visit all the edges and assign the count value for the instrumented
1168 // edges and the BB. Return false on error.
1169 bool PGOUseFunc::setInstrumentedCounts(
1170     const std::vector<uint64_t> &CountFromProfile) {
1171 
1172   std::vector<BasicBlock *> InstrumentBBs;
1173   FuncInfo.getInstrumentBBs(InstrumentBBs);
1174 
1175   setupBBInfoEdges(FuncInfo);
1176 
1177   unsigned NumCounters =
1178       InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1179   // The number of counters here should match the number of counters
1180   // in profile. Return if they mismatch.
1181   if (NumCounters != CountFromProfile.size()) {
1182     return false;
1183   }
1184   auto *FuncEntry = &*F.begin();
1185 
1186   // Set the profile count to the Instrumented BBs.
1187   uint32_t I = 0;
1188   for (BasicBlock *InstrBB : InstrumentBBs) {
1189     uint64_t CountValue = CountFromProfile[I++];
1190     PGOUseBBInfo &Info = getBBInfo(InstrBB);
1191     // If we reach here, we know that we have some nonzero count
1192     // values in this function. The entry count should not be 0.
1193     // Fix it if necessary.
1194     if (InstrBB == FuncEntry && CountValue == 0)
1195       CountValue = 1;
1196     Info.setBBInfoCount(CountValue);
1197   }
1198   ProfileCountSize = CountFromProfile.size();
1199   CountPosition = I;
1200 
1201   // Set the edge count and update the count of unknown edges for BBs.
1202   auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1203     E->setEdgeCount(Value);
1204     this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1205     this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1206   };
1207 
1208   // Set the profile count the Instrumented edges. There are BBs that not in
1209   // MST but not instrumented. Need to set the edge count value so that we can
1210   // populate the profile counts later.
1211   for (const auto &E : FuncInfo.MST.allEdges()) {
1212     if (E->Removed || E->InMST)
1213       continue;
1214     const BasicBlock *SrcBB = E->SrcBB;
1215     PGOUseBBInfo &SrcInfo = getBBInfo(SrcBB);
1216 
1217     // If only one out-edge, the edge profile count should be the same as BB
1218     // profile count.
1219     if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1220       setEdgeCount(E.get(), SrcInfo.CountValue);
1221     else {
1222       const BasicBlock *DestBB = E->DestBB;
1223       PGOUseBBInfo &DestInfo = getBBInfo(DestBB);
1224       // If only one in-edge, the edge profile count should be the same as BB
1225       // profile count.
1226       if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1227         setEdgeCount(E.get(), DestInfo.CountValue);
1228     }
1229     if (E->CountValid)
1230       continue;
1231     // E's count should have been set from profile. If not, this meenas E skips
1232     // the instrumentation. We set the count to 0.
1233     setEdgeCount(E.get(), 0);
1234   }
1235   return true;
1236 }
1237 
1238 // Set the count value for the unknown edge. There should be one and only one
1239 // unknown edge in Edges vector.
1240 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1241   for (auto &E : Edges) {
1242     if (E->CountValid)
1243       continue;
1244     E->setEdgeCount(Value);
1245 
1246     getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1247     getBBInfo(E->DestBB).UnknownCountInEdge--;
1248     return;
1249   }
1250   llvm_unreachable("Cannot find the unknown count edge");
1251 }
1252 
1253 // Emit function metadata indicating PGO profile mismatch.
1254 static void annotateFunctionWithHashMismatch(Function &F, LLVMContext &ctx) {
1255   const char MetadataName[] = "instr_prof_hash_mismatch";
1256   SmallVector<Metadata *, 2> Names;
1257   // If this metadata already exists, ignore.
1258   auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1259   if (Existing) {
1260     MDTuple *Tuple = cast<MDTuple>(Existing);
1261     for (const auto &N : Tuple->operands()) {
1262       if (N.equalsStr(MetadataName))
1263         return;
1264       Names.push_back(N.get());
1265     }
1266   }
1267 
1268   MDBuilder MDB(ctx);
1269   Names.push_back(MDB.createString(MetadataName));
1270   MDNode *MD = MDTuple::get(ctx, Names);
1271   F.setMetadata(LLVMContext::MD_annotation, MD);
1272 }
1273 
1274 void PGOUseFunc::handleInstrProfError(Error Err, uint64_t MismatchedFuncSum) {
1275   handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
1276     auto &Ctx = M->getContext();
1277     auto Err = IPE.get();
1278     bool SkipWarning = false;
1279     LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1280                       << FuncInfo.FuncName << ": ");
1281     if (Err == instrprof_error::unknown_function) {
1282       IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1283       SkipWarning = !PGOWarnMissing;
1284       LLVM_DEBUG(dbgs() << "unknown function");
1285     } else if (Err == instrprof_error::hash_mismatch ||
1286                Err == instrprof_error::malformed) {
1287       IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1288       SkipWarning =
1289           NoPGOWarnMismatch ||
1290           (NoPGOWarnMismatchComdatWeak &&
1291            (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
1292             F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1293       LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
1294                         << " skip=" << SkipWarning << ")");
1295       // Emit function metadata indicating PGO profile mismatch.
1296       annotateFunctionWithHashMismatch(F, M->getContext());
1297     }
1298 
1299     LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1300     if (SkipWarning)
1301       return;
1302 
1303     std::string Msg =
1304         IPE.message() + std::string(" ") + F.getName().str() +
1305         std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
1306         std::string(" up to ") + std::to_string(MismatchedFuncSum) +
1307         std::string(" count discarded");
1308 
1309     Ctx.diagnose(
1310         DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1311   });
1312 }
1313 
1314 // Read the profile from ProfileFileName and assign the value to the
1315 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1316 // Return true if the profile are successfully read, and false on errors.
1317 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1318                               InstrProfRecord::CountPseudoKind &PseudoKind) {
1319   auto &Ctx = M->getContext();
1320   uint64_t MismatchedFuncSum = 0;
1321   Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1322       FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1323       &MismatchedFuncSum);
1324   if (Error E = Result.takeError()) {
1325     handleInstrProfError(std::move(E), MismatchedFuncSum);
1326     return false;
1327   }
1328   ProfileRecord = std::move(Result.get());
1329   PseudoKind = ProfileRecord.getCountPseudoKind();
1330   if (PseudoKind != InstrProfRecord::NotPseudo) {
1331     return true;
1332   }
1333   std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1334 
1335   IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1336   LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1337 
1338   uint64_t ValueSum = 0;
1339   for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1340     LLVM_DEBUG(dbgs() << "  " << I << ": " << CountFromProfile[I] << "\n");
1341     ValueSum += CountFromProfile[I];
1342   }
1343   AllZeros = (ValueSum == 0);
1344 
1345   LLVM_DEBUG(dbgs() << "SUM =  " << ValueSum << "\n");
1346 
1347   getBBInfo(nullptr).UnknownCountOutEdge = 2;
1348   getBBInfo(nullptr).UnknownCountInEdge = 2;
1349 
1350   if (!setInstrumentedCounts(CountFromProfile)) {
1351     LLVM_DEBUG(
1352         dbgs() << "Inconsistent number of counts, skipping this function");
1353     Ctx.diagnose(DiagnosticInfoPGOProfile(
1354         M->getName().data(),
1355         Twine("Inconsistent number of counts in ") + F.getName().str() +
1356             Twine(": the profile may be stale or there is a function name "
1357                   "collision."),
1358         DS_Warning));
1359     return false;
1360   }
1361   ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1362   return true;
1363 }
1364 
1365 void PGOUseFunc::populateCoverage(IndexedInstrProfReader *PGOReader) {
1366   uint64_t MismatchedFuncSum = 0;
1367   Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1368       FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1369       &MismatchedFuncSum);
1370   if (auto Err = Result.takeError()) {
1371     handleInstrProfError(std::move(Err), MismatchedFuncSum);
1372     return;
1373   }
1374 
1375   std::vector<uint64_t> &CountsFromProfile = Result.get().Counts;
1376   DenseMap<const BasicBlock *, bool> Coverage;
1377   unsigned Index = 0;
1378   for (auto &BB : F)
1379     if (FuncInfo.BCI->shouldInstrumentBlock(BB))
1380       Coverage[&BB] = (CountsFromProfile[Index++] != 0);
1381   assert(Index == CountsFromProfile.size());
1382 
1383   // For each B in InverseDependencies[A], if A is covered then B is covered.
1384   DenseMap<const BasicBlock *, DenseSet<const BasicBlock *>>
1385       InverseDependencies;
1386   for (auto &BB : F) {
1387     for (auto *Dep : FuncInfo.BCI->getDependencies(BB)) {
1388       // If Dep is covered then BB is covered.
1389       InverseDependencies[Dep].insert(&BB);
1390     }
1391   }
1392 
1393   // Infer coverage of the non-instrumented blocks using a flood-fill algorithm.
1394   std::stack<const BasicBlock *> CoveredBlocksToProcess;
1395   for (auto &[BB, IsCovered] : Coverage)
1396     if (IsCovered)
1397       CoveredBlocksToProcess.push(BB);
1398 
1399   while (!CoveredBlocksToProcess.empty()) {
1400     auto *CoveredBlock = CoveredBlocksToProcess.top();
1401     assert(Coverage[CoveredBlock]);
1402     CoveredBlocksToProcess.pop();
1403     for (auto *BB : InverseDependencies[CoveredBlock]) {
1404       // If CoveredBlock is covered then BB is covered.
1405       if (Coverage[BB])
1406         continue;
1407       Coverage[BB] = true;
1408       CoveredBlocksToProcess.push(BB);
1409     }
1410   }
1411 
1412   // Annotate block coverage.
1413   MDBuilder MDB(F.getContext());
1414   // We set the entry count to 10000 if the entry block is covered so that BFI
1415   // can propagate a fraction of this count to the other covered blocks.
1416   F.setEntryCount(Coverage[&F.getEntryBlock()] ? 10000 : 0);
1417   for (auto &BB : F) {
1418     // For a block A and its successor B, we set the edge weight as follows:
1419     // If A is covered and B is covered, set weight=1.
1420     // If A is covered and B is uncovered, set weight=0.
1421     // If A is uncovered, set weight=1.
1422     // This setup will allow BFI to give nonzero profile counts to only covered
1423     // blocks.
1424     SmallVector<uint32_t, 4> Weights;
1425     for (auto *Succ : successors(&BB))
1426       Weights.push_back((Coverage[Succ] || !Coverage[&BB]) ? 1 : 0);
1427     if (Weights.size() >= 2)
1428       llvm::setBranchWeights(*BB.getTerminator(), Weights);
1429   }
1430 
1431   unsigned NumCorruptCoverage = 0;
1432   DominatorTree DT(F);
1433   LoopInfo LI(DT);
1434   BranchProbabilityInfo BPI(F, LI);
1435   BlockFrequencyInfo BFI(F, BPI, LI);
1436   auto IsBlockDead = [&](const BasicBlock &BB) -> std::optional<bool> {
1437     if (auto C = BFI.getBlockProfileCount(&BB))
1438       return C == 0;
1439     return {};
1440   };
1441   LLVM_DEBUG(dbgs() << "Block Coverage: (Instrumented=*, Covered=X)\n");
1442   for (auto &BB : F) {
1443     LLVM_DEBUG(dbgs() << (FuncInfo.BCI->shouldInstrumentBlock(BB) ? "* " : "  ")
1444                       << (Coverage[&BB] ? "X " : "  ") << " " << BB.getName()
1445                       << "\n");
1446     // In some cases it is possible to find a covered block that has no covered
1447     // successors, e.g., when a block calls a function that may call exit(). In
1448     // those cases, BFI could find its successor to be covered while BCI could
1449     // find its successor to be dead.
1450     if (Coverage[&BB] == IsBlockDead(BB).value_or(false)) {
1451       LLVM_DEBUG(
1452           dbgs() << "Found inconsistent block covearge for " << BB.getName()
1453                  << ": BCI=" << (Coverage[&BB] ? "Covered" : "Dead") << " BFI="
1454                  << (IsBlockDead(BB).value() ? "Dead" : "Covered") << "\n");
1455       ++NumCorruptCoverage;
1456     }
1457     if (Coverage[&BB])
1458       ++NumCoveredBlocks;
1459   }
1460   if (PGOVerifyBFI && NumCorruptCoverage) {
1461     auto &Ctx = M->getContext();
1462     Ctx.diagnose(DiagnosticInfoPGOProfile(
1463         M->getName().data(),
1464         Twine("Found inconsistent block coverage for function ") + F.getName() +
1465             " in " + Twine(NumCorruptCoverage) + " blocks.",
1466         DS_Warning));
1467   }
1468   if (PGOViewBlockCoverageGraph)
1469     FuncInfo.BCI->viewBlockCoverageGraph(&Coverage);
1470 }
1471 
1472 // Populate the counters from instrumented BBs to all BBs.
1473 // In the end of this operation, all BBs should have a valid count value.
1474 void PGOUseFunc::populateCounters() {
1475   bool Changes = true;
1476   unsigned NumPasses = 0;
1477   while (Changes) {
1478     NumPasses++;
1479     Changes = false;
1480 
1481     // For efficient traversal, it's better to start from the end as most
1482     // of the instrumented edges are at the end.
1483     for (auto &BB : reverse(F)) {
1484       PGOUseBBInfo *Count = findBBInfo(&BB);
1485       if (Count == nullptr)
1486         continue;
1487       if (!Count->CountValid) {
1488         if (Count->UnknownCountOutEdge == 0) {
1489           Count->CountValue = sumEdgeCount(Count->OutEdges);
1490           Count->CountValid = true;
1491           Changes = true;
1492         } else if (Count->UnknownCountInEdge == 0) {
1493           Count->CountValue = sumEdgeCount(Count->InEdges);
1494           Count->CountValid = true;
1495           Changes = true;
1496         }
1497       }
1498       if (Count->CountValid) {
1499         if (Count->UnknownCountOutEdge == 1) {
1500           uint64_t Total = 0;
1501           uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1502           // If the one of the successor block can early terminate (no-return),
1503           // we can end up with situation where out edge sum count is larger as
1504           // the source BB's count is collected by a post-dominated block.
1505           if (Count->CountValue > OutSum)
1506             Total = Count->CountValue - OutSum;
1507           setEdgeCount(Count->OutEdges, Total);
1508           Changes = true;
1509         }
1510         if (Count->UnknownCountInEdge == 1) {
1511           uint64_t Total = 0;
1512           uint64_t InSum = sumEdgeCount(Count->InEdges);
1513           if (Count->CountValue > InSum)
1514             Total = Count->CountValue - InSum;
1515           setEdgeCount(Count->InEdges, Total);
1516           Changes = true;
1517         }
1518       }
1519     }
1520   }
1521 
1522   LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1523   (void)NumPasses;
1524 #ifndef NDEBUG
1525   // Assert every BB has a valid counter.
1526   for (auto &BB : F) {
1527     auto BI = findBBInfo(&BB);
1528     if (BI == nullptr)
1529       continue;
1530     assert(BI->CountValid && "BB count is not valid");
1531   }
1532 #endif
1533   uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1534   uint64_t FuncMaxCount = FuncEntryCount;
1535   for (auto &BB : F) {
1536     auto BI = findBBInfo(&BB);
1537     if (BI == nullptr)
1538       continue;
1539     FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1540   }
1541 
1542   // Fix the obviously inconsistent entry count.
1543   if (FuncMaxCount > 0 && FuncEntryCount == 0)
1544     FuncEntryCount = 1;
1545   F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1546   markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1547 
1548   // Now annotate select instructions
1549   FuncInfo.SIVisitor.annotateSelects(this, &CountPosition);
1550   assert(CountPosition == ProfileCountSize);
1551 
1552   LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1553 }
1554 
1555 // Assign the scaled count values to the BB with multiple out edges.
1556 void PGOUseFunc::setBranchWeights() {
1557   // Generate MD_prof metadata for every branch instruction.
1558   LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1559                     << " IsCS=" << IsCS << "\n");
1560   for (auto &BB : F) {
1561     Instruction *TI = BB.getTerminator();
1562     if (TI->getNumSuccessors() < 2)
1563       continue;
1564     if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1565           isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI) ||
1566           isa<CallBrInst>(TI)))
1567       continue;
1568 
1569     if (getBBInfo(&BB).CountValue == 0)
1570       continue;
1571 
1572     // We have a non-zero Branch BB.
1573     const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1574     unsigned Size = BBCountInfo.OutEdges.size();
1575     SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1576     uint64_t MaxCount = 0;
1577     for (unsigned s = 0; s < Size; s++) {
1578       const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1579       const BasicBlock *SrcBB = E->SrcBB;
1580       const BasicBlock *DestBB = E->DestBB;
1581       if (DestBB == nullptr)
1582         continue;
1583       unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1584       uint64_t EdgeCount = E->CountValue;
1585       if (EdgeCount > MaxCount)
1586         MaxCount = EdgeCount;
1587       EdgeCounts[SuccNum] = EdgeCount;
1588     }
1589 
1590     if (MaxCount)
1591       setProfMetadata(M, TI, EdgeCounts, MaxCount);
1592     else {
1593       // A zero MaxCount can come about when we have a BB with a positive
1594       // count, and whose successor blocks all have 0 count. This can happen
1595       // when there is no exit block and the code exits via a noreturn function.
1596       auto &Ctx = M->getContext();
1597       Ctx.diagnose(DiagnosticInfoPGOProfile(
1598           M->getName().data(),
1599           Twine("Profile in ") + F.getName().str() +
1600               Twine(" partially ignored") +
1601               Twine(", possibly due to the lack of a return path."),
1602           DS_Warning));
1603     }
1604   }
1605 }
1606 
1607 static bool isIndirectBrTarget(BasicBlock *BB) {
1608   for (BasicBlock *Pred : predecessors(BB)) {
1609     if (isa<IndirectBrInst>(Pred->getTerminator()))
1610       return true;
1611   }
1612   return false;
1613 }
1614 
1615 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1616   LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1617   // Find irr loop headers
1618   for (auto &BB : F) {
1619     // As a heuristic also annotate indrectbr targets as they have a high chance
1620     // to become an irreducible loop header after the indirectbr tail
1621     // duplication.
1622     if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1623       Instruction *TI = BB.getTerminator();
1624       const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1625       setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1626     }
1627   }
1628 }
1629 
1630 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1631   Module *M = F.getParent();
1632   IRBuilder<> Builder(&SI);
1633   Type *Int64Ty = Builder.getInt64Ty();
1634   auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1635   Builder.CreateCall(
1636       Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1637       {FuncNameVar, Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1638        Builder.getInt32(*CurCtrIdx), Step});
1639   ++(*CurCtrIdx);
1640 }
1641 
1642 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1643   std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1644   assert(*CurCtrIdx < CountFromProfile.size() &&
1645          "Out of bound access of counters");
1646   uint64_t SCounts[2];
1647   SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1648   ++(*CurCtrIdx);
1649   uint64_t TotalCount = 0;
1650   auto BI = UseFunc->findBBInfo(SI.getParent());
1651   if (BI != nullptr)
1652     TotalCount = BI->CountValue;
1653   // False Count
1654   SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1655   uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1656   if (MaxCount)
1657     setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1658 }
1659 
1660 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1661   if (!PGOInstrSelect || PGOFunctionEntryCoverage || HasSingleByteCoverage)
1662     return;
1663   // FIXME: do not handle this yet.
1664   if (SI.getCondition()->getType()->isVectorTy())
1665     return;
1666 
1667   switch (Mode) {
1668   case VM_counting:
1669     NSIs++;
1670     return;
1671   case VM_instrument:
1672     instrumentOneSelectInst(SI);
1673     return;
1674   case VM_annotate:
1675     annotateOneSelectInst(SI);
1676     return;
1677   }
1678 
1679   llvm_unreachable("Unknown visiting mode");
1680 }
1681 
1682 // Traverse all valuesites and annotate the instructions for all value kind.
1683 void PGOUseFunc::annotateValueSites() {
1684   if (DisableValueProfiling)
1685     return;
1686 
1687   // Create the PGOFuncName meta data.
1688   createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1689 
1690   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1691     annotateValueSites(Kind);
1692 }
1693 
1694 // Annotate the instructions for a specific value kind.
1695 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1696   assert(Kind <= IPVK_Last);
1697   unsigned ValueSiteIndex = 0;
1698   auto &ValueSites = FuncInfo.ValueSites[Kind];
1699   unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1700   if (NumValueSites != ValueSites.size()) {
1701     auto &Ctx = M->getContext();
1702     Ctx.diagnose(DiagnosticInfoPGOProfile(
1703         M->getName().data(),
1704         Twine("Inconsistent number of value sites for ") +
1705             Twine(ValueProfKindDescr[Kind]) + Twine(" profiling in \"") +
1706             F.getName().str() +
1707             Twine("\", possibly due to the use of a stale profile."),
1708         DS_Warning));
1709     return;
1710   }
1711 
1712   for (VPCandidateInfo &I : ValueSites) {
1713     LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1714                       << "): Index = " << ValueSiteIndex << " out of "
1715                       << NumValueSites << "\n");
1716     annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
1717                       static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1718                       Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1719                                              : MaxNumAnnotations);
1720     ValueSiteIndex++;
1721   }
1722 }
1723 
1724 // Collect the set of members for each Comdat in module M and store
1725 // in ComdatMembers.
1726 static void collectComdatMembers(
1727     Module &M,
1728     std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1729   if (!DoComdatRenaming)
1730     return;
1731   for (Function &F : M)
1732     if (Comdat *C = F.getComdat())
1733       ComdatMembers.insert(std::make_pair(C, &F));
1734   for (GlobalVariable &GV : M.globals())
1735     if (Comdat *C = GV.getComdat())
1736       ComdatMembers.insert(std::make_pair(C, &GV));
1737   for (GlobalAlias &GA : M.aliases())
1738     if (Comdat *C = GA.getComdat())
1739       ComdatMembers.insert(std::make_pair(C, &GA));
1740 }
1741 
1742 // Return true if we should not find instrumentation data for this function
1743 static bool skipPGOUse(const Function &F) {
1744   if (F.isDeclaration())
1745     return true;
1746   // If there are too many critical edges, PGO might cause
1747   // compiler time problem. Skip PGO if the number of
1748   // critical edges execeed the threshold.
1749   unsigned NumCriticalEdges = 0;
1750   for (auto &BB : F) {
1751     const Instruction *TI = BB.getTerminator();
1752     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
1753       if (isCriticalEdge(TI, I))
1754         NumCriticalEdges++;
1755     }
1756   }
1757   if (NumCriticalEdges > PGOFunctionCriticalEdgeThreshold) {
1758     LLVM_DEBUG(dbgs() << "In func " << F.getName()
1759                       << ", NumCriticalEdges=" << NumCriticalEdges
1760                       << " exceed the threshold. Skip PGO.\n");
1761     return true;
1762   }
1763   return false;
1764 }
1765 
1766 // Return true if we should not instrument this function
1767 static bool skipPGOGen(const Function &F) {
1768   if (skipPGOUse(F))
1769     return true;
1770   if (F.hasFnAttribute(llvm::Attribute::Naked))
1771     return true;
1772   if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1773     return true;
1774   if (F.hasFnAttribute(llvm::Attribute::SkipProfile))
1775     return true;
1776   if (F.getInstructionCount() < PGOFunctionSizeThreshold)
1777     return true;
1778   return false;
1779 }
1780 
1781 static bool InstrumentAllFunctions(
1782     Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1783     function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1784     function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1785   // For the context-sensitve instrumentation, we should have a separated pass
1786   // (before LTO/ThinLTO linking) to create these variables.
1787   if (!IsCS)
1788     createIRLevelProfileFlagVar(M, /*IsCS=*/false);
1789   std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1790   collectComdatMembers(M, ComdatMembers);
1791 
1792   for (auto &F : M) {
1793     if (skipPGOGen(F))
1794       continue;
1795     auto &TLI = LookupTLI(F);
1796     auto *BPI = LookupBPI(F);
1797     auto *BFI = LookupBFI(F);
1798     instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1799   }
1800   return true;
1801 }
1802 
1803 PreservedAnalyses
1804 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &MAM) {
1805   createProfileFileNameVar(M, CSInstrName);
1806   // The variable in a comdat may be discarded by LTO. Ensure the declaration
1807   // will be retained.
1808   appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true));
1809   PreservedAnalyses PA;
1810   PA.preserve<FunctionAnalysisManagerModuleProxy>();
1811   PA.preserveSet<AllAnalysesOn<Function>>();
1812   return PA;
1813 }
1814 
1815 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1816                                              ModuleAnalysisManager &MAM) {
1817   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1818   auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1819     return FAM.getResult<TargetLibraryAnalysis>(F);
1820   };
1821   auto LookupBPI = [&FAM](Function &F) {
1822     return &FAM.getResult<BranchProbabilityAnalysis>(F);
1823   };
1824   auto LookupBFI = [&FAM](Function &F) {
1825     return &FAM.getResult<BlockFrequencyAnalysis>(F);
1826   };
1827 
1828   if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1829     return PreservedAnalyses::all();
1830 
1831   return PreservedAnalyses::none();
1832 }
1833 
1834 // Using the ratio b/w sums of profile count values and BFI count values to
1835 // adjust the func entry count.
1836 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1837                               BranchProbabilityInfo &NBPI) {
1838   Function &F = Func.getFunc();
1839   BlockFrequencyInfo NBFI(F, NBPI, LI);
1840 #ifndef NDEBUG
1841   auto BFIEntryCount = F.getEntryCount();
1842   assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) &&
1843          "Invalid BFI Entrycount");
1844 #endif
1845   auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1846   auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1847   for (auto &BBI : F) {
1848     uint64_t CountValue = 0;
1849     uint64_t BFICountValue = 0;
1850     if (!Func.findBBInfo(&BBI))
1851       continue;
1852     auto BFICount = NBFI.getBlockProfileCount(&BBI);
1853     CountValue = Func.getBBInfo(&BBI).CountValue;
1854     BFICountValue = *BFICount;
1855     SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1856     SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1857   }
1858   if (SumCount.isZero())
1859     return;
1860 
1861   assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1862          "Incorrect sum of BFI counts");
1863   if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1864     return;
1865   double Scale = (SumCount / SumBFICount).convertToDouble();
1866   if (Scale < 1.001 && Scale > 0.999)
1867     return;
1868 
1869   uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue;
1870   uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1871   if (NewEntryCount == 0)
1872     NewEntryCount = 1;
1873   if (NewEntryCount != FuncEntryCount) {
1874     F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1875     LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1876                       << ", entry_count " << FuncEntryCount << " --> "
1877                       << NewEntryCount << "\n");
1878   }
1879 }
1880 
1881 // Compare the profile count values with BFI count values, and print out
1882 // the non-matching ones.
1883 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1884                           BranchProbabilityInfo &NBPI,
1885                           uint64_t HotCountThreshold,
1886                           uint64_t ColdCountThreshold) {
1887   Function &F = Func.getFunc();
1888   BlockFrequencyInfo NBFI(F, NBPI, LI);
1889   //  bool PrintFunc = false;
1890   bool HotBBOnly = PGOVerifyHotBFI;
1891   StringRef Msg;
1892   OptimizationRemarkEmitter ORE(&F);
1893 
1894   unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1895   for (auto &BBI : F) {
1896     uint64_t CountValue = 0;
1897     uint64_t BFICountValue = 0;
1898 
1899     if (Func.getBBInfo(&BBI).CountValid)
1900       CountValue = Func.getBBInfo(&BBI).CountValue;
1901 
1902     BBNum++;
1903     if (CountValue)
1904       NonZeroBBNum++;
1905     auto BFICount = NBFI.getBlockProfileCount(&BBI);
1906     if (BFICount)
1907       BFICountValue = *BFICount;
1908 
1909     if (HotBBOnly) {
1910       bool rawIsHot = CountValue >= HotCountThreshold;
1911       bool BFIIsHot = BFICountValue >= HotCountThreshold;
1912       bool rawIsCold = CountValue <= ColdCountThreshold;
1913       bool ShowCount = false;
1914       if (rawIsHot && !BFIIsHot) {
1915         Msg = "raw-Hot to BFI-nonHot";
1916         ShowCount = true;
1917       } else if (rawIsCold && BFIIsHot) {
1918         Msg = "raw-Cold to BFI-Hot";
1919         ShowCount = true;
1920       }
1921       if (!ShowCount)
1922         continue;
1923     } else {
1924       if ((CountValue < PGOVerifyBFICutoff) &&
1925           (BFICountValue < PGOVerifyBFICutoff))
1926         continue;
1927       uint64_t Diff = (BFICountValue >= CountValue)
1928                           ? BFICountValue - CountValue
1929                           : CountValue - BFICountValue;
1930       if (Diff <= CountValue / 100 * PGOVerifyBFIRatio)
1931         continue;
1932     }
1933     BBMisMatchNum++;
1934 
1935     ORE.emit([&]() {
1936       OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
1937                                         F.getSubprogram(), &BBI);
1938       Remark << "BB " << ore::NV("Block", BBI.getName())
1939              << " Count=" << ore::NV("Count", CountValue)
1940              << " BFI_Count=" << ore::NV("Count", BFICountValue);
1941       if (!Msg.empty())
1942         Remark << " (" << Msg << ")";
1943       return Remark;
1944     });
1945   }
1946   if (BBMisMatchNum)
1947     ORE.emit([&]() {
1948       return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
1949                                         F.getSubprogram(), &F.getEntryBlock())
1950              << "In Func " << ore::NV("Function", F.getName())
1951              << ": Num_of_BB=" << ore::NV("Count", BBNum)
1952              << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
1953              << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
1954     });
1955 }
1956 
1957 static bool annotateAllFunctions(
1958     Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
1959     vfs::FileSystem &FS,
1960     function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1961     function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1962     function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
1963     ProfileSummaryInfo *PSI, bool IsCS) {
1964   LLVM_DEBUG(dbgs() << "Read in profile counters: ");
1965   auto &Ctx = M.getContext();
1966   // Read the counter array from file.
1967   auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName, FS,
1968                                                     ProfileRemappingFileName);
1969   if (Error E = ReaderOrErr.takeError()) {
1970     handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1971       Ctx.diagnose(
1972           DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
1973     });
1974     return false;
1975   }
1976 
1977   std::unique_ptr<IndexedInstrProfReader> PGOReader =
1978       std::move(ReaderOrErr.get());
1979   if (!PGOReader) {
1980     Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
1981                                           StringRef("Cannot get PGOReader")));
1982     return false;
1983   }
1984   if (!PGOReader->hasCSIRLevelProfile() && IsCS)
1985     return false;
1986 
1987   // TODO: might need to change the warning once the clang option is finalized.
1988   if (!PGOReader->isIRLevelProfile()) {
1989     Ctx.diagnose(DiagnosticInfoPGOProfile(
1990         ProfileFileName.data(), "Not an IR level instrumentation profile"));
1991     return false;
1992   }
1993   if (PGOReader->functionEntryOnly()) {
1994     Ctx.diagnose(DiagnosticInfoPGOProfile(
1995         ProfileFileName.data(),
1996         "Function entry profiles are not yet supported for optimization"));
1997     return false;
1998   }
1999 
2000   // Add the profile summary (read from the header of the indexed summary) here
2001   // so that we can use it below when reading counters (which checks if the
2002   // function should be marked with a cold or inlinehint attribute).
2003   M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
2004                       IsCS ? ProfileSummary::PSK_CSInstr
2005                            : ProfileSummary::PSK_Instr);
2006   PSI->refresh();
2007 
2008   std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
2009   collectComdatMembers(M, ComdatMembers);
2010   std::vector<Function *> HotFunctions;
2011   std::vector<Function *> ColdFunctions;
2012 
2013   // If the profile marked as always instrument the entry BB, do the
2014   // same. Note this can be overwritten by the internal option in CFGMST.h
2015   bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
2016   if (PGOInstrumentEntry.getNumOccurrences() > 0)
2017     InstrumentFuncEntry = PGOInstrumentEntry;
2018   bool HasSingleByteCoverage = PGOReader->hasSingleByteCoverage();
2019   for (auto &F : M) {
2020     if (skipPGOUse(F))
2021       continue;
2022     auto &TLI = LookupTLI(F);
2023     auto *BPI = LookupBPI(F);
2024     auto *BFI = LookupBFI(F);
2025     if (!HasSingleByteCoverage) {
2026       // Split indirectbr critical edges here before computing the MST rather
2027       // than later in getInstrBB() to avoid invalidating it.
2028       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI,
2029                                    BFI);
2030     }
2031     PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
2032                     InstrumentFuncEntry, HasSingleByteCoverage);
2033     if (HasSingleByteCoverage) {
2034       Func.populateCoverage(PGOReader.get());
2035       continue;
2036     }
2037     // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo,
2038     // it means the profile for the function is unrepresentative and this
2039     // function is actually hot / warm. We will reset the function hot / cold
2040     // attribute and drop all the profile counters.
2041     InstrProfRecord::CountPseudoKind PseudoKind = InstrProfRecord::NotPseudo;
2042     bool AllZeros = false;
2043     if (!Func.readCounters(PGOReader.get(), AllZeros, PseudoKind))
2044       continue;
2045     if (AllZeros) {
2046       F.setEntryCount(ProfileCount(0, Function::PCT_Real));
2047       if (Func.getProgramMaxCount() != 0)
2048         ColdFunctions.push_back(&F);
2049       continue;
2050     }
2051     if (PseudoKind != InstrProfRecord::NotPseudo) {
2052       // Clear function attribute cold.
2053       if (F.hasFnAttribute(Attribute::Cold))
2054         F.removeFnAttr(Attribute::Cold);
2055       // Set function attribute as hot.
2056       if (PseudoKind == InstrProfRecord::PseudoHot)
2057         F.addFnAttr(Attribute::Hot);
2058       continue;
2059     }
2060     Func.populateCounters();
2061     Func.setBranchWeights();
2062     Func.annotateValueSites();
2063     Func.annotateIrrLoopHeaderWeights();
2064     PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
2065     if (FreqAttr == PGOUseFunc::FFA_Cold)
2066       ColdFunctions.push_back(&F);
2067     else if (FreqAttr == PGOUseFunc::FFA_Hot)
2068       HotFunctions.push_back(&F);
2069     if (PGOViewCounts != PGOVCT_None &&
2070         (ViewBlockFreqFuncName.empty() ||
2071          F.getName().equals(ViewBlockFreqFuncName))) {
2072       LoopInfo LI{DominatorTree(F)};
2073       std::unique_ptr<BranchProbabilityInfo> NewBPI =
2074           std::make_unique<BranchProbabilityInfo>(F, LI);
2075       std::unique_ptr<BlockFrequencyInfo> NewBFI =
2076           std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
2077       if (PGOViewCounts == PGOVCT_Graph)
2078         NewBFI->view();
2079       else if (PGOViewCounts == PGOVCT_Text) {
2080         dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
2081         NewBFI->print(dbgs());
2082       }
2083     }
2084     if (PGOViewRawCounts != PGOVCT_None &&
2085         (ViewBlockFreqFuncName.empty() ||
2086          F.getName().equals(ViewBlockFreqFuncName))) {
2087       if (PGOViewRawCounts == PGOVCT_Graph)
2088         if (ViewBlockFreqFuncName.empty())
2089           WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2090         else
2091           ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2092       else if (PGOViewRawCounts == PGOVCT_Text) {
2093         dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
2094         Func.dumpInfo();
2095       }
2096     }
2097 
2098     if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
2099       LoopInfo LI{DominatorTree(F)};
2100       BranchProbabilityInfo NBPI(F, LI);
2101 
2102       // Fix func entry count.
2103       if (PGOFixEntryCount)
2104         fixFuncEntryCount(Func, LI, NBPI);
2105 
2106       // Verify BlockFrequency information.
2107       uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
2108       if (PGOVerifyHotBFI) {
2109         HotCountThreshold = PSI->getOrCompHotCountThreshold();
2110         ColdCountThreshold = PSI->getOrCompColdCountThreshold();
2111       }
2112       verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
2113     }
2114   }
2115 
2116   // Set function hotness attribute from the profile.
2117   // We have to apply these attributes at the end because their presence
2118   // can affect the BranchProbabilityInfo of any callers, resulting in an
2119   // inconsistent MST between prof-gen and prof-use.
2120   for (auto &F : HotFunctions) {
2121     F->addFnAttr(Attribute::InlineHint);
2122     LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
2123                       << "\n");
2124   }
2125   for (auto &F : ColdFunctions) {
2126     // Only set when there is no Attribute::Hot set by the user. For Hot
2127     // attribute, user's annotation has the precedence over the profile.
2128     if (F->hasFnAttribute(Attribute::Hot)) {
2129       auto &Ctx = M.getContext();
2130       std::string Msg = std::string("Function ") + F->getName().str() +
2131                         std::string(" is annotated as a hot function but"
2132                                     " the profile is cold");
2133       Ctx.diagnose(
2134           DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
2135       continue;
2136     }
2137     F->addFnAttr(Attribute::Cold);
2138     LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
2139                       << "\n");
2140   }
2141   return true;
2142 }
2143 
2144 PGOInstrumentationUse::PGOInstrumentationUse(
2145     std::string Filename, std::string RemappingFilename, bool IsCS,
2146     IntrusiveRefCntPtr<vfs::FileSystem> VFS)
2147     : ProfileFileName(std::move(Filename)),
2148       ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS),
2149       FS(std::move(VFS)) {
2150   if (!PGOTestProfileFile.empty())
2151     ProfileFileName = PGOTestProfileFile;
2152   if (!PGOTestProfileRemappingFile.empty())
2153     ProfileRemappingFileName = PGOTestProfileRemappingFile;
2154   if (!FS)
2155     FS = vfs::getRealFileSystem();
2156 }
2157 
2158 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
2159                                              ModuleAnalysisManager &MAM) {
2160 
2161   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2162   auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2163     return FAM.getResult<TargetLibraryAnalysis>(F);
2164   };
2165   auto LookupBPI = [&FAM](Function &F) {
2166     return &FAM.getResult<BranchProbabilityAnalysis>(F);
2167   };
2168   auto LookupBFI = [&FAM](Function &F) {
2169     return &FAM.getResult<BlockFrequencyAnalysis>(F);
2170   };
2171 
2172   auto *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
2173 
2174   if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, *FS,
2175                             LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
2176     return PreservedAnalyses::all();
2177 
2178   return PreservedAnalyses::none();
2179 }
2180 
2181 static std::string getSimpleNodeName(const BasicBlock *Node) {
2182   if (!Node->getName().empty())
2183     return Node->getName().str();
2184 
2185   std::string SimpleNodeName;
2186   raw_string_ostream OS(SimpleNodeName);
2187   Node->printAsOperand(OS, false);
2188   return OS.str();
2189 }
2190 
2191 void llvm::setProfMetadata(Module *M, Instruction *TI,
2192                            ArrayRef<uint64_t> EdgeCounts, uint64_t MaxCount) {
2193   assert(MaxCount > 0 && "Bad max count");
2194   uint64_t Scale = calculateCountScale(MaxCount);
2195   SmallVector<unsigned, 4> Weights;
2196   for (const auto &ECI : EdgeCounts)
2197     Weights.push_back(scaleBranchCount(ECI, Scale));
2198 
2199   LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
2200                                            : Weights) {
2201     dbgs() << W << " ";
2202   } dbgs() << "\n";);
2203 
2204   misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false);
2205 
2206   setBranchWeights(*TI, Weights);
2207   if (EmitBranchProbability) {
2208     std::string BrCondStr = getBranchCondString(TI);
2209     if (BrCondStr.empty())
2210       return;
2211 
2212     uint64_t WSum =
2213         std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
2214                         [](uint64_t w1, uint64_t w2) { return w1 + w2; });
2215     uint64_t TotalCount =
2216         std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
2217                         [](uint64_t c1, uint64_t c2) { return c1 + c2; });
2218     Scale = calculateCountScale(WSum);
2219     BranchProbability BP(scaleBranchCount(Weights[0], Scale),
2220                          scaleBranchCount(WSum, Scale));
2221     std::string BranchProbStr;
2222     raw_string_ostream OS(BranchProbStr);
2223     OS << BP;
2224     OS << " (total count : " << TotalCount << ")";
2225     OS.flush();
2226     Function *F = TI->getParent()->getParent();
2227     OptimizationRemarkEmitter ORE(F);
2228     ORE.emit([&]() {
2229       return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2230              << BrCondStr << " is true with probability : " << BranchProbStr;
2231     });
2232   }
2233 }
2234 
2235 namespace llvm {
2236 
2237 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2238   MDBuilder MDB(M->getContext());
2239   TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2240                   MDB.createIrrLoopHeaderWeight(Count));
2241 }
2242 
2243 template <> struct GraphTraits<PGOUseFunc *> {
2244   using NodeRef = const BasicBlock *;
2245   using ChildIteratorType = const_succ_iterator;
2246   using nodes_iterator = pointer_iterator<Function::const_iterator>;
2247 
2248   static NodeRef getEntryNode(const PGOUseFunc *G) {
2249     return &G->getFunc().front();
2250   }
2251 
2252   static ChildIteratorType child_begin(const NodeRef N) {
2253     return succ_begin(N);
2254   }
2255 
2256   static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2257 
2258   static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2259     return nodes_iterator(G->getFunc().begin());
2260   }
2261 
2262   static nodes_iterator nodes_end(const PGOUseFunc *G) {
2263     return nodes_iterator(G->getFunc().end());
2264   }
2265 };
2266 
2267 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
2268   explicit DOTGraphTraits(bool isSimple = false)
2269       : DefaultDOTGraphTraits(isSimple) {}
2270 
2271   static std::string getGraphName(const PGOUseFunc *G) {
2272     return std::string(G->getFunc().getName());
2273   }
2274 
2275   std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2276     std::string Result;
2277     raw_string_ostream OS(Result);
2278 
2279     OS << getSimpleNodeName(Node) << ":\\l";
2280     PGOUseBBInfo *BI = Graph->findBBInfo(Node);
2281     OS << "Count : ";
2282     if (BI && BI->CountValid)
2283       OS << BI->CountValue << "\\l";
2284     else
2285       OS << "Unknown\\l";
2286 
2287     if (!PGOInstrSelect)
2288       return Result;
2289 
2290     for (const Instruction &I : *Node) {
2291       if (!isa<SelectInst>(&I))
2292         continue;
2293       // Display scaled counts for SELECT instruction:
2294       OS << "SELECT : { T = ";
2295       uint64_t TC, FC;
2296       bool HasProf = extractBranchWeights(I, TC, FC);
2297       if (!HasProf)
2298         OS << "Unknown, F = Unknown }\\l";
2299       else
2300         OS << TC << ", F = " << FC << " }\\l";
2301     }
2302     return Result;
2303   }
2304 };
2305 
2306 } // end namespace llvm
2307