xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/NumericalStabilitySanitizer.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- NumericalStabilitySanitizer.cpp -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the instrumentation pass for the numerical sanitizer.
10 // Conceptually the pass injects shadow computations using higher precision
11 // types and inserts consistency checks. For details see the paper
12 // https://arxiv.org/abs/2102.12782.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Regex.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Instrumentation.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/ModuleUtils.h"
46 
47 #include <cstdint>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "nsan"
52 
53 STATISTIC(NumInstrumentedFTLoads,
54           "Number of instrumented floating-point loads");
55 
56 STATISTIC(NumInstrumentedFTCalls,
57           "Number of instrumented floating-point calls");
58 STATISTIC(NumInstrumentedFTRets,
59           "Number of instrumented floating-point returns");
60 STATISTIC(NumInstrumentedFTStores,
61           "Number of instrumented floating-point stores");
62 STATISTIC(NumInstrumentedNonFTStores,
63           "Number of instrumented non floating-point stores");
64 STATISTIC(
65     NumInstrumentedNonFTMemcpyStores,
66     "Number of instrumented non floating-point stores with memcpy semantics");
67 STATISTIC(NumInstrumentedFCmp, "Number of instrumented fcmps");
68 
69 // Using smaller shadow types types can help improve speed. For example, `dlq`
70 // is 3x slower to 5x faster in opt mode and 2-6x faster in dbg mode compared to
71 // `dqq`.
72 static cl::opt<std::string> ClShadowMapping(
73     "nsan-shadow-type-mapping", cl::init("dqq"),
74     cl::desc("One shadow type id for each of `float`, `double`, `long double`. "
75              "`d`,`l`,`q`,`e` mean double, x86_fp80, fp128 (quad) and "
76              "ppc_fp128 (extended double) respectively. The default is to "
77              "shadow `float` as `double`, and `double` and `x86_fp80` as "
78              "`fp128`"),
79     cl::Hidden);
80 
81 static cl::opt<bool>
82     ClInstrumentFCmp("nsan-instrument-fcmp", cl::init(true),
83                      cl::desc("Instrument floating-point comparisons"),
84                      cl::Hidden);
85 
86 static cl::opt<std::string> ClCheckFunctionsFilter(
87     "check-functions-filter",
88     cl::desc("Only emit checks for arguments of functions "
89              "whose names match the given regular expression"),
90     cl::value_desc("regex"));
91 
92 static cl::opt<bool> ClTruncateFCmpEq(
93     "nsan-truncate-fcmp-eq", cl::init(true),
94     cl::desc(
95         "This flag controls the behaviour of fcmp equality comparisons."
96         "For equality comparisons such as `x == 0.0f`, we can perform the "
97         "shadow check in the shadow (`x_shadow == 0.0) == (x == 0.0f)`) or app "
98         " domain (`(trunc(x_shadow) == 0.0f) == (x == 0.0f)`). This helps "
99         "catch the case when `x_shadow` is accurate enough (and therefore "
100         "close enough to zero) so that `trunc(x_shadow)` is zero even though "
101         "both `x` and `x_shadow` are not"),
102     cl::Hidden);
103 
104 // When there is external, uninstrumented code writing to memory, the shadow
105 // memory can get out of sync with the application memory. Enabling this flag
106 // emits consistency checks for loads to catch this situation.
107 // When everything is instrumented, this is not strictly necessary because any
108 // load should have a corresponding store, but can help debug cases when the
109 // framework did a bad job at tracking shadow memory modifications by failing on
110 // load rather than store.
111 // TODO: provide a way to resume computations from the FT value when the load
112 // is inconsistent. This ensures that further computations are not polluted.
113 static cl::opt<bool> ClCheckLoads("nsan-check-loads",
114                                   cl::desc("Check floating-point load"),
115                                   cl::Hidden);
116 
117 static cl::opt<bool> ClCheckStores("nsan-check-stores", cl::init(true),
118                                    cl::desc("Check floating-point stores"),
119                                    cl::Hidden);
120 
121 static cl::opt<bool> ClCheckRet("nsan-check-ret", cl::init(true),
122                                 cl::desc("Check floating-point return values"),
123                                 cl::Hidden);
124 
125 // LLVM may store constant floats as bitcasted ints.
126 // It's not really necessary to shadow such stores,
127 // if the shadow value is unknown the framework will re-extend it on load
128 // anyway. Moreover, because of size collisions (e.g. bf16 vs f16) it is
129 // impossible to determine the floating-point type based on the size.
130 // However, for debugging purposes it can be useful to model such stores.
131 static cl::opt<bool> ClPropagateNonFTConstStoresAsFT(
132     "nsan-propagate-non-ft-const-stores-as-ft",
133     cl::desc(
134         "Propagate non floating-point const stores as floating point values."
135         "For debugging purposes only"),
136     cl::Hidden);
137 
138 constexpr StringLiteral kNsanModuleCtorName("nsan.module_ctor");
139 constexpr StringLiteral kNsanInitName("__nsan_init");
140 
141 // The following values must be kept in sync with the runtime.
142 constexpr int kShadowScale = 2;
143 constexpr int kMaxVectorWidth = 8;
144 constexpr int kMaxNumArgs = 128;
145 constexpr int kMaxShadowTypeSizeBytes = 16; // fp128
146 
147 namespace {
148 
149 // Defines the characteristics (type id, type, and floating-point semantics)
150 // attached for all possible shadow types.
151 class ShadowTypeConfig {
152 public:
153   static std::unique_ptr<ShadowTypeConfig> fromNsanTypeId(char TypeId);
154 
155   // The LLVM Type corresponding to the shadow type.
156   virtual Type *getType(LLVMContext &Context) const = 0;
157 
158   // The nsan type id of the shadow type (`d`, `l`, `q`, ...).
159   virtual char getNsanTypeId() const = 0;
160 
161   virtual ~ShadowTypeConfig() = default;
162 };
163 
164 template <char NsanTypeId>
165 class ShadowTypeConfigImpl : public ShadowTypeConfig {
166 public:
167   char getNsanTypeId() const override { return NsanTypeId; }
168   static constexpr const char kNsanTypeId = NsanTypeId;
169 };
170 
171 // `double` (`d`) shadow type.
172 class F64ShadowConfig : public ShadowTypeConfigImpl<'d'> {
173   Type *getType(LLVMContext &Context) const override {
174     return Type::getDoubleTy(Context);
175   }
176 };
177 
178 // `x86_fp80` (`l`) shadow type: X86 long double.
179 class F80ShadowConfig : public ShadowTypeConfigImpl<'l'> {
180   Type *getType(LLVMContext &Context) const override {
181     return Type::getX86_FP80Ty(Context);
182   }
183 };
184 
185 // `fp128` (`q`) shadow type.
186 class F128ShadowConfig : public ShadowTypeConfigImpl<'q'> {
187   Type *getType(LLVMContext &Context) const override {
188     return Type::getFP128Ty(Context);
189   }
190 };
191 
192 // `ppc_fp128` (`e`) shadow type: IBM extended double with 106 bits of mantissa.
193 class PPC128ShadowConfig : public ShadowTypeConfigImpl<'e'> {
194   Type *getType(LLVMContext &Context) const override {
195     return Type::getPPC_FP128Ty(Context);
196   }
197 };
198 
199 // Creates a ShadowTypeConfig given its type id.
200 std::unique_ptr<ShadowTypeConfig>
201 ShadowTypeConfig::fromNsanTypeId(const char TypeId) {
202   switch (TypeId) {
203   case F64ShadowConfig::kNsanTypeId:
204     return std::make_unique<F64ShadowConfig>();
205   case F80ShadowConfig::kNsanTypeId:
206     return std::make_unique<F80ShadowConfig>();
207   case F128ShadowConfig::kNsanTypeId:
208     return std::make_unique<F128ShadowConfig>();
209   case PPC128ShadowConfig::kNsanTypeId:
210     return std::make_unique<PPC128ShadowConfig>();
211   }
212   report_fatal_error("nsan: invalid shadow type id '" + Twine(TypeId) + "'");
213 }
214 
215 // An enum corresponding to shadow value types. Used as indices in arrays, so
216 // not an `enum class`.
217 enum FTValueType { kFloat, kDouble, kLongDouble, kNumValueTypes };
218 
219 // If `FT` corresponds to a primitive FTValueType, return it.
220 static std::optional<FTValueType> ftValueTypeFromType(Type *FT) {
221   if (FT->isFloatTy())
222     return kFloat;
223   if (FT->isDoubleTy())
224     return kDouble;
225   if (FT->isX86_FP80Ty())
226     return kLongDouble;
227   return {};
228 }
229 
230 // Returns the LLVM type for an FTValueType.
231 static Type *typeFromFTValueType(FTValueType VT, LLVMContext &Context) {
232   switch (VT) {
233   case kFloat:
234     return Type::getFloatTy(Context);
235   case kDouble:
236     return Type::getDoubleTy(Context);
237   case kLongDouble:
238     return Type::getX86_FP80Ty(Context);
239   case kNumValueTypes:
240     return nullptr;
241   }
242   llvm_unreachable("Unhandled FTValueType enum");
243 }
244 
245 // Returns the type name for an FTValueType.
246 static const char *typeNameFromFTValueType(FTValueType VT) {
247   switch (VT) {
248   case kFloat:
249     return "float";
250   case kDouble:
251     return "double";
252   case kLongDouble:
253     return "longdouble";
254   case kNumValueTypes:
255     return nullptr;
256   }
257   llvm_unreachable("Unhandled FTValueType enum");
258 }
259 
260 // A specific mapping configuration of application type to shadow type for nsan
261 // (see -nsan-shadow-mapping flag).
262 class MappingConfig {
263 public:
264   explicit MappingConfig(LLVMContext &C) : Context(C) {
265     if (ClShadowMapping.size() != 3)
266       report_fatal_error("Invalid nsan mapping: " + Twine(ClShadowMapping));
267     unsigned ShadowTypeSizeBits[kNumValueTypes];
268     for (int VT = 0; VT < kNumValueTypes; ++VT) {
269       auto Config = ShadowTypeConfig::fromNsanTypeId(ClShadowMapping[VT]);
270       if (!Config)
271         report_fatal_error("Failed to get ShadowTypeConfig for " +
272                            Twine(ClShadowMapping[VT]));
273       const unsigned AppTypeSize =
274           typeFromFTValueType(static_cast<FTValueType>(VT), Context)
275               ->getScalarSizeInBits();
276       const unsigned ShadowTypeSize =
277           Config->getType(Context)->getScalarSizeInBits();
278       // Check that the shadow type size is at most kShadowScale times the
279       // application type size, so that shadow memory compoutations are valid.
280       if (ShadowTypeSize > kShadowScale * AppTypeSize)
281         report_fatal_error("Invalid nsan mapping f" + Twine(AppTypeSize) +
282                            "->f" + Twine(ShadowTypeSize) +
283                            ": The shadow type size should be at most " +
284                            Twine(kShadowScale) +
285                            " times the application type size");
286       ShadowTypeSizeBits[VT] = ShadowTypeSize;
287       Configs[VT] = std::move(Config);
288     }
289 
290     // Check that the mapping is monotonous. This is required because if one
291     // does an fpextend of `float->long double` in application code, nsan is
292     // going to do an fpextend of `shadow(float) -> shadow(long double)` in
293     // shadow code. This will fail in `qql` mode, since nsan would be
294     // fpextending `f128->long`, which is invalid.
295     // TODO: Relax this.
296     if (ShadowTypeSizeBits[kFloat] > ShadowTypeSizeBits[kDouble] ||
297         ShadowTypeSizeBits[kDouble] > ShadowTypeSizeBits[kLongDouble])
298       report_fatal_error("Invalid nsan mapping: { float->f" +
299                          Twine(ShadowTypeSizeBits[kFloat]) + "; double->f" +
300                          Twine(ShadowTypeSizeBits[kDouble]) +
301                          "; long double->f" +
302                          Twine(ShadowTypeSizeBits[kLongDouble]) + " }");
303   }
304 
305   const ShadowTypeConfig &byValueType(FTValueType VT) const {
306     assert(VT < FTValueType::kNumValueTypes && "invalid value type");
307     return *Configs[VT];
308   }
309 
310   // Returns the extended shadow type for a given application type.
311   Type *getExtendedFPType(Type *FT) const {
312     if (const auto VT = ftValueTypeFromType(FT))
313       return Configs[*VT]->getType(Context);
314     if (FT->isVectorTy()) {
315       auto *VecTy = cast<VectorType>(FT);
316       // TODO: add support for scalable vector types.
317       if (VecTy->isScalableTy())
318         return nullptr;
319       Type *ExtendedScalar = getExtendedFPType(VecTy->getElementType());
320       return ExtendedScalar
321                  ? VectorType::get(ExtendedScalar, VecTy->getElementCount())
322                  : nullptr;
323     }
324     return nullptr;
325   }
326 
327 private:
328   LLVMContext &Context;
329   std::unique_ptr<ShadowTypeConfig> Configs[FTValueType::kNumValueTypes];
330 };
331 
332 // The memory extents of a type specifies how many elements of a given
333 // FTValueType needs to be stored when storing this type.
334 struct MemoryExtents {
335   FTValueType ValueType;
336   uint64_t NumElts;
337 };
338 
339 static MemoryExtents getMemoryExtentsOrDie(Type *FT) {
340   if (const auto VT = ftValueTypeFromType(FT))
341     return {*VT, 1};
342   if (auto *VecTy = dyn_cast<VectorType>(FT)) {
343     const auto ScalarExtents = getMemoryExtentsOrDie(VecTy->getElementType());
344     return {ScalarExtents.ValueType,
345             ScalarExtents.NumElts * VecTy->getElementCount().getFixedValue()};
346   }
347   llvm_unreachable("invalid value type");
348 }
349 
350 // The location of a check. Passed as parameters to runtime checking functions.
351 class CheckLoc {
352 public:
353   // Creates a location that references an application memory location.
354   static CheckLoc makeStore(Value *Address) {
355     CheckLoc Result(kStore);
356     Result.Address = Address;
357     return Result;
358   }
359   static CheckLoc makeLoad(Value *Address) {
360     CheckLoc Result(kLoad);
361     Result.Address = Address;
362     return Result;
363   }
364 
365   // Creates a location that references an argument, given by id.
366   static CheckLoc makeArg(int ArgId) {
367     CheckLoc Result(kArg);
368     Result.ArgId = ArgId;
369     return Result;
370   }
371 
372   // Creates a location that references the return value of a function.
373   static CheckLoc makeRet() { return CheckLoc(kRet); }
374 
375   // Creates a location that references a vector insert.
376   static CheckLoc makeInsert() { return CheckLoc(kInsert); }
377 
378   // Returns the CheckType of location this refers to, as an integer-typed LLVM
379   // IR value.
380   Value *getType(LLVMContext &C) const {
381     return ConstantInt::get(Type::getInt32Ty(C), static_cast<int>(CheckTy));
382   }
383 
384   // Returns a CheckType-specific value representing details of the location
385   // (e.g. application address for loads or stores), as an `IntptrTy`-typed LLVM
386   // IR value.
387   Value *getValue(Type *IntptrTy, IRBuilder<> &Builder) const {
388     switch (CheckTy) {
389     case kUnknown:
390       llvm_unreachable("unknown type");
391     case kRet:
392     case kInsert:
393       return ConstantInt::get(IntptrTy, 0);
394     case kArg:
395       return ConstantInt::get(IntptrTy, ArgId);
396     case kLoad:
397     case kStore:
398       return Builder.CreatePtrToInt(Address, IntptrTy);
399     }
400     llvm_unreachable("Unhandled CheckType enum");
401   }
402 
403 private:
404   // Must be kept in sync with the runtime,
405   // see compiler-rt/lib/nsan/nsan_stats.h
406   enum CheckType {
407     kUnknown = 0,
408     kRet,
409     kArg,
410     kLoad,
411     kStore,
412     kInsert,
413   };
414   explicit CheckLoc(CheckType CheckTy) : CheckTy(CheckTy) {}
415 
416   Value *Address = nullptr;
417   const CheckType CheckTy;
418   int ArgId = -1;
419 };
420 
421 // A map of LLVM IR values to shadow LLVM IR values.
422 class ValueToShadowMap {
423 public:
424   explicit ValueToShadowMap(const MappingConfig &Config) : Config(Config) {}
425 
426   ValueToShadowMap(const ValueToShadowMap &) = delete;
427   ValueToShadowMap &operator=(const ValueToShadowMap &) = delete;
428 
429   // Sets the shadow value for a value. Asserts that the value does not already
430   // have a value.
431   void setShadow(Value &V, Value &Shadow) {
432     [[maybe_unused]] const bool Inserted = Map.try_emplace(&V, &Shadow).second;
433     LLVM_DEBUG({
434       if (!Inserted) {
435         if (auto *I = dyn_cast<Instruction>(&V))
436           errs() << I->getFunction()->getName() << ": ";
437         errs() << "duplicate shadow (" << &V << "): ";
438         V.dump();
439       }
440     });
441     assert(Inserted && "duplicate shadow");
442   }
443 
444   // Returns true if the value already has a shadow (including if the value is a
445   // constant). If true, calling getShadow() is valid.
446   bool hasShadow(Value *V) const {
447     return isa<Constant>(V) || (Map.find(V) != Map.end());
448   }
449 
450   // Returns the shadow value for a given value. Asserts that the value has
451   // a shadow value. Lazily creates shadows for constant values.
452   Value *getShadow(Value *V) const {
453     if (Constant *C = dyn_cast<Constant>(V))
454       return getShadowConstant(C);
455     return Map.find(V)->second;
456   }
457 
458   bool empty() const { return Map.empty(); }
459 
460 private:
461   // Extends a constant application value to its shadow counterpart.
462   APFloat extendConstantFP(APFloat CV, const fltSemantics &To) const {
463     bool LosesInfo = false;
464     CV.convert(To, APFloatBase::rmTowardZero, &LosesInfo);
465     return CV;
466   }
467 
468   // Returns the shadow constant for the given application constant.
469   Constant *getShadowConstant(Constant *C) const {
470     if (UndefValue *U = dyn_cast<UndefValue>(C)) {
471       return UndefValue::get(Config.getExtendedFPType(U->getType()));
472     }
473     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
474       // Floating-point constants.
475       Type *Ty = Config.getExtendedFPType(CFP->getType());
476       return ConstantFP::get(
477           Ty, extendConstantFP(CFP->getValueAPF(), Ty->getFltSemantics()));
478     }
479     // Vector, array, or aggregate constants.
480     if (C->getType()->isVectorTy()) {
481       SmallVector<Constant *, 8> Elements;
482       for (int I = 0, E = cast<VectorType>(C->getType())
483                               ->getElementCount()
484                               .getFixedValue();
485            I < E; ++I)
486         Elements.push_back(getShadowConstant(C->getAggregateElement(I)));
487       return ConstantVector::get(Elements);
488     }
489     llvm_unreachable("unimplemented");
490   }
491 
492   const MappingConfig &Config;
493   DenseMap<Value *, Value *> Map;
494 };
495 
496 /// Instantiating NumericalStabilitySanitizer inserts the nsan runtime library
497 /// API function declarations into the module if they don't exist already.
498 /// Instantiating ensures the __nsan_init function is in the list of global
499 /// constructors for the module.
500 class NumericalStabilitySanitizer {
501 public:
502   NumericalStabilitySanitizer(Module &M);
503   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
504 
505 private:
506   bool instrumentMemIntrinsic(MemIntrinsic *MI);
507   void maybeAddSuffixForNsanInterface(CallBase *CI);
508   bool addrPointsToConstantData(Value *Addr);
509   void maybeCreateShadowValue(Instruction &Root, const TargetLibraryInfo &TLI,
510                               ValueToShadowMap &Map);
511   Value *createShadowValueWithOperandsAvailable(Instruction &Inst,
512                                                 const TargetLibraryInfo &TLI,
513                                                 const ValueToShadowMap &Map);
514   PHINode *maybeCreateShadowPhi(PHINode &Phi, const TargetLibraryInfo &TLI);
515   void createShadowArguments(Function &F, const TargetLibraryInfo &TLI,
516                              ValueToShadowMap &Map);
517 
518   void populateShadowStack(CallBase &CI, const TargetLibraryInfo &TLI,
519                            const ValueToShadowMap &Map);
520 
521   void propagateShadowValues(Instruction &Inst, const TargetLibraryInfo &TLI,
522                              const ValueToShadowMap &Map);
523   Value *emitCheck(Value *V, Value *ShadowV, IRBuilder<> &Builder,
524                    CheckLoc Loc);
525   Value *emitCheckInternal(Value *V, Value *ShadowV, IRBuilder<> &Builder,
526                            CheckLoc Loc);
527   void emitFCmpCheck(FCmpInst &FCmp, const ValueToShadowMap &Map);
528 
529   // Value creation handlers.
530   Value *handleLoad(LoadInst &Load, Type *VT, Type *ExtendedVT);
531   Value *handleCallBase(CallBase &Call, Type *VT, Type *ExtendedVT,
532                         const TargetLibraryInfo &TLI,
533                         const ValueToShadowMap &Map, IRBuilder<> &Builder);
534   Value *maybeHandleKnownCallBase(CallBase &Call, Type *VT, Type *ExtendedVT,
535                                   const TargetLibraryInfo &TLI,
536                                   const ValueToShadowMap &Map,
537                                   IRBuilder<> &Builder);
538   Value *handleTrunc(const FPTruncInst &Trunc, Type *VT, Type *ExtendedVT,
539                      const ValueToShadowMap &Map, IRBuilder<> &Builder);
540   Value *handleExt(const FPExtInst &Ext, Type *VT, Type *ExtendedVT,
541                    const ValueToShadowMap &Map, IRBuilder<> &Builder);
542 
543   // Value propagation handlers.
544   void propagateFTStore(StoreInst &Store, Type *VT, Type *ExtendedVT,
545                         const ValueToShadowMap &Map);
546   void propagateNonFTStore(StoreInst &Store, Type *VT,
547                            const ValueToShadowMap &Map);
548 
549   const DataLayout &DL;
550   LLVMContext &Context;
551   MappingConfig Config;
552   IntegerType *IntptrTy = nullptr;
553   FunctionCallee NsanGetShadowPtrForStore[FTValueType::kNumValueTypes] = {};
554   FunctionCallee NsanGetShadowPtrForLoad[FTValueType::kNumValueTypes] = {};
555   FunctionCallee NsanCheckValue[FTValueType::kNumValueTypes] = {};
556   FunctionCallee NsanFCmpFail[FTValueType::kNumValueTypes] = {};
557   FunctionCallee NsanCopyValues;
558   FunctionCallee NsanSetValueUnknown;
559   FunctionCallee NsanGetRawShadowTypePtr;
560   FunctionCallee NsanGetRawShadowPtr;
561   GlobalValue *NsanShadowRetTag = nullptr;
562 
563   Type *NsanShadowRetType = nullptr;
564   GlobalValue *NsanShadowRetPtr = nullptr;
565 
566   GlobalValue *NsanShadowArgsTag = nullptr;
567 
568   Type *NsanShadowArgsType = nullptr;
569   GlobalValue *NsanShadowArgsPtr = nullptr;
570 
571   std::optional<Regex> CheckFunctionsFilter;
572 };
573 } // end anonymous namespace
574 
575 PreservedAnalyses
576 NumericalStabilitySanitizerPass::run(Module &M, ModuleAnalysisManager &MAM) {
577   getOrCreateSanitizerCtorAndInitFunctions(
578       M, kNsanModuleCtorName, kNsanInitName, /*InitArgTypes=*/{},
579       /*InitArgs=*/{},
580       // This callback is invoked when the functions are created the first
581       // time. Hook them into the global ctors list in that case:
582       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
583 
584   NumericalStabilitySanitizer Nsan(M);
585   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
586   for (Function &F : M)
587     Nsan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
588 
589   return PreservedAnalyses::none();
590 }
591 
592 static GlobalValue *createThreadLocalGV(const char *Name, Module &M, Type *Ty) {
593   return dyn_cast<GlobalValue>(M.getOrInsertGlobal(Name, Ty, [&M, Ty, Name] {
594     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
595                               nullptr, Name, nullptr,
596                               GlobalVariable::InitialExecTLSModel);
597   }));
598 }
599 
600 NumericalStabilitySanitizer::NumericalStabilitySanitizer(Module &M)
601     : DL(M.getDataLayout()), Context(M.getContext()), Config(Context) {
602   IntptrTy = DL.getIntPtrType(Context);
603   Type *PtrTy = PointerType::getUnqual(Context);
604   Type *Int32Ty = Type::getInt32Ty(Context);
605   Type *Int1Ty = Type::getInt1Ty(Context);
606   Type *VoidTy = Type::getVoidTy(Context);
607 
608   AttributeList Attr;
609   Attr = Attr.addFnAttribute(Context, Attribute::NoUnwind);
610   // Initialize the runtime values (functions and global variables).
611   for (int I = 0; I < kNumValueTypes; ++I) {
612     const FTValueType VT = static_cast<FTValueType>(I);
613     const char *VTName = typeNameFromFTValueType(VT);
614     Type *VTTy = typeFromFTValueType(VT, Context);
615 
616     // Load/store.
617     const std::string GetterPrefix =
618         std::string("__nsan_get_shadow_ptr_for_") + VTName;
619     NsanGetShadowPtrForStore[VT] = M.getOrInsertFunction(
620         GetterPrefix + "_store", Attr, PtrTy, PtrTy, IntptrTy);
621     NsanGetShadowPtrForLoad[VT] = M.getOrInsertFunction(
622         GetterPrefix + "_load", Attr, PtrTy, PtrTy, IntptrTy);
623 
624     // Check.
625     const auto &ShadowConfig = Config.byValueType(VT);
626     Type *ShadowTy = ShadowConfig.getType(Context);
627     NsanCheckValue[VT] =
628         M.getOrInsertFunction(std::string("__nsan_internal_check_") + VTName +
629                                   "_" + ShadowConfig.getNsanTypeId(),
630                               Attr, Int32Ty, VTTy, ShadowTy, Int32Ty, IntptrTy);
631     NsanFCmpFail[VT] = M.getOrInsertFunction(
632         std::string("__nsan_fcmp_fail_") + VTName + "_" +
633             ShadowConfig.getNsanTypeId(),
634         Attr, VoidTy, VTTy, VTTy, ShadowTy, ShadowTy, Int32Ty, Int1Ty, Int1Ty);
635   }
636 
637   NsanCopyValues = M.getOrInsertFunction("__nsan_copy_values", Attr, VoidTy,
638                                          PtrTy, PtrTy, IntptrTy);
639   NsanSetValueUnknown = M.getOrInsertFunction("__nsan_set_value_unknown", Attr,
640                                               VoidTy, PtrTy, IntptrTy);
641 
642   // TODO: Add attributes nofree, nosync, readnone, readonly,
643   NsanGetRawShadowTypePtr = M.getOrInsertFunction(
644       "__nsan_internal_get_raw_shadow_type_ptr", Attr, PtrTy, PtrTy);
645   NsanGetRawShadowPtr = M.getOrInsertFunction(
646       "__nsan_internal_get_raw_shadow_ptr", Attr, PtrTy, PtrTy);
647 
648   NsanShadowRetTag = createThreadLocalGV("__nsan_shadow_ret_tag", M, IntptrTy);
649 
650   NsanShadowRetType = ArrayType::get(Type::getInt8Ty(Context),
651                                      kMaxVectorWidth * kMaxShadowTypeSizeBytes);
652   NsanShadowRetPtr =
653       createThreadLocalGV("__nsan_shadow_ret_ptr", M, NsanShadowRetType);
654 
655   NsanShadowArgsTag =
656       createThreadLocalGV("__nsan_shadow_args_tag", M, IntptrTy);
657 
658   NsanShadowArgsType =
659       ArrayType::get(Type::getInt8Ty(Context),
660                      kMaxVectorWidth * kMaxNumArgs * kMaxShadowTypeSizeBytes);
661 
662   NsanShadowArgsPtr =
663       createThreadLocalGV("__nsan_shadow_args_ptr", M, NsanShadowArgsType);
664 
665   if (!ClCheckFunctionsFilter.empty()) {
666     Regex R = Regex(ClCheckFunctionsFilter);
667     std::string RegexError;
668     assert(R.isValid(RegexError));
669     CheckFunctionsFilter = std::move(R);
670   }
671 }
672 
673 // Returns true if the given LLVM Value points to constant data (typically, a
674 // global variable reference).
675 bool NumericalStabilitySanitizer::addrPointsToConstantData(Value *Addr) {
676   // If this is a GEP, just analyze its pointer operand.
677   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
678     Addr = GEP->getPointerOperand();
679 
680   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr))
681     return GV->isConstant();
682   return false;
683 }
684 
685 // This instruments the function entry to create shadow arguments.
686 // Pseudocode:
687 //   if (this_fn_ptr == __nsan_shadow_args_tag) {
688 //     s(arg0) = LOAD<sizeof(arg0)>(__nsan_shadow_args);
689 //     s(arg1) = LOAD<sizeof(arg1)>(__nsan_shadow_args + sizeof(arg0));
690 //     ...
691 //     __nsan_shadow_args_tag = 0;
692 //   } else {
693 //     s(arg0) = fext(arg0);
694 //     s(arg1) = fext(arg1);
695 //     ...
696 //   }
697 void NumericalStabilitySanitizer::createShadowArguments(
698     Function &F, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) {
699   assert(!F.getIntrinsicID() && "found a definition of an intrinsic");
700 
701   // Do not bother if there are no FP args.
702   if (all_of(F.args(), [this](const Argument &Arg) {
703         return Config.getExtendedFPType(Arg.getType()) == nullptr;
704       }))
705     return;
706 
707   IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHI());
708   // The function has shadow args if the shadow args tag matches the function
709   // address.
710   Value *HasShadowArgs = Builder.CreateICmpEQ(
711       Builder.CreateLoad(IntptrTy, NsanShadowArgsTag, /*isVolatile=*/false),
712       Builder.CreatePtrToInt(&F, IntptrTy));
713 
714   unsigned ShadowArgsOffsetBytes = 0;
715   for (Argument &Arg : F.args()) {
716     Type *VT = Arg.getType();
717     Type *ExtendedVT = Config.getExtendedFPType(VT);
718     if (ExtendedVT == nullptr)
719       continue; // Not an FT value.
720     Value *L = Builder.CreateAlignedLoad(
721         ExtendedVT,
722         Builder.CreateConstGEP2_64(NsanShadowArgsType, NsanShadowArgsPtr, 0,
723                                    ShadowArgsOffsetBytes),
724         Align(1), /*isVolatile=*/false);
725     Value *Shadow = Builder.CreateSelect(HasShadowArgs, L,
726                                          Builder.CreateFPExt(&Arg, ExtendedVT));
727     Map.setShadow(Arg, *Shadow);
728     TypeSize SlotSize = DL.getTypeStoreSize(ExtendedVT);
729     assert(!SlotSize.isScalable() && "unsupported");
730     ShadowArgsOffsetBytes += SlotSize;
731   }
732   Builder.CreateStore(ConstantInt::get(IntptrTy, 0), NsanShadowArgsTag);
733 }
734 
735 // Returns true if the instrumentation should emit code to check arguments
736 // before a function call.
737 static bool shouldCheckArgs(CallBase &CI, const TargetLibraryInfo &TLI,
738                             const std::optional<Regex> &CheckFunctionsFilter) {
739 
740   Function *Fn = CI.getCalledFunction();
741 
742   if (CheckFunctionsFilter) {
743     // Skip checking args of indirect calls.
744     if (Fn == nullptr)
745       return false;
746     if (CheckFunctionsFilter->match(Fn->getName()))
747       return true;
748     return false;
749   }
750 
751   if (Fn == nullptr)
752     return true; // Always check args of indirect calls.
753 
754   // Never check nsan functions, the user called them for a reason.
755   if (Fn->getName().starts_with("__nsan_"))
756     return false;
757 
758   const auto ID = Fn->getIntrinsicID();
759   LibFunc LFunc = LibFunc::NumLibFuncs;
760   // Always check args of unknown functions.
761   if (ID == Intrinsic::ID() && !TLI.getLibFunc(*Fn, LFunc))
762     return true;
763 
764   // Do not check args of an `fabs` call that is used for a comparison.
765   // This is typically used for `fabs(a-b) < tolerance`, where what matters is
766   // the result of the comparison, which is already caught be the fcmp checks.
767   if (ID == Intrinsic::fabs || LFunc == LibFunc_fabsf ||
768       LFunc == LibFunc_fabs || LFunc == LibFunc_fabsl)
769     for (const auto &U : CI.users())
770       if (isa<CmpInst>(U))
771         return false;
772 
773   return true; // Default is check.
774 }
775 
776 // Populates the shadow call stack (which contains shadow values for every
777 // floating-point parameter to the function).
778 void NumericalStabilitySanitizer::populateShadowStack(
779     CallBase &CI, const TargetLibraryInfo &TLI, const ValueToShadowMap &Map) {
780   // Do not create a shadow stack for inline asm.
781   if (CI.isInlineAsm())
782     return;
783 
784   // Do not bother if there are no FP args.
785   if (all_of(CI.operands(), [this](const Value *Arg) {
786         return Config.getExtendedFPType(Arg->getType()) == nullptr;
787       }))
788     return;
789 
790   IRBuilder<> Builder(&CI);
791   SmallVector<Value *, 8> ArgShadows;
792   const bool ShouldCheckArgs = shouldCheckArgs(CI, TLI, CheckFunctionsFilter);
793   for (auto [ArgIdx, Arg] : enumerate(CI.operands())) {
794     if (Config.getExtendedFPType(Arg->getType()) == nullptr)
795       continue; // Not an FT value.
796     Value *ArgShadow = Map.getShadow(Arg);
797     ArgShadows.push_back(ShouldCheckArgs ? emitCheck(Arg, ArgShadow, Builder,
798                                                      CheckLoc::makeArg(ArgIdx))
799                                          : ArgShadow);
800   }
801 
802   // Do not create shadow stacks for intrinsics/known lib funcs.
803   if (Function *Fn = CI.getCalledFunction()) {
804     LibFunc LFunc;
805     if (Fn->isIntrinsic() || TLI.getLibFunc(*Fn, LFunc))
806       return;
807   }
808 
809   // Set the shadow stack tag.
810   Builder.CreateStore(CI.getCalledOperand(), NsanShadowArgsTag);
811   TypeSize ShadowArgsOffsetBytes = TypeSize::getFixed(0);
812 
813   unsigned ShadowArgId = 0;
814   for (const Value *Arg : CI.operands()) {
815     Type *VT = Arg->getType();
816     Type *ExtendedVT = Config.getExtendedFPType(VT);
817     if (ExtendedVT == nullptr)
818       continue; // Not an FT value.
819     Builder.CreateAlignedStore(
820         ArgShadows[ShadowArgId++],
821         Builder.CreateConstGEP2_64(NsanShadowArgsType, NsanShadowArgsPtr, 0,
822                                    ShadowArgsOffsetBytes),
823         Align(1), /*isVolatile=*/false);
824     TypeSize SlotSize = DL.getTypeStoreSize(ExtendedVT);
825     assert(!SlotSize.isScalable() && "unsupported");
826     ShadowArgsOffsetBytes += SlotSize;
827   }
828 }
829 
830 // Internal part of emitCheck(). Returns a value that indicates whether
831 // computation should continue with the shadow or resume by re-fextending the
832 // value.
833 enum class ContinuationType { // Keep in sync with runtime.
834   ContinueWithShadow = 0,
835   ResumeFromValue = 1,
836 };
837 
838 Value *NumericalStabilitySanitizer::emitCheckInternal(Value *V, Value *ShadowV,
839                                                       IRBuilder<> &Builder,
840                                                       CheckLoc Loc) {
841   // Do not emit checks for constant values, this is redundant.
842   if (isa<Constant>(V))
843     return ConstantInt::get(
844         Builder.getInt32Ty(),
845         static_cast<int>(ContinuationType::ContinueWithShadow));
846 
847   Type *Ty = V->getType();
848   if (const auto VT = ftValueTypeFromType(Ty))
849     return Builder.CreateCall(
850         NsanCheckValue[*VT],
851         {V, ShadowV, Loc.getType(Context), Loc.getValue(IntptrTy, Builder)});
852 
853   if (Ty->isVectorTy()) {
854     auto *VecTy = cast<VectorType>(Ty);
855     // We currently skip scalable vector types in MappingConfig,
856     // thus we should not encounter any such types here.
857     assert(!VecTy->isScalableTy() &&
858            "Scalable vector types are not supported yet");
859     Value *CheckResult = nullptr;
860     for (int I = 0, E = VecTy->getElementCount().getFixedValue(); I < E; ++I) {
861       // We resume if any element resumes. Another option would be to create a
862       // vector shuffle with the array of ContinueWithShadow, but that is too
863       // complex.
864       Value *ExtractV = Builder.CreateExtractElement(V, I);
865       Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
866       Value *ComponentCheckResult =
867           emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
868       CheckResult = CheckResult
869                         ? Builder.CreateOr(CheckResult, ComponentCheckResult)
870                         : ComponentCheckResult;
871     }
872     return CheckResult;
873   }
874   if (Ty->isArrayTy()) {
875     Value *CheckResult = nullptr;
876     for (auto I : seq(Ty->getArrayNumElements())) {
877       Value *ExtractV = Builder.CreateExtractElement(V, I);
878       Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
879       Value *ComponentCheckResult =
880           emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
881       CheckResult = CheckResult
882                         ? Builder.CreateOr(CheckResult, ComponentCheckResult)
883                         : ComponentCheckResult;
884     }
885     return CheckResult;
886   }
887   if (Ty->isStructTy()) {
888     Value *CheckResult = nullptr;
889     for (auto I : seq(Ty->getStructNumElements())) {
890       if (Config.getExtendedFPType(Ty->getStructElementType(I)) == nullptr)
891         continue; // Only check FT values.
892       Value *ExtractV = Builder.CreateExtractValue(V, I);
893       Value *ExtractShadowV = Builder.CreateExtractElement(ShadowV, I);
894       Value *ComponentCheckResult =
895           emitCheckInternal(ExtractV, ExtractShadowV, Builder, Loc);
896       CheckResult = CheckResult
897                         ? Builder.CreateOr(CheckResult, ComponentCheckResult)
898                         : ComponentCheckResult;
899     }
900     if (!CheckResult)
901       return ConstantInt::get(
902           Builder.getInt32Ty(),
903           static_cast<int>(ContinuationType::ContinueWithShadow));
904     return CheckResult;
905   }
906 
907   llvm_unreachable("not implemented");
908 }
909 
910 // Inserts a runtime check of V against its shadow value ShadowV.
911 // We check values whenever they escape: on return, call, stores, and
912 // insertvalue.
913 // Returns the shadow value that should be used to continue the computations,
914 // depending on the answer from the runtime.
915 // TODO: Should we check on select ? phi ?
916 Value *NumericalStabilitySanitizer::emitCheck(Value *V, Value *ShadowV,
917                                               IRBuilder<> &Builder,
918                                               CheckLoc Loc) {
919   // Do not emit checks for constant values, this is redundant.
920   if (isa<Constant>(V))
921     return ShadowV;
922 
923   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
924     Function *F = Inst->getFunction();
925     if (CheckFunctionsFilter && !CheckFunctionsFilter->match(F->getName())) {
926       return ShadowV;
927     }
928   }
929 
930   Value *CheckResult = emitCheckInternal(V, ShadowV, Builder, Loc);
931   Value *ICmpEQ = Builder.CreateICmpEQ(
932       CheckResult,
933       ConstantInt::get(Builder.getInt32Ty(),
934                        static_cast<int>(ContinuationType::ResumeFromValue)));
935   return Builder.CreateSelect(
936       ICmpEQ, Builder.CreateFPExt(V, Config.getExtendedFPType(V->getType())),
937       ShadowV);
938 }
939 
940 // Inserts a check that fcmp on shadow values are consistent with that on base
941 // values.
942 void NumericalStabilitySanitizer::emitFCmpCheck(FCmpInst &FCmp,
943                                                 const ValueToShadowMap &Map) {
944   if (!ClInstrumentFCmp)
945     return;
946 
947   Function *F = FCmp.getFunction();
948   if (CheckFunctionsFilter && !CheckFunctionsFilter->match(F->getName()))
949     return;
950 
951   Value *LHS = FCmp.getOperand(0);
952   if (Config.getExtendedFPType(LHS->getType()) == nullptr)
953     return;
954   Value *RHS = FCmp.getOperand(1);
955 
956   // Split the basic block. On mismatch, we'll jump to the new basic block with
957   // a call to the runtime for error reporting.
958   BasicBlock *FCmpBB = FCmp.getParent();
959   BasicBlock *NextBB = FCmpBB->splitBasicBlock(FCmp.getNextNode());
960   // Remove the newly created terminator unconditional branch.
961   FCmpBB->back().eraseFromParent();
962   BasicBlock *FailBB =
963       BasicBlock::Create(Context, "", FCmpBB->getParent(), NextBB);
964 
965   // Create the shadow fcmp and comparison between the fcmps.
966   IRBuilder<> FCmpBuilder(FCmpBB);
967   FCmpBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc());
968   Value *ShadowLHS = Map.getShadow(LHS);
969   Value *ShadowRHS = Map.getShadow(RHS);
970   // See comment on ClTruncateFCmpEq.
971   if (FCmp.isEquality() && ClTruncateFCmpEq) {
972     Type *Ty = ShadowLHS->getType();
973     ShadowLHS = FCmpBuilder.CreateFPExt(
974         FCmpBuilder.CreateFPTrunc(ShadowLHS, LHS->getType()), Ty);
975     ShadowRHS = FCmpBuilder.CreateFPExt(
976         FCmpBuilder.CreateFPTrunc(ShadowRHS, RHS->getType()), Ty);
977   }
978   Value *ShadowFCmp =
979       FCmpBuilder.CreateFCmp(FCmp.getPredicate(), ShadowLHS, ShadowRHS);
980   Value *OriginalAndShadowFcmpMatch =
981       FCmpBuilder.CreateICmpEQ(&FCmp, ShadowFCmp);
982 
983   if (OriginalAndShadowFcmpMatch->getType()->isVectorTy()) {
984     // If we have a vector type, `OriginalAndShadowFcmpMatch` is a vector of i1,
985     // where an element is true if the corresponding elements in original and
986     // shadow are the same. We want all elements to be 1.
987     OriginalAndShadowFcmpMatch =
988         FCmpBuilder.CreateAndReduce(OriginalAndShadowFcmpMatch);
989   }
990 
991   // Use MDBuilder(*C).createLikelyBranchWeights() because "match" is the common
992   // case.
993   FCmpBuilder.CreateCondBr(OriginalAndShadowFcmpMatch, NextBB, FailBB,
994                            MDBuilder(Context).createLikelyBranchWeights());
995 
996   // Fill in FailBB.
997   IRBuilder<> FailBuilder(FailBB);
998   FailBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc());
999 
1000   const auto EmitFailCall = [this, &FCmp, &FCmpBuilder,
1001                              &FailBuilder](Value *L, Value *R, Value *ShadowL,
1002                                            Value *ShadowR, Value *Result,
1003                                            Value *ShadowResult) {
1004     Type *FT = L->getType();
1005     FunctionCallee *Callee = nullptr;
1006     if (FT->isFloatTy()) {
1007       Callee = &(NsanFCmpFail[kFloat]);
1008     } else if (FT->isDoubleTy()) {
1009       Callee = &(NsanFCmpFail[kDouble]);
1010     } else if (FT->isX86_FP80Ty()) {
1011       // TODO: make NsanFCmpFailLongDouble work.
1012       Callee = &(NsanFCmpFail[kDouble]);
1013       L = FailBuilder.CreateFPTrunc(L, Type::getDoubleTy(Context));
1014       R = FailBuilder.CreateFPTrunc(L, Type::getDoubleTy(Context));
1015     } else {
1016       llvm_unreachable("not implemented");
1017     }
1018     FailBuilder.CreateCall(*Callee, {L, R, ShadowL, ShadowR,
1019                                      ConstantInt::get(FCmpBuilder.getInt32Ty(),
1020                                                       FCmp.getPredicate()),
1021                                      Result, ShadowResult});
1022   };
1023   if (LHS->getType()->isVectorTy()) {
1024     for (int I = 0, E = cast<VectorType>(LHS->getType())
1025                             ->getElementCount()
1026                             .getFixedValue();
1027          I < E; ++I) {
1028       Value *ExtractLHS = FailBuilder.CreateExtractElement(LHS, I);
1029       Value *ExtractRHS = FailBuilder.CreateExtractElement(RHS, I);
1030       Value *ExtractShaodwLHS = FailBuilder.CreateExtractElement(ShadowLHS, I);
1031       Value *ExtractShaodwRHS = FailBuilder.CreateExtractElement(ShadowRHS, I);
1032       Value *ExtractFCmp = FailBuilder.CreateExtractElement(&FCmp, I);
1033       Value *ExtractShadowFCmp =
1034           FailBuilder.CreateExtractElement(ShadowFCmp, I);
1035       EmitFailCall(ExtractLHS, ExtractRHS, ExtractShaodwLHS, ExtractShaodwRHS,
1036                    ExtractFCmp, ExtractShadowFCmp);
1037     }
1038   } else {
1039     EmitFailCall(LHS, RHS, ShadowLHS, ShadowRHS, &FCmp, ShadowFCmp);
1040   }
1041   FailBuilder.CreateBr(NextBB);
1042 
1043   ++NumInstrumentedFCmp;
1044 }
1045 
1046 // Creates a shadow phi value for any phi that defines a value of FT type.
1047 PHINode *NumericalStabilitySanitizer::maybeCreateShadowPhi(
1048     PHINode &Phi, const TargetLibraryInfo &TLI) {
1049   Type *VT = Phi.getType();
1050   Type *ExtendedVT = Config.getExtendedFPType(VT);
1051   if (ExtendedVT == nullptr)
1052     return nullptr; // Not an FT value.
1053   // The phi operands are shadow values and are not available when the phi is
1054   // created. They will be populated in a final phase, once all shadow values
1055   // have been created.
1056   PHINode *Shadow = PHINode::Create(ExtendedVT, Phi.getNumIncomingValues());
1057   Shadow->insertAfter(&Phi);
1058   return Shadow;
1059 }
1060 
1061 Value *NumericalStabilitySanitizer::handleLoad(LoadInst &Load, Type *VT,
1062                                                Type *ExtendedVT) {
1063   IRBuilder<> Builder(Load.getNextNode());
1064   Builder.SetCurrentDebugLocation(Load.getDebugLoc());
1065   if (addrPointsToConstantData(Load.getPointerOperand())) {
1066     // No need to look into the shadow memory, the value is a constant. Just
1067     // convert from FT to 2FT.
1068     return Builder.CreateFPExt(&Load, ExtendedVT);
1069   }
1070 
1071   // if (%shadowptr == &)
1072   //    %shadow = fpext %v
1073   // else
1074   //    %shadow = load (ptrcast %shadow_ptr))
1075   // Considered options here:
1076   //  - Have `NsanGetShadowPtrForLoad` return a fixed address
1077   //    &__nsan_unknown_value_shadow_address that is valid to load from, and
1078   //    use a select. This has the advantage that the generated IR is simpler.
1079   //  - Have `NsanGetShadowPtrForLoad` return nullptr.  Because `select` does
1080   //    not short-circuit, dereferencing the returned pointer is no longer an
1081   //    option, have to split and create a separate basic block. This has the
1082   //    advantage of being easier to debug because it crashes if we ever mess
1083   //    up.
1084 
1085   const auto Extents = getMemoryExtentsOrDie(VT);
1086   Value *ShadowPtr = Builder.CreateCall(
1087       NsanGetShadowPtrForLoad[Extents.ValueType],
1088       {Load.getPointerOperand(), ConstantInt::get(IntptrTy, Extents.NumElts)});
1089   ++NumInstrumentedFTLoads;
1090 
1091   // Split the basic block.
1092   BasicBlock *LoadBB = Load.getParent();
1093   BasicBlock *NextBB = LoadBB->splitBasicBlock(Builder.GetInsertPoint());
1094   // Create the two options for creating the shadow value.
1095   BasicBlock *ShadowLoadBB =
1096       BasicBlock::Create(Context, "", LoadBB->getParent(), NextBB);
1097   BasicBlock *FExtBB =
1098       BasicBlock::Create(Context, "", LoadBB->getParent(), NextBB);
1099 
1100   // Replace the newly created terminator unconditional branch by a conditional
1101   // branch to one of the options.
1102   {
1103     LoadBB->back().eraseFromParent();
1104     IRBuilder<> LoadBBBuilder(LoadBB); // The old builder has been invalidated.
1105     LoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
1106     LoadBBBuilder.CreateCondBr(LoadBBBuilder.CreateIsNull(ShadowPtr), FExtBB,
1107                                ShadowLoadBB);
1108   }
1109 
1110   // Fill in ShadowLoadBB.
1111   IRBuilder<> ShadowLoadBBBuilder(ShadowLoadBB);
1112   ShadowLoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
1113   Value *ShadowLoad = ShadowLoadBBBuilder.CreateAlignedLoad(
1114       ExtendedVT, ShadowPtr, Align(1), Load.isVolatile());
1115   if (ClCheckLoads) {
1116     ShadowLoad = emitCheck(&Load, ShadowLoad, ShadowLoadBBBuilder,
1117                            CheckLoc::makeLoad(Load.getPointerOperand()));
1118   }
1119   ShadowLoadBBBuilder.CreateBr(NextBB);
1120 
1121   // Fill in FExtBB.
1122   IRBuilder<> FExtBBBuilder(FExtBB);
1123   FExtBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
1124   Value *FExt = FExtBBBuilder.CreateFPExt(&Load, ExtendedVT);
1125   FExtBBBuilder.CreateBr(NextBB);
1126 
1127   // The shadow value come from any of the options.
1128   IRBuilder<> NextBBBuilder(&*NextBB->begin());
1129   NextBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc());
1130   PHINode *ShadowPhi = NextBBBuilder.CreatePHI(ExtendedVT, 2);
1131   ShadowPhi->addIncoming(ShadowLoad, ShadowLoadBB);
1132   ShadowPhi->addIncoming(FExt, FExtBB);
1133   return ShadowPhi;
1134 }
1135 
1136 Value *NumericalStabilitySanitizer::handleTrunc(const FPTruncInst &Trunc,
1137                                                 Type *VT, Type *ExtendedVT,
1138                                                 const ValueToShadowMap &Map,
1139                                                 IRBuilder<> &Builder) {
1140   Value *OrigSource = Trunc.getOperand(0);
1141   Type *OrigSourceTy = OrigSource->getType();
1142   Type *ExtendedSourceTy = Config.getExtendedFPType(OrigSourceTy);
1143 
1144   // When truncating:
1145   //  - (A) If the source has a shadow, we truncate from the shadow, else we
1146   //    truncate from the original source.
1147   //  - (B) If the shadow of the source is larger than the shadow of the dest,
1148   //    we still need a truncate. Else, the shadow of the source is the same
1149   //    type as the shadow of the dest (because mappings are non-decreasing), so
1150   //   we don't need to emit a truncate.
1151   // Examples,
1152   //   with a mapping of {f32->f64;f64->f80;f80->f128}
1153   //     fptrunc double   %1 to float     ->  fptrunc x86_fp80 s(%1) to double
1154   //     fptrunc x86_fp80 %1 to float     ->  fptrunc fp128    s(%1) to double
1155   //     fptrunc fp128    %1 to float     ->  fptrunc fp128    %1    to double
1156   //     fptrunc x86_fp80 %1 to double    ->  x86_fp80 s(%1)
1157   //     fptrunc fp128    %1 to double    ->  fptrunc fp128 %1 to x86_fp80
1158   //     fptrunc fp128    %1 to x86_fp80  ->  fp128 %1
1159   //   with a mapping of {f32->f64;f64->f128;f80->f128}
1160   //     fptrunc double   %1 to float     ->  fptrunc fp128    s(%1) to double
1161   //     fptrunc x86_fp80 %1 to float     ->  fptrunc fp128    s(%1) to double
1162   //     fptrunc fp128    %1 to float     ->  fptrunc fp128    %1    to double
1163   //     fptrunc x86_fp80 %1 to double    ->  fp128 %1
1164   //     fptrunc fp128    %1 to double    ->  fp128 %1
1165   //     fptrunc fp128    %1 to x86_fp80  ->  fp128 %1
1166   //   with a mapping of {f32->f32;f64->f32;f80->f64}
1167   //     fptrunc double   %1 to float     ->  float s(%1)
1168   //     fptrunc x86_fp80 %1 to float     ->  fptrunc double    s(%1) to float
1169   //     fptrunc fp128    %1 to float     ->  fptrunc fp128     %1    to float
1170   //     fptrunc x86_fp80 %1 to double    ->  fptrunc double    s(%1) to float
1171   //     fptrunc fp128    %1 to double    ->  fptrunc fp128     %1    to float
1172   //     fptrunc fp128    %1 to x86_fp80  ->  fptrunc fp128     %1    to double
1173 
1174   // See (A) above.
1175   Value *Source = ExtendedSourceTy ? Map.getShadow(OrigSource) : OrigSource;
1176   Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy;
1177   // See (B) above.
1178   if (SourceTy == ExtendedVT)
1179     return Source;
1180 
1181   return Builder.CreateFPTrunc(Source, ExtendedVT);
1182 }
1183 
1184 Value *NumericalStabilitySanitizer::handleExt(const FPExtInst &Ext, Type *VT,
1185                                               Type *ExtendedVT,
1186                                               const ValueToShadowMap &Map,
1187                                               IRBuilder<> &Builder) {
1188   Value *OrigSource = Ext.getOperand(0);
1189   Type *OrigSourceTy = OrigSource->getType();
1190   Type *ExtendedSourceTy = Config.getExtendedFPType(OrigSourceTy);
1191   // When extending:
1192   //  - (A) If the source has a shadow, we extend from the shadow, else we
1193   //    extend from the original source.
1194   //  - (B) If the shadow of the dest is larger than the shadow of the source,
1195   //    we still need an extend. Else, the shadow of the source is the same
1196   //    type as the shadow of the dest (because mappings are non-decreasing), so
1197   //    we don't need to emit an extend.
1198   // Examples,
1199   //   with a mapping of {f32->f64;f64->f80;f80->f128}
1200   //     fpext half    %1 to float     ->  fpext half     %1    to double
1201   //     fpext half    %1 to double    ->  fpext half     %1    to x86_fp80
1202   //     fpext half    %1 to x86_fp80  ->  fpext half     %1    to fp128
1203   //     fpext float   %1 to double    ->  double s(%1)
1204   //     fpext float   %1 to x86_fp80  ->  fpext double   s(%1) to fp128
1205   //     fpext double  %1 to x86_fp80  ->  fpext x86_fp80 s(%1) to fp128
1206   //   with a mapping of {f32->f64;f64->f128;f80->f128}
1207   //     fpext half    %1 to float     ->  fpext half     %1    to double
1208   //     fpext half    %1 to double    ->  fpext half     %1    to fp128
1209   //     fpext half    %1 to x86_fp80  ->  fpext half     %1    to fp128
1210   //     fpext float   %1 to double    ->  fpext double   s(%1) to fp128
1211   //     fpext float   %1 to x86_fp80  ->  fpext double   s(%1) to fp128
1212   //     fpext double  %1 to x86_fp80  ->  fp128 s(%1)
1213   //   with a mapping of {f32->f32;f64->f32;f80->f64}
1214   //     fpext half    %1 to float     ->  fpext half     %1    to float
1215   //     fpext half    %1 to double    ->  fpext half     %1    to float
1216   //     fpext half    %1 to x86_fp80  ->  fpext half     %1    to double
1217   //     fpext float   %1 to double    ->  s(%1)
1218   //     fpext float   %1 to x86_fp80  ->  fpext float    s(%1) to double
1219   //     fpext double  %1 to x86_fp80  ->  fpext float    s(%1) to double
1220 
1221   // See (A) above.
1222   Value *Source = ExtendedSourceTy ? Map.getShadow(OrigSource) : OrigSource;
1223   Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy;
1224   // See (B) above.
1225   if (SourceTy == ExtendedVT)
1226     return Source;
1227 
1228   return Builder.CreateFPExt(Source, ExtendedVT);
1229 }
1230 
1231 namespace {
1232 // TODO: This should be tablegen-ed.
1233 struct KnownIntrinsic {
1234   struct WidenedIntrinsic {
1235     const char *NarrowName;
1236     Intrinsic::ID ID; // wide id.
1237     using FnTypeFactory = FunctionType *(*)(LLVMContext &);
1238     FnTypeFactory MakeFnTy;
1239   };
1240 
1241   static const char *get(LibFunc LFunc);
1242 
1243   // Given an intrinsic with an `FT` argument, try to find a wider intrinsic
1244   // that applies the same operation on the shadow argument.
1245   // Options are:
1246   //  - pass in the ID and full function type,
1247   //  - pass in the name, which includes the function type through mangling.
1248   static const WidenedIntrinsic *widen(StringRef Name);
1249 
1250 private:
1251   struct LFEntry {
1252     LibFunc LFunc;
1253     const char *IntrinsicName;
1254   };
1255   static const LFEntry kLibfuncIntrinsics[];
1256 
1257   static const WidenedIntrinsic kWidenedIntrinsics[];
1258 };
1259 } // namespace
1260 
1261 static FunctionType *makeDoubleDouble(LLVMContext &C) {
1262   return FunctionType::get(Type::getDoubleTy(C), {Type::getDoubleTy(C)}, false);
1263 }
1264 
1265 static FunctionType *makeX86FP80X86FP80(LLVMContext &C) {
1266   return FunctionType::get(Type::getX86_FP80Ty(C), {Type::getX86_FP80Ty(C)},
1267                            false);
1268 }
1269 
1270 static FunctionType *makeDoubleDoubleI32(LLVMContext &C) {
1271   return FunctionType::get(Type::getDoubleTy(C),
1272                            {Type::getDoubleTy(C), Type::getInt32Ty(C)}, false);
1273 }
1274 
1275 static FunctionType *makeX86FP80X86FP80I32(LLVMContext &C) {
1276   return FunctionType::get(Type::getX86_FP80Ty(C),
1277                            {Type::getX86_FP80Ty(C), Type::getInt32Ty(C)},
1278                            false);
1279 }
1280 
1281 static FunctionType *makeDoubleDoubleDouble(LLVMContext &C) {
1282   return FunctionType::get(Type::getDoubleTy(C),
1283                            {Type::getDoubleTy(C), Type::getDoubleTy(C)}, false);
1284 }
1285 
1286 static FunctionType *makeX86FP80X86FP80X86FP80(LLVMContext &C) {
1287   return FunctionType::get(Type::getX86_FP80Ty(C),
1288                            {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)},
1289                            false);
1290 }
1291 
1292 static FunctionType *makeDoubleDoubleDoubleDouble(LLVMContext &C) {
1293   return FunctionType::get(
1294       Type::getDoubleTy(C),
1295       {Type::getDoubleTy(C), Type::getDoubleTy(C), Type::getDoubleTy(C)},
1296       false);
1297 }
1298 
1299 static FunctionType *makeX86FP80X86FP80X86FP80X86FP80(LLVMContext &C) {
1300   return FunctionType::get(
1301       Type::getX86_FP80Ty(C),
1302       {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)},
1303       false);
1304 }
1305 
1306 const KnownIntrinsic::WidenedIntrinsic KnownIntrinsic::kWidenedIntrinsics[] = {
1307     // TODO: Right now we ignore vector intrinsics.
1308     // This is hard because we have to model the semantics of the intrinsics,
1309     // e.g. llvm.x86.sse2.min.sd means extract first element, min, insert back.
1310     // Intrinsics that take any non-vector FT types:
1311     // NOTE: Right now because of
1312     // https://github.com/llvm/llvm-project/issues/44744
1313     // for f128 we need to use makeX86FP80X86FP80 (go to a lower precision and
1314     // come back).
1315     {"llvm.sqrt.f32", Intrinsic::sqrt, makeDoubleDouble},
1316     {"llvm.sqrt.f64", Intrinsic::sqrt, makeX86FP80X86FP80},
1317     {"llvm.sqrt.f80", Intrinsic::sqrt, makeX86FP80X86FP80},
1318     {"llvm.powi.f32", Intrinsic::powi, makeDoubleDoubleI32},
1319     {"llvm.powi.f64", Intrinsic::powi, makeX86FP80X86FP80I32},
1320     {"llvm.powi.f80", Intrinsic::powi, makeX86FP80X86FP80I32},
1321     {"llvm.sin.f32", Intrinsic::sin, makeDoubleDouble},
1322     {"llvm.sin.f64", Intrinsic::sin, makeX86FP80X86FP80},
1323     {"llvm.sin.f80", Intrinsic::sin, makeX86FP80X86FP80},
1324     {"llvm.cos.f32", Intrinsic::cos, makeDoubleDouble},
1325     {"llvm.cos.f64", Intrinsic::cos, makeX86FP80X86FP80},
1326     {"llvm.cos.f80", Intrinsic::cos, makeX86FP80X86FP80},
1327     {"llvm.pow.f32", Intrinsic::pow, makeDoubleDoubleDouble},
1328     {"llvm.pow.f64", Intrinsic::pow, makeX86FP80X86FP80X86FP80},
1329     {"llvm.pow.f80", Intrinsic::pow, makeX86FP80X86FP80X86FP80},
1330     {"llvm.exp.f32", Intrinsic::exp, makeDoubleDouble},
1331     {"llvm.exp.f64", Intrinsic::exp, makeX86FP80X86FP80},
1332     {"llvm.exp.f80", Intrinsic::exp, makeX86FP80X86FP80},
1333     {"llvm.exp2.f32", Intrinsic::exp2, makeDoubleDouble},
1334     {"llvm.exp2.f64", Intrinsic::exp2, makeX86FP80X86FP80},
1335     {"llvm.exp2.f80", Intrinsic::exp2, makeX86FP80X86FP80},
1336     {"llvm.log.f32", Intrinsic::log, makeDoubleDouble},
1337     {"llvm.log.f64", Intrinsic::log, makeX86FP80X86FP80},
1338     {"llvm.log.f80", Intrinsic::log, makeX86FP80X86FP80},
1339     {"llvm.log10.f32", Intrinsic::log10, makeDoubleDouble},
1340     {"llvm.log10.f64", Intrinsic::log10, makeX86FP80X86FP80},
1341     {"llvm.log10.f80", Intrinsic::log10, makeX86FP80X86FP80},
1342     {"llvm.log2.f32", Intrinsic::log2, makeDoubleDouble},
1343     {"llvm.log2.f64", Intrinsic::log2, makeX86FP80X86FP80},
1344     {"llvm.log2.f80", Intrinsic::log2, makeX86FP80X86FP80},
1345     {"llvm.fma.f32", Intrinsic::fma, makeDoubleDoubleDoubleDouble},
1346 
1347     {"llvm.fmuladd.f32", Intrinsic::fmuladd, makeDoubleDoubleDoubleDouble},
1348 
1349     {"llvm.fma.f64", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
1350 
1351     {"llvm.fmuladd.f64", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
1352 
1353     {"llvm.fma.f80", Intrinsic::fma, makeX86FP80X86FP80X86FP80X86FP80},
1354     {"llvm.fabs.f32", Intrinsic::fabs, makeDoubleDouble},
1355     {"llvm.fabs.f64", Intrinsic::fabs, makeX86FP80X86FP80},
1356     {"llvm.fabs.f80", Intrinsic::fabs, makeX86FP80X86FP80},
1357     {"llvm.minnum.f32", Intrinsic::minnum, makeDoubleDoubleDouble},
1358     {"llvm.minnum.f64", Intrinsic::minnum, makeX86FP80X86FP80X86FP80},
1359     {"llvm.minnum.f80", Intrinsic::minnum, makeX86FP80X86FP80X86FP80},
1360     {"llvm.maxnum.f32", Intrinsic::maxnum, makeDoubleDoubleDouble},
1361     {"llvm.maxnum.f64", Intrinsic::maxnum, makeX86FP80X86FP80X86FP80},
1362     {"llvm.maxnum.f80", Intrinsic::maxnum, makeX86FP80X86FP80X86FP80},
1363     {"llvm.minimum.f32", Intrinsic::minimum, makeDoubleDoubleDouble},
1364     {"llvm.minimum.f64", Intrinsic::minimum, makeX86FP80X86FP80X86FP80},
1365     {"llvm.minimum.f80", Intrinsic::minimum, makeX86FP80X86FP80X86FP80},
1366     {"llvm.maximum.f32", Intrinsic::maximum, makeDoubleDoubleDouble},
1367     {"llvm.maximum.f64", Intrinsic::maximum, makeX86FP80X86FP80X86FP80},
1368     {"llvm.maximum.f80", Intrinsic::maximum, makeX86FP80X86FP80X86FP80},
1369     {"llvm.copysign.f32", Intrinsic::copysign, makeDoubleDoubleDouble},
1370     {"llvm.copysign.f64", Intrinsic::copysign, makeX86FP80X86FP80X86FP80},
1371     {"llvm.copysign.f80", Intrinsic::copysign, makeX86FP80X86FP80X86FP80},
1372     {"llvm.floor.f32", Intrinsic::floor, makeDoubleDouble},
1373     {"llvm.floor.f64", Intrinsic::floor, makeX86FP80X86FP80},
1374     {"llvm.floor.f80", Intrinsic::floor, makeX86FP80X86FP80},
1375     {"llvm.ceil.f32", Intrinsic::ceil, makeDoubleDouble},
1376     {"llvm.ceil.f64", Intrinsic::ceil, makeX86FP80X86FP80},
1377     {"llvm.ceil.f80", Intrinsic::ceil, makeX86FP80X86FP80},
1378     {"llvm.trunc.f32", Intrinsic::trunc, makeDoubleDouble},
1379     {"llvm.trunc.f64", Intrinsic::trunc, makeX86FP80X86FP80},
1380     {"llvm.trunc.f80", Intrinsic::trunc, makeX86FP80X86FP80},
1381     {"llvm.rint.f32", Intrinsic::rint, makeDoubleDouble},
1382     {"llvm.rint.f64", Intrinsic::rint, makeX86FP80X86FP80},
1383     {"llvm.rint.f80", Intrinsic::rint, makeX86FP80X86FP80},
1384     {"llvm.nearbyint.f32", Intrinsic::nearbyint, makeDoubleDouble},
1385     {"llvm.nearbyint.f64", Intrinsic::nearbyint, makeX86FP80X86FP80},
1386     {"llvm.nearbyin80f64", Intrinsic::nearbyint, makeX86FP80X86FP80},
1387     {"llvm.round.f32", Intrinsic::round, makeDoubleDouble},
1388     {"llvm.round.f64", Intrinsic::round, makeX86FP80X86FP80},
1389     {"llvm.round.f80", Intrinsic::round, makeX86FP80X86FP80},
1390     {"llvm.lround.f32", Intrinsic::lround, makeDoubleDouble},
1391     {"llvm.lround.f64", Intrinsic::lround, makeX86FP80X86FP80},
1392     {"llvm.lround.f80", Intrinsic::lround, makeX86FP80X86FP80},
1393     {"llvm.llround.f32", Intrinsic::llround, makeDoubleDouble},
1394     {"llvm.llround.f64", Intrinsic::llround, makeX86FP80X86FP80},
1395     {"llvm.llround.f80", Intrinsic::llround, makeX86FP80X86FP80},
1396     {"llvm.lrint.f32", Intrinsic::lrint, makeDoubleDouble},
1397     {"llvm.lrint.f64", Intrinsic::lrint, makeX86FP80X86FP80},
1398     {"llvm.lrint.f80", Intrinsic::lrint, makeX86FP80X86FP80},
1399     {"llvm.llrint.f32", Intrinsic::llrint, makeDoubleDouble},
1400     {"llvm.llrint.f64", Intrinsic::llrint, makeX86FP80X86FP80},
1401     {"llvm.llrint.f80", Intrinsic::llrint, makeX86FP80X86FP80},
1402 };
1403 
1404 const KnownIntrinsic::LFEntry KnownIntrinsic::kLibfuncIntrinsics[] = {
1405     {LibFunc_sqrtf, "llvm.sqrt.f32"},
1406     {LibFunc_sqrt, "llvm.sqrt.f64"},
1407     {LibFunc_sqrtl, "llvm.sqrt.f80"},
1408     {LibFunc_sinf, "llvm.sin.f32"},
1409     {LibFunc_sin, "llvm.sin.f64"},
1410     {LibFunc_sinl, "llvm.sin.f80"},
1411     {LibFunc_cosf, "llvm.cos.f32"},
1412     {LibFunc_cos, "llvm.cos.f64"},
1413     {LibFunc_cosl, "llvm.cos.f80"},
1414     {LibFunc_powf, "llvm.pow.f32"},
1415     {LibFunc_pow, "llvm.pow.f64"},
1416     {LibFunc_powl, "llvm.pow.f80"},
1417     {LibFunc_expf, "llvm.exp.f32"},
1418     {LibFunc_exp, "llvm.exp.f64"},
1419     {LibFunc_expl, "llvm.exp.f80"},
1420     {LibFunc_exp2f, "llvm.exp2.f32"},
1421     {LibFunc_exp2, "llvm.exp2.f64"},
1422     {LibFunc_exp2l, "llvm.exp2.f80"},
1423     {LibFunc_logf, "llvm.log.f32"},
1424     {LibFunc_log, "llvm.log.f64"},
1425     {LibFunc_logl, "llvm.log.f80"},
1426     {LibFunc_log10f, "llvm.log10.f32"},
1427     {LibFunc_log10, "llvm.log10.f64"},
1428     {LibFunc_log10l, "llvm.log10.f80"},
1429     {LibFunc_log2f, "llvm.log2.f32"},
1430     {LibFunc_log2, "llvm.log2.f64"},
1431     {LibFunc_log2l, "llvm.log2.f80"},
1432     {LibFunc_fabsf, "llvm.fabs.f32"},
1433     {LibFunc_fabs, "llvm.fabs.f64"},
1434     {LibFunc_fabsl, "llvm.fabs.f80"},
1435     {LibFunc_copysignf, "llvm.copysign.f32"},
1436     {LibFunc_copysign, "llvm.copysign.f64"},
1437     {LibFunc_copysignl, "llvm.copysign.f80"},
1438     {LibFunc_floorf, "llvm.floor.f32"},
1439     {LibFunc_floor, "llvm.floor.f64"},
1440     {LibFunc_floorl, "llvm.floor.f80"},
1441     {LibFunc_fmaxf, "llvm.maxnum.f32"},
1442     {LibFunc_fmax, "llvm.maxnum.f64"},
1443     {LibFunc_fmaxl, "llvm.maxnum.f80"},
1444     {LibFunc_fminf, "llvm.minnum.f32"},
1445     {LibFunc_fmin, "llvm.minnum.f64"},
1446     {LibFunc_fminl, "llvm.minnum.f80"},
1447     {LibFunc_ceilf, "llvm.ceil.f32"},
1448     {LibFunc_ceil, "llvm.ceil.f64"},
1449     {LibFunc_ceill, "llvm.ceil.f80"},
1450     {LibFunc_truncf, "llvm.trunc.f32"},
1451     {LibFunc_trunc, "llvm.trunc.f64"},
1452     {LibFunc_truncl, "llvm.trunc.f80"},
1453     {LibFunc_rintf, "llvm.rint.f32"},
1454     {LibFunc_rint, "llvm.rint.f64"},
1455     {LibFunc_rintl, "llvm.rint.f80"},
1456     {LibFunc_nearbyintf, "llvm.nearbyint.f32"},
1457     {LibFunc_nearbyint, "llvm.nearbyint.f64"},
1458     {LibFunc_nearbyintl, "llvm.nearbyint.f80"},
1459     {LibFunc_roundf, "llvm.round.f32"},
1460     {LibFunc_round, "llvm.round.f64"},
1461     {LibFunc_roundl, "llvm.round.f80"},
1462 };
1463 
1464 const char *KnownIntrinsic::get(LibFunc LFunc) {
1465   for (const auto &E : kLibfuncIntrinsics) {
1466     if (E.LFunc == LFunc)
1467       return E.IntrinsicName;
1468   }
1469   return nullptr;
1470 }
1471 
1472 const KnownIntrinsic::WidenedIntrinsic *KnownIntrinsic::widen(StringRef Name) {
1473   for (const auto &E : kWidenedIntrinsics) {
1474     if (E.NarrowName == Name)
1475       return &E;
1476   }
1477   return nullptr;
1478 }
1479 
1480 // Returns the name of the LLVM intrinsic corresponding to the given function.
1481 static const char *getIntrinsicFromLibfunc(Function &Fn, Type *VT,
1482                                            const TargetLibraryInfo &TLI) {
1483   LibFunc LFunc;
1484   if (!TLI.getLibFunc(Fn, LFunc))
1485     return nullptr;
1486 
1487   if (const char *Name = KnownIntrinsic::get(LFunc))
1488     return Name;
1489 
1490   LLVM_DEBUG(errs() << "TODO: LibFunc: " << TLI.getName(LFunc) << "\n");
1491   return nullptr;
1492 }
1493 
1494 // Try to handle a known function call.
1495 Value *NumericalStabilitySanitizer::maybeHandleKnownCallBase(
1496     CallBase &Call, Type *VT, Type *ExtendedVT, const TargetLibraryInfo &TLI,
1497     const ValueToShadowMap &Map, IRBuilder<> &Builder) {
1498   Function *Fn = Call.getCalledFunction();
1499   if (Fn == nullptr)
1500     return nullptr;
1501 
1502   Intrinsic::ID WidenedId = Intrinsic::ID();
1503   FunctionType *WidenedFnTy = nullptr;
1504   if (const auto ID = Fn->getIntrinsicID()) {
1505     const auto *Widened = KnownIntrinsic::widen(Fn->getName());
1506     if (Widened) {
1507       WidenedId = Widened->ID;
1508       WidenedFnTy = Widened->MakeFnTy(Context);
1509     } else {
1510       // If we don't know how to widen the intrinsic, we have no choice but to
1511       // call the non-wide version on a truncated shadow and extend again
1512       // afterwards.
1513       WidenedId = ID;
1514       WidenedFnTy = Fn->getFunctionType();
1515     }
1516   } else if (const char *Name = getIntrinsicFromLibfunc(*Fn, VT, TLI)) {
1517     // We might have a call to a library function that we can replace with a
1518     // wider Intrinsic.
1519     const auto *Widened = KnownIntrinsic::widen(Name);
1520     assert(Widened && "make sure KnownIntrinsic entries are consistent");
1521     WidenedId = Widened->ID;
1522     WidenedFnTy = Widened->MakeFnTy(Context);
1523   } else {
1524     // This is not a known library function or intrinsic.
1525     return nullptr;
1526   }
1527 
1528   // Check that the widened intrinsic is valid.
1529   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1530   getIntrinsicInfoTableEntries(WidenedId, Table);
1531   SmallVector<Type *, 4> ArgTys;
1532   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1533   [[maybe_unused]] Intrinsic::MatchIntrinsicTypesResult MatchResult =
1534       Intrinsic::matchIntrinsicSignature(WidenedFnTy, TableRef, ArgTys);
1535   assert(MatchResult == Intrinsic::MatchIntrinsicTypes_Match &&
1536          "invalid widened intrinsic");
1537   // For known intrinsic functions, we create a second call to the same
1538   // intrinsic with a different type.
1539   SmallVector<Value *, 4> Args;
1540   // The last operand is the intrinsic itself, skip it.
1541   for (unsigned I = 0, E = Call.getNumOperands() - 1; I < E; ++I) {
1542     Value *Arg = Call.getOperand(I);
1543     Type *OrigArgTy = Arg->getType();
1544     Type *IntrinsicArgTy = WidenedFnTy->getParamType(I);
1545     if (OrigArgTy == IntrinsicArgTy) {
1546       Args.push_back(Arg); // The arg is passed as is.
1547       continue;
1548     }
1549     Type *ShadowArgTy = Config.getExtendedFPType(Arg->getType());
1550     assert(ShadowArgTy &&
1551            "don't know how to get the shadow value for a non-FT");
1552     Value *Shadow = Map.getShadow(Arg);
1553     if (ShadowArgTy == IntrinsicArgTy) {
1554       // The shadow is the right type for the intrinsic.
1555       assert(Shadow->getType() == ShadowArgTy);
1556       Args.push_back(Shadow);
1557       continue;
1558     }
1559     // There is no intrinsic with his level of precision, truncate the shadow.
1560     Args.push_back(Builder.CreateFPTrunc(Shadow, IntrinsicArgTy));
1561   }
1562   Value *IntrinsicCall = Builder.CreateIntrinsic(WidenedId, ArgTys, Args);
1563   return WidenedFnTy->getReturnType() == ExtendedVT
1564              ? IntrinsicCall
1565              : Builder.CreateFPExt(IntrinsicCall, ExtendedVT);
1566 }
1567 
1568 // Handle a CallBase, i.e. a function call, an inline asm sequence, or an
1569 // invoke.
1570 Value *NumericalStabilitySanitizer::handleCallBase(CallBase &Call, Type *VT,
1571                                                    Type *ExtendedVT,
1572                                                    const TargetLibraryInfo &TLI,
1573                                                    const ValueToShadowMap &Map,
1574                                                    IRBuilder<> &Builder) {
1575   // We cannot look inside inline asm, just expand the result again.
1576   if (Call.isInlineAsm())
1577     return Builder.CreateFPExt(&Call, ExtendedVT);
1578 
1579   // Intrinsics and library functions (e.g. sin, exp) are handled
1580   // specifically, because we know their semantics and can do better than
1581   // blindly calling them (e.g. compute the sinus in the actual shadow domain).
1582   if (Value *V =
1583           maybeHandleKnownCallBase(Call, VT, ExtendedVT, TLI, Map, Builder))
1584     return V;
1585 
1586   // If the return tag matches that of the called function, read the extended
1587   // return value from the shadow ret ptr. Else, just extend the return value.
1588   Value *L =
1589       Builder.CreateLoad(IntptrTy, NsanShadowRetTag, /*isVolatile=*/false);
1590   Value *HasShadowRet = Builder.CreateICmpEQ(
1591       L, Builder.CreatePtrToInt(Call.getCalledOperand(), IntptrTy));
1592 
1593   Value *ShadowRetVal = Builder.CreateLoad(
1594       ExtendedVT,
1595       Builder.CreateConstGEP2_64(NsanShadowRetType, NsanShadowRetPtr, 0, 0),
1596       /*isVolatile=*/false);
1597   Value *Shadow = Builder.CreateSelect(HasShadowRet, ShadowRetVal,
1598                                        Builder.CreateFPExt(&Call, ExtendedVT));
1599   ++NumInstrumentedFTCalls;
1600   return Shadow;
1601 }
1602 
1603 // Creates a shadow value for the given FT value. At that point all operands are
1604 // guaranteed to be available.
1605 Value *NumericalStabilitySanitizer::createShadowValueWithOperandsAvailable(
1606     Instruction &Inst, const TargetLibraryInfo &TLI,
1607     const ValueToShadowMap &Map) {
1608   Type *VT = Inst.getType();
1609   Type *ExtendedVT = Config.getExtendedFPType(VT);
1610   assert(ExtendedVT != nullptr && "trying to create a shadow for a non-FT");
1611 
1612   if (auto *Load = dyn_cast<LoadInst>(&Inst))
1613     return handleLoad(*Load, VT, ExtendedVT);
1614 
1615   if (auto *Call = dyn_cast<CallInst>(&Inst)) {
1616     // Insert after the call.
1617     BasicBlock::iterator It(Inst);
1618     IRBuilder<> Builder(Call->getParent(), ++It);
1619     Builder.SetCurrentDebugLocation(Call->getDebugLoc());
1620     return handleCallBase(*Call, VT, ExtendedVT, TLI, Map, Builder);
1621   }
1622 
1623   if (auto *Invoke = dyn_cast<InvokeInst>(&Inst)) {
1624     // The Invoke terminates the basic block, create a new basic block in
1625     // between the successful invoke and the next block.
1626     BasicBlock *InvokeBB = Invoke->getParent();
1627     BasicBlock *NextBB = Invoke->getNormalDest();
1628     BasicBlock *NewBB =
1629         BasicBlock::Create(Context, "", NextBB->getParent(), NextBB);
1630     Inst.replaceSuccessorWith(NextBB, NewBB);
1631 
1632     IRBuilder<> Builder(NewBB);
1633     Builder.SetCurrentDebugLocation(Invoke->getDebugLoc());
1634     Value *Shadow = handleCallBase(*Invoke, VT, ExtendedVT, TLI, Map, Builder);
1635     Builder.CreateBr(NextBB);
1636     NewBB->replaceSuccessorsPhiUsesWith(InvokeBB, NewBB);
1637     return Shadow;
1638   }
1639 
1640   IRBuilder<> Builder(Inst.getNextNode());
1641   Builder.SetCurrentDebugLocation(Inst.getDebugLoc());
1642 
1643   if (auto *Trunc = dyn_cast<FPTruncInst>(&Inst))
1644     return handleTrunc(*Trunc, VT, ExtendedVT, Map, Builder);
1645   if (auto *Ext = dyn_cast<FPExtInst>(&Inst))
1646     return handleExt(*Ext, VT, ExtendedVT, Map, Builder);
1647 
1648   if (auto *UnaryOp = dyn_cast<UnaryOperator>(&Inst))
1649     return Builder.CreateUnOp(UnaryOp->getOpcode(),
1650                               Map.getShadow(UnaryOp->getOperand(0)));
1651 
1652   if (auto *BinOp = dyn_cast<BinaryOperator>(&Inst))
1653     return Builder.CreateBinOp(BinOp->getOpcode(),
1654                                Map.getShadow(BinOp->getOperand(0)),
1655                                Map.getShadow(BinOp->getOperand(1)));
1656 
1657   if (isa<UIToFPInst>(&Inst) || isa<SIToFPInst>(&Inst)) {
1658     auto *Cast = dyn_cast<CastInst>(&Inst);
1659     return Builder.CreateCast(Cast->getOpcode(), Cast->getOperand(0),
1660                               ExtendedVT);
1661   }
1662 
1663   if (auto *S = dyn_cast<SelectInst>(&Inst))
1664     return Builder.CreateSelect(S->getCondition(),
1665                                 Map.getShadow(S->getTrueValue()),
1666                                 Map.getShadow(S->getFalseValue()));
1667 
1668   if (auto *Extract = dyn_cast<ExtractElementInst>(&Inst))
1669     return Builder.CreateExtractElement(
1670         Map.getShadow(Extract->getVectorOperand()), Extract->getIndexOperand());
1671 
1672   if (auto *Insert = dyn_cast<InsertElementInst>(&Inst))
1673     return Builder.CreateInsertElement(Map.getShadow(Insert->getOperand(0)),
1674                                        Map.getShadow(Insert->getOperand(1)),
1675                                        Insert->getOperand(2));
1676 
1677   if (auto *Shuffle = dyn_cast<ShuffleVectorInst>(&Inst))
1678     return Builder.CreateShuffleVector(Map.getShadow(Shuffle->getOperand(0)),
1679                                        Map.getShadow(Shuffle->getOperand(1)),
1680                                        Shuffle->getShuffleMask());
1681   // TODO: We could make aggregate object first class citizens. For now we
1682   // just extend the extracted value.
1683   if (auto *Extract = dyn_cast<ExtractValueInst>(&Inst))
1684     return Builder.CreateFPExt(Extract, ExtendedVT);
1685 
1686   if (auto *BC = dyn_cast<BitCastInst>(&Inst))
1687     return Builder.CreateFPExt(BC, ExtendedVT);
1688 
1689   report_fatal_error("Unimplemented support for " +
1690                      Twine(Inst.getOpcodeName()));
1691 }
1692 
1693 // Creates a shadow value for an instruction that defines a value of FT type.
1694 // FT operands that do not already have shadow values are created recursively.
1695 // The DFS is guaranteed to not loop as phis and arguments already have
1696 // shadows.
1697 void NumericalStabilitySanitizer::maybeCreateShadowValue(
1698     Instruction &Root, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) {
1699   Type *VT = Root.getType();
1700   Type *ExtendedVT = Config.getExtendedFPType(VT);
1701   if (ExtendedVT == nullptr)
1702     return; // Not an FT value.
1703 
1704   if (Map.hasShadow(&Root))
1705     return; // Shadow already exists.
1706 
1707   assert(!isa<PHINode>(Root) && "phi nodes should already have shadows");
1708 
1709   std::vector<Instruction *> DfsStack(1, &Root);
1710   while (!DfsStack.empty()) {
1711     // Ensure that all operands to the instruction have shadows before
1712     // proceeding.
1713     Instruction *I = DfsStack.back();
1714     // The shadow for the instruction might have been created deeper in the DFS,
1715     // see `forward_use_with_two_uses` test.
1716     if (Map.hasShadow(I)) {
1717       DfsStack.pop_back();
1718       continue;
1719     }
1720 
1721     bool MissingShadow = false;
1722     for (Value *Op : I->operands()) {
1723       Type *VT = Op->getType();
1724       if (!Config.getExtendedFPType(VT))
1725         continue; // Not an FT value.
1726       if (Map.hasShadow(Op))
1727         continue; // Shadow is already available.
1728       MissingShadow = true;
1729       DfsStack.push_back(cast<Instruction>(Op));
1730     }
1731     if (MissingShadow)
1732       continue; // Process operands and come back to this instruction later.
1733 
1734     // All operands have shadows. Create a shadow for the current value.
1735     Value *Shadow = createShadowValueWithOperandsAvailable(*I, TLI, Map);
1736     Map.setShadow(*I, *Shadow);
1737     DfsStack.pop_back();
1738   }
1739 }
1740 
1741 // A floating-point store needs its value and type written to shadow memory.
1742 void NumericalStabilitySanitizer::propagateFTStore(
1743     StoreInst &Store, Type *VT, Type *ExtendedVT, const ValueToShadowMap &Map) {
1744   Value *StoredValue = Store.getValueOperand();
1745   IRBuilder<> Builder(&Store);
1746   Builder.SetCurrentDebugLocation(Store.getDebugLoc());
1747   const auto Extents = getMemoryExtentsOrDie(VT);
1748   Value *ShadowPtr = Builder.CreateCall(
1749       NsanGetShadowPtrForStore[Extents.ValueType],
1750       {Store.getPointerOperand(), ConstantInt::get(IntptrTy, Extents.NumElts)});
1751 
1752   Value *StoredShadow = Map.getShadow(StoredValue);
1753   if (!Store.getParent()->getParent()->hasOptNone()) {
1754     // Only check stores when optimizing, because non-optimized code generates
1755     // too many stores to the stack, creating false positives.
1756     if (ClCheckStores) {
1757       StoredShadow = emitCheck(StoredValue, StoredShadow, Builder,
1758                                CheckLoc::makeStore(Store.getPointerOperand()));
1759       ++NumInstrumentedFTStores;
1760     }
1761   }
1762 
1763   Builder.CreateAlignedStore(StoredShadow, ShadowPtr, Align(1),
1764                              Store.isVolatile());
1765 }
1766 
1767 // A non-ft store needs to invalidate shadow memory. Exceptions are:
1768 //   - memory transfers of floating-point data through other pointer types (llvm
1769 //     optimization passes transform `*(float*)a = *(float*)b` into
1770 //     `*(i32*)a = *(i32*)b` ). These have the same semantics as memcpy.
1771 //   - Writes of FT-sized constants. LLVM likes to do float stores as bitcasted
1772 //     ints. Note that this is not really necessary because if the value is
1773 //     unknown the framework will re-extend it on load anyway. It just felt
1774 //     easier to debug tests with vectors of FTs.
1775 void NumericalStabilitySanitizer::propagateNonFTStore(
1776     StoreInst &Store, Type *VT, const ValueToShadowMap &Map) {
1777   Value *PtrOp = Store.getPointerOperand();
1778   IRBuilder<> Builder(Store.getNextNode());
1779   Builder.SetCurrentDebugLocation(Store.getDebugLoc());
1780   Value *Dst = PtrOp;
1781   TypeSize SlotSize = DL.getTypeStoreSize(VT);
1782   assert(!SlotSize.isScalable() && "unsupported");
1783   const auto LoadSizeBytes = SlotSize.getFixedValue();
1784   Value *ValueSize = Constant::getIntegerValue(
1785       IntptrTy, APInt(IntptrTy->getPrimitiveSizeInBits(), LoadSizeBytes));
1786 
1787   ++NumInstrumentedNonFTStores;
1788   Value *StoredValue = Store.getValueOperand();
1789   if (LoadInst *Load = dyn_cast<LoadInst>(StoredValue)) {
1790     // TODO: Handle the case when the value is from a phi.
1791     // This is a memory transfer with memcpy semantics. Copy the type and
1792     // value from the source. Note that we cannot use __nsan_copy_values()
1793     // here, because that will not work when there is a write to memory in
1794     // between the load and the store, e.g. in the case of a swap.
1795     Type *ShadowTypeIntTy = Type::getIntNTy(Context, 8 * LoadSizeBytes);
1796     Type *ShadowValueIntTy =
1797         Type::getIntNTy(Context, 8 * kShadowScale * LoadSizeBytes);
1798     IRBuilder<> LoadBuilder(Load->getNextNode());
1799     Builder.SetCurrentDebugLocation(Store.getDebugLoc());
1800     Value *LoadSrc = Load->getPointerOperand();
1801     // Read the shadow type and value at load time. The type has the same size
1802     // as the FT value, the value has twice its size.
1803     // TODO: cache them to avoid re-creating them when a load is used by
1804     // several stores. Maybe create them like the FT shadows when a load is
1805     // encountered.
1806     Value *RawShadowType = LoadBuilder.CreateAlignedLoad(
1807         ShadowTypeIntTy,
1808         LoadBuilder.CreateCall(NsanGetRawShadowTypePtr, {LoadSrc}), Align(1),
1809         /*isVolatile=*/false);
1810     Value *RawShadowValue = LoadBuilder.CreateAlignedLoad(
1811         ShadowValueIntTy,
1812         LoadBuilder.CreateCall(NsanGetRawShadowPtr, {LoadSrc}), Align(1),
1813         /*isVolatile=*/false);
1814 
1815     // Write back the shadow type and value at store time.
1816     Builder.CreateAlignedStore(
1817         RawShadowType, Builder.CreateCall(NsanGetRawShadowTypePtr, {Dst}),
1818         Align(1),
1819         /*isVolatile=*/false);
1820     Builder.CreateAlignedStore(RawShadowValue,
1821                                Builder.CreateCall(NsanGetRawShadowPtr, {Dst}),
1822                                Align(1),
1823                                /*isVolatile=*/false);
1824 
1825     ++NumInstrumentedNonFTMemcpyStores;
1826     return;
1827   }
1828   // ClPropagateNonFTConstStoresAsFT is by default false.
1829   if (Constant *C; ClPropagateNonFTConstStoresAsFT &&
1830                    (C = dyn_cast<Constant>(StoredValue))) {
1831     // This might be a fp constant stored as an int. Bitcast and store if it has
1832     // appropriate size.
1833     Type *BitcastTy = nullptr; // The FT type to bitcast to.
1834     if (auto *CInt = dyn_cast<ConstantInt>(C)) {
1835       switch (CInt->getType()->getScalarSizeInBits()) {
1836       case 32:
1837         BitcastTy = Type::getFloatTy(Context);
1838         break;
1839       case 64:
1840         BitcastTy = Type::getDoubleTy(Context);
1841         break;
1842       case 80:
1843         BitcastTy = Type::getX86_FP80Ty(Context);
1844         break;
1845       default:
1846         break;
1847       }
1848     } else if (auto *CDV = dyn_cast<ConstantDataVector>(C)) {
1849       const int NumElements =
1850           cast<VectorType>(CDV->getType())->getElementCount().getFixedValue();
1851       switch (CDV->getType()->getScalarSizeInBits()) {
1852       case 32:
1853         BitcastTy =
1854             VectorType::get(Type::getFloatTy(Context), NumElements, false);
1855         break;
1856       case 64:
1857         BitcastTy =
1858             VectorType::get(Type::getDoubleTy(Context), NumElements, false);
1859         break;
1860       case 80:
1861         BitcastTy =
1862             VectorType::get(Type::getX86_FP80Ty(Context), NumElements, false);
1863         break;
1864       default:
1865         break;
1866       }
1867     }
1868     if (BitcastTy) {
1869       const MemoryExtents Extents = getMemoryExtentsOrDie(BitcastTy);
1870       Value *ShadowPtr = Builder.CreateCall(
1871           NsanGetShadowPtrForStore[Extents.ValueType],
1872           {PtrOp, ConstantInt::get(IntptrTy, Extents.NumElts)});
1873       // Bitcast the integer value to the appropriate FT type and extend to 2FT.
1874       Type *ExtVT = Config.getExtendedFPType(BitcastTy);
1875       Value *Shadow =
1876           Builder.CreateFPExt(Builder.CreateBitCast(C, BitcastTy), ExtVT);
1877       Builder.CreateAlignedStore(Shadow, ShadowPtr, Align(1),
1878                                  Store.isVolatile());
1879       return;
1880     }
1881   }
1882   // All other stores just reset the shadow value to unknown.
1883   Builder.CreateCall(NsanSetValueUnknown, {Dst, ValueSize});
1884 }
1885 
1886 void NumericalStabilitySanitizer::propagateShadowValues(
1887     Instruction &Inst, const TargetLibraryInfo &TLI,
1888     const ValueToShadowMap &Map) {
1889   if (auto *Store = dyn_cast<StoreInst>(&Inst)) {
1890     Value *StoredValue = Store->getValueOperand();
1891     Type *VT = StoredValue->getType();
1892     Type *ExtendedVT = Config.getExtendedFPType(VT);
1893     if (ExtendedVT == nullptr)
1894       return propagateNonFTStore(*Store, VT, Map);
1895     return propagateFTStore(*Store, VT, ExtendedVT, Map);
1896   }
1897 
1898   if (auto *FCmp = dyn_cast<FCmpInst>(&Inst)) {
1899     emitFCmpCheck(*FCmp, Map);
1900     return;
1901   }
1902 
1903   if (auto *CB = dyn_cast<CallBase>(&Inst)) {
1904     maybeAddSuffixForNsanInterface(CB);
1905     if (CallInst *CI = dyn_cast<CallInst>(&Inst))
1906       maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
1907     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
1908       instrumentMemIntrinsic(MI);
1909       return;
1910     }
1911     populateShadowStack(*CB, TLI, Map);
1912     return;
1913   }
1914 
1915   if (auto *RetInst = dyn_cast<ReturnInst>(&Inst)) {
1916     if (!ClCheckRet)
1917       return;
1918 
1919     Value *RV = RetInst->getReturnValue();
1920     if (RV == nullptr)
1921       return; // This is a `ret void`.
1922     Type *VT = RV->getType();
1923     Type *ExtendedVT = Config.getExtendedFPType(VT);
1924     if (ExtendedVT == nullptr)
1925       return; // Not an FT ret.
1926     Value *RVShadow = Map.getShadow(RV);
1927     IRBuilder<> Builder(RetInst);
1928 
1929     RVShadow = emitCheck(RV, RVShadow, Builder, CheckLoc::makeRet());
1930     ++NumInstrumentedFTRets;
1931     // Store tag.
1932     Value *FnAddr =
1933         Builder.CreatePtrToInt(Inst.getParent()->getParent(), IntptrTy);
1934     Builder.CreateStore(FnAddr, NsanShadowRetTag);
1935     // Store value.
1936     Value *ShadowRetValPtr =
1937         Builder.CreateConstGEP2_64(NsanShadowRetType, NsanShadowRetPtr, 0, 0);
1938     Builder.CreateStore(RVShadow, ShadowRetValPtr);
1939     return;
1940   }
1941 
1942   if (InsertValueInst *Insert = dyn_cast<InsertValueInst>(&Inst)) {
1943     Value *V = Insert->getOperand(1);
1944     Type *VT = V->getType();
1945     Type *ExtendedVT = Config.getExtendedFPType(VT);
1946     if (ExtendedVT == nullptr)
1947       return;
1948     IRBuilder<> Builder(Insert);
1949     emitCheck(V, Map.getShadow(V), Builder, CheckLoc::makeInsert());
1950     return;
1951   }
1952 }
1953 
1954 // Moves fast math flags from the function to individual instructions, and
1955 // removes the attribute from the function.
1956 // TODO: Make this controllable with a flag.
1957 static void moveFastMathFlags(Function &F,
1958                               std::vector<Instruction *> &Instructions) {
1959   FastMathFlags FMF;
1960 #define MOVE_FLAG(attr, setter)                                                \
1961   if (F.getFnAttribute(attr).getValueAsString() == "true") {                   \
1962     F.removeFnAttr(attr);                                                      \
1963     FMF.set##setter();                                                         \
1964   }
1965   MOVE_FLAG("unsafe-fp-math", Fast)
1966   MOVE_FLAG("no-infs-fp-math", NoInfs)
1967   MOVE_FLAG("no-nans-fp-math", NoNaNs)
1968   MOVE_FLAG("no-signed-zeros-fp-math", NoSignedZeros)
1969 #undef MOVE_FLAG
1970 
1971   for (Instruction *I : Instructions)
1972     if (isa<FPMathOperator>(I))
1973       I->setFastMathFlags(FMF);
1974 }
1975 
1976 bool NumericalStabilitySanitizer::sanitizeFunction(
1977     Function &F, const TargetLibraryInfo &TLI) {
1978   if (!F.hasFnAttribute(Attribute::SanitizeNumericalStability))
1979     return false;
1980 
1981   // This is required to prevent instrumenting call to __nsan_init from within
1982   // the module constructor.
1983   if (F.getName() == kNsanModuleCtorName)
1984     return false;
1985   SmallVector<Instruction *, 8> AllLoadsAndStores;
1986   SmallVector<Instruction *, 8> LocalLoadsAndStores;
1987 
1988   // The instrumentation maintains:
1989   //  - for each IR value `v` of floating-point (or vector floating-point) type
1990   //    FT, a shadow IR value `s(v)` with twice the precision 2FT (e.g.
1991   //    double for float and f128 for double).
1992   //  - A shadow memory, which stores `s(v)` for any `v` that has been stored,
1993   //    along with a shadow memory tag, which stores whether the value in the
1994   //    corresponding shadow memory is valid. Note that this might be
1995   //    incorrect if a non-instrumented function stores to memory, or if
1996   //    memory is stored to through a char pointer.
1997   //  - A shadow stack, which holds `s(v)` for any floating-point argument `v`
1998   //    of a call to an instrumented function. This allows
1999   //    instrumented functions to retrieve the shadow values for their
2000   //    arguments.
2001   //    Because instrumented functions can be called from non-instrumented
2002   //    functions, the stack needs to include a tag so that the instrumented
2003   //    function knows whether shadow values are available for their
2004   //    parameters (i.e. whether is was called by an instrumented function).
2005   //    When shadow arguments are not available, they have to be recreated by
2006   //    extending the precision of the non-shadow arguments to the non-shadow
2007   //    value. Non-instrumented functions do not modify (or even know about) the
2008   //    shadow stack. The shadow stack pointer is __nsan_shadow_args. The shadow
2009   //    stack tag is __nsan_shadow_args_tag. The tag is any unique identifier
2010   //    for the function (we use the address of the function). Both variables
2011   //    are thread local.
2012   //    Example:
2013   //     calls                             shadow stack tag      shadow stack
2014   //     =======================================================================
2015   //     non_instrumented_1()              0                     0
2016   //             |
2017   //             v
2018   //     instrumented_2(float a)           0                     0
2019   //             |
2020   //             v
2021   //     instrumented_3(float b, double c) &instrumented_3       s(b),s(c)
2022   //             |
2023   //             v
2024   //     instrumented_4(float d)           &instrumented_4       s(d)
2025   //             |
2026   //             v
2027   //     non_instrumented_5(float e)       &non_instrumented_5   s(e)
2028   //             |
2029   //             v
2030   //     instrumented_6(float f)           &non_instrumented_5   s(e)
2031   //
2032   //   On entry, instrumented_2 checks whether the tag corresponds to its
2033   //   function ptr.
2034   //   Note that functions reset the tag to 0 after reading shadow parameters.
2035   //   This ensures that the function does not erroneously read invalid data if
2036   //   called twice in the same stack, once from an instrumented function and
2037   //   once from an uninstrumented one. For example, in the following example,
2038   //   resetting the tag in (A) ensures that (B) does not reuse the same the
2039   //   shadow arguments (which would be incorrect).
2040   //      instrumented_1(float a)
2041   //             |
2042   //             v
2043   //      instrumented_2(float b)  (A)
2044   //             |
2045   //             v
2046   //      non_instrumented_3()
2047   //             |
2048   //             v
2049   //      instrumented_2(float b)  (B)
2050   //
2051   //  - A shadow return slot. Any function that returns a floating-point value
2052   //    places a shadow return value in __nsan_shadow_ret_val. Again, because
2053   //    we might be calling non-instrumented functions, this value is guarded
2054   //    by __nsan_shadow_ret_tag marker indicating which instrumented function
2055   //    placed the value in __nsan_shadow_ret_val, so that the caller can check
2056   //    that this corresponds to the callee. Both variables are thread local.
2057   //
2058   //    For example, in the following example, the instrumentation in
2059   //    `instrumented_1` rejects the shadow return value from `instrumented_3`
2060   //    because is is not tagged as expected (`&instrumented_3` instead of
2061   //    `non_instrumented_2`):
2062   //
2063   //        instrumented_1()
2064   //            |
2065   //            v
2066   //        float non_instrumented_2()
2067   //            |
2068   //            v
2069   //        float instrumented_3()
2070   //
2071   // Calls of known math functions (sin, cos, exp, ...) are duplicated to call
2072   // their overload on the shadow type.
2073 
2074   // Collect all instructions before processing, as creating shadow values
2075   // creates new instructions inside the function.
2076   std::vector<Instruction *> OriginalInstructions;
2077   for (BasicBlock &BB : F)
2078     for (Instruction &Inst : BB)
2079       OriginalInstructions.emplace_back(&Inst);
2080 
2081   moveFastMathFlags(F, OriginalInstructions);
2082   ValueToShadowMap ValueToShadow(Config);
2083 
2084   // In the first pass, we create shadow values for all FT function arguments
2085   // and all phis. This ensures that the DFS of the next pass does not have
2086   // any loops.
2087   std::vector<PHINode *> OriginalPhis;
2088   createShadowArguments(F, TLI, ValueToShadow);
2089   for (Instruction *I : OriginalInstructions) {
2090     if (PHINode *Phi = dyn_cast<PHINode>(I)) {
2091       if (PHINode *Shadow = maybeCreateShadowPhi(*Phi, TLI)) {
2092         OriginalPhis.push_back(Phi);
2093         ValueToShadow.setShadow(*Phi, *Shadow);
2094       }
2095     }
2096   }
2097 
2098   // Create shadow values for all instructions creating FT values.
2099   for (Instruction *I : OriginalInstructions)
2100     maybeCreateShadowValue(*I, TLI, ValueToShadow);
2101 
2102   // Propagate shadow values across stores, calls and rets.
2103   for (Instruction *I : OriginalInstructions)
2104     propagateShadowValues(*I, TLI, ValueToShadow);
2105 
2106   // The last pass populates shadow phis with shadow values.
2107   for (PHINode *Phi : OriginalPhis) {
2108     PHINode *ShadowPhi = dyn_cast<PHINode>(ValueToShadow.getShadow(Phi));
2109     for (unsigned I : seq(Phi->getNumOperands())) {
2110       Value *V = Phi->getOperand(I);
2111       Value *Shadow = ValueToShadow.getShadow(V);
2112       BasicBlock *IncomingBB = Phi->getIncomingBlock(I);
2113       // For some instructions (e.g. invoke), we create the shadow in a separate
2114       // block, different from the block where the original value is created.
2115       // In that case, the shadow phi might need to refer to this block instead
2116       // of the original block.
2117       // Note that this can only happen for instructions as constant shadows are
2118       // always created in the same block.
2119       ShadowPhi->addIncoming(Shadow, IncomingBB);
2120     }
2121   }
2122 
2123   return !ValueToShadow.empty();
2124 }
2125 
2126 // Instrument the memory intrinsics so that they properly modify the shadow
2127 // memory.
2128 bool NumericalStabilitySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
2129   IRBuilder<> Builder(MI);
2130   if (auto *M = dyn_cast<MemSetInst>(MI)) {
2131     Builder.CreateCall(
2132         NsanSetValueUnknown,
2133         {/*Address=*/M->getArgOperand(0),
2134          /*Size=*/Builder.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
2135   } else if (auto *M = dyn_cast<MemTransferInst>(MI)) {
2136     Builder.CreateCall(
2137         NsanCopyValues,
2138         {/*Destination=*/M->getArgOperand(0),
2139          /*Source=*/M->getArgOperand(1),
2140          /*Size=*/Builder.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
2141   }
2142   return false;
2143 }
2144 
2145 void NumericalStabilitySanitizer::maybeAddSuffixForNsanInterface(CallBase *CI) {
2146   Function *Fn = CI->getCalledFunction();
2147   if (Fn == nullptr)
2148     return;
2149 
2150   if (!Fn->getName().starts_with("__nsan_"))
2151     return;
2152 
2153   if (Fn->getName() == "__nsan_dump_shadow_mem") {
2154     assert(CI->arg_size() == 4 &&
2155            "invalid prototype for __nsan_dump_shadow_mem");
2156     // __nsan_dump_shadow_mem requires an extra parameter with the dynamic
2157     // configuration:
2158     // (shadow_type_id_for_long_double << 16) | (shadow_type_id_for_double << 8)
2159     // | shadow_type_id_for_double
2160     const uint64_t shadow_value_type_ids =
2161         (static_cast<size_t>(Config.byValueType(kLongDouble).getNsanTypeId())
2162          << 16) |
2163         (static_cast<size_t>(Config.byValueType(kDouble).getNsanTypeId())
2164          << 8) |
2165         static_cast<size_t>(Config.byValueType(kFloat).getNsanTypeId());
2166     CI->setArgOperand(3, ConstantInt::get(IntptrTy, shadow_value_type_ids));
2167   }
2168 }
2169