1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// Note that the sanitizer code has to deal with how shadow/origin pairs 126 /// returned by the these functions are represented in different ABIs. In 127 /// the X86_64 ABI they are returned in RDX:RAX, and in the SystemZ ABI they 128 /// are written to memory pointed to by a hidden parameter. 129 /// - TLS variables are stored in a single per-task struct. A call to a 130 /// function __msan_get_context_state() returning a pointer to that struct 131 /// is inserted into every instrumented function before the entry block; 132 /// - __msan_warning() takes a 32-bit origin parameter; 133 /// - local variables are poisoned with __msan_poison_alloca() upon function 134 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 135 /// function; 136 /// - the pass doesn't declare any global variables or add global constructors 137 /// to the translation unit. 138 /// 139 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 140 /// calls, making sure we're on the safe side wrt. possible false positives. 141 /// 142 /// KernelMemorySanitizer only supports X86_64 and SystemZ at the moment. 143 /// 144 // 145 // FIXME: This sanitizer does not yet handle scalable vectors 146 // 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 150 #include "llvm/ADT/APInt.h" 151 #include "llvm/ADT/ArrayRef.h" 152 #include "llvm/ADT/DenseMap.h" 153 #include "llvm/ADT/DepthFirstIterator.h" 154 #include "llvm/ADT/SetVector.h" 155 #include "llvm/ADT/SmallString.h" 156 #include "llvm/ADT/SmallVector.h" 157 #include "llvm/ADT/StringExtras.h" 158 #include "llvm/ADT/StringRef.h" 159 #include "llvm/Analysis/GlobalsModRef.h" 160 #include "llvm/Analysis/TargetLibraryInfo.h" 161 #include "llvm/Analysis/ValueTracking.h" 162 #include "llvm/IR/Argument.h" 163 #include "llvm/IR/AttributeMask.h" 164 #include "llvm/IR/Attributes.h" 165 #include "llvm/IR/BasicBlock.h" 166 #include "llvm/IR/CallingConv.h" 167 #include "llvm/IR/Constant.h" 168 #include "llvm/IR/Constants.h" 169 #include "llvm/IR/DataLayout.h" 170 #include "llvm/IR/DerivedTypes.h" 171 #include "llvm/IR/Function.h" 172 #include "llvm/IR/GlobalValue.h" 173 #include "llvm/IR/GlobalVariable.h" 174 #include "llvm/IR/IRBuilder.h" 175 #include "llvm/IR/InlineAsm.h" 176 #include "llvm/IR/InstVisitor.h" 177 #include "llvm/IR/InstrTypes.h" 178 #include "llvm/IR/Instruction.h" 179 #include "llvm/IR/Instructions.h" 180 #include "llvm/IR/IntrinsicInst.h" 181 #include "llvm/IR/Intrinsics.h" 182 #include "llvm/IR/IntrinsicsX86.h" 183 #include "llvm/IR/MDBuilder.h" 184 #include "llvm/IR/Module.h" 185 #include "llvm/IR/Type.h" 186 #include "llvm/IR/Value.h" 187 #include "llvm/IR/ValueMap.h" 188 #include "llvm/Support/Alignment.h" 189 #include "llvm/Support/AtomicOrdering.h" 190 #include "llvm/Support/Casting.h" 191 #include "llvm/Support/CommandLine.h" 192 #include "llvm/Support/Debug.h" 193 #include "llvm/Support/DebugCounter.h" 194 #include "llvm/Support/ErrorHandling.h" 195 #include "llvm/Support/MathExtras.h" 196 #include "llvm/Support/raw_ostream.h" 197 #include "llvm/TargetParser/Triple.h" 198 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 199 #include "llvm/Transforms/Utils/Local.h" 200 #include "llvm/Transforms/Utils/ModuleUtils.h" 201 #include <algorithm> 202 #include <cassert> 203 #include <cstddef> 204 #include <cstdint> 205 #include <memory> 206 #include <string> 207 #include <tuple> 208 209 using namespace llvm; 210 211 #define DEBUG_TYPE "msan" 212 213 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 214 "Controls which checks to insert"); 215 216 static const unsigned kOriginSize = 4; 217 static const Align kMinOriginAlignment = Align(4); 218 static const Align kShadowTLSAlignment = Align(8); 219 220 // These constants must be kept in sync with the ones in msan.h. 221 static const unsigned kParamTLSSize = 800; 222 static const unsigned kRetvalTLSSize = 800; 223 224 // Accesses sizes are powers of two: 1, 2, 4, 8. 225 static const size_t kNumberOfAccessSizes = 4; 226 227 /// Track origins of uninitialized values. 228 /// 229 /// Adds a section to MemorySanitizer report that points to the allocation 230 /// (stack or heap) the uninitialized bits came from originally. 231 static cl::opt<int> ClTrackOrigins( 232 "msan-track-origins", 233 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 234 cl::init(0)); 235 236 static cl::opt<bool> ClKeepGoing("msan-keep-going", 237 cl::desc("keep going after reporting a UMR"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<bool> 241 ClPoisonStack("msan-poison-stack", 242 cl::desc("poison uninitialized stack variables"), cl::Hidden, 243 cl::init(true)); 244 245 static cl::opt<bool> ClPoisonStackWithCall( 246 "msan-poison-stack-with-call", 247 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 248 cl::init(false)); 249 250 static cl::opt<int> ClPoisonStackPattern( 251 "msan-poison-stack-pattern", 252 cl::desc("poison uninitialized stack variables with the given pattern"), 253 cl::Hidden, cl::init(0xff)); 254 255 static cl::opt<bool> 256 ClPrintStackNames("msan-print-stack-names", 257 cl::desc("Print name of local stack variable"), 258 cl::Hidden, cl::init(true)); 259 260 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 261 cl::desc("poison undef temps"), cl::Hidden, 262 cl::init(true)); 263 264 static cl::opt<bool> 265 ClHandleICmp("msan-handle-icmp", 266 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 267 cl::Hidden, cl::init(true)); 268 269 static cl::opt<bool> 270 ClHandleICmpExact("msan-handle-icmp-exact", 271 cl::desc("exact handling of relational integer ICmp"), 272 cl::Hidden, cl::init(false)); 273 274 static cl::opt<bool> ClHandleLifetimeIntrinsics( 275 "msan-handle-lifetime-intrinsics", 276 cl::desc( 277 "when possible, poison scoped variables at the beginning of the scope " 278 "(slower, but more precise)"), 279 cl::Hidden, cl::init(true)); 280 281 // When compiling the Linux kernel, we sometimes see false positives related to 282 // MSan being unable to understand that inline assembly calls may initialize 283 // local variables. 284 // This flag makes the compiler conservatively unpoison every memory location 285 // passed into an assembly call. Note that this may cause false positives. 286 // Because it's impossible to figure out the array sizes, we can only unpoison 287 // the first sizeof(type) bytes for each type* pointer. 288 // The instrumentation is only enabled in KMSAN builds, and only if 289 // -msan-handle-asm-conservative is on. This is done because we may want to 290 // quickly disable assembly instrumentation when it breaks. 291 static cl::opt<bool> ClHandleAsmConservative( 292 "msan-handle-asm-conservative", 293 cl::desc("conservative handling of inline assembly"), cl::Hidden, 294 cl::init(true)); 295 296 // This flag controls whether we check the shadow of the address 297 // operand of load or store. Such bugs are very rare, since load from 298 // a garbage address typically results in SEGV, but still happen 299 // (e.g. only lower bits of address are garbage, or the access happens 300 // early at program startup where malloc-ed memory is more likely to 301 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 302 static cl::opt<bool> ClCheckAccessAddress( 303 "msan-check-access-address", 304 cl::desc("report accesses through a pointer which has poisoned shadow"), 305 cl::Hidden, cl::init(true)); 306 307 static cl::opt<bool> ClEagerChecks( 308 "msan-eager-checks", 309 cl::desc("check arguments and return values at function call boundaries"), 310 cl::Hidden, cl::init(false)); 311 312 static cl::opt<bool> ClDumpStrictInstructions( 313 "msan-dump-strict-instructions", 314 cl::desc("print out instructions with default strict semantics"), 315 cl::Hidden, cl::init(false)); 316 317 static cl::opt<int> ClInstrumentationWithCallThreshold( 318 "msan-instrumentation-with-call-threshold", 319 cl::desc( 320 "If the function being instrumented requires more than " 321 "this number of checks and origin stores, use callbacks instead of " 322 "inline checks (-1 means never use callbacks)."), 323 cl::Hidden, cl::init(3500)); 324 325 static cl::opt<bool> 326 ClEnableKmsan("msan-kernel", 327 cl::desc("Enable KernelMemorySanitizer instrumentation"), 328 cl::Hidden, cl::init(false)); 329 330 static cl::opt<bool> 331 ClDisableChecks("msan-disable-checks", 332 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 333 cl::init(false)); 334 335 static cl::opt<bool> 336 ClCheckConstantShadow("msan-check-constant-shadow", 337 cl::desc("Insert checks for constant shadow values"), 338 cl::Hidden, cl::init(true)); 339 340 // This is off by default because of a bug in gold: 341 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 342 static cl::opt<bool> 343 ClWithComdat("msan-with-comdat", 344 cl::desc("Place MSan constructors in comdat sections"), 345 cl::Hidden, cl::init(false)); 346 347 // These options allow to specify custom memory map parameters 348 // See MemoryMapParams for details. 349 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 350 cl::desc("Define custom MSan AndMask"), 351 cl::Hidden, cl::init(0)); 352 353 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 354 cl::desc("Define custom MSan XorMask"), 355 cl::Hidden, cl::init(0)); 356 357 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 358 cl::desc("Define custom MSan ShadowBase"), 359 cl::Hidden, cl::init(0)); 360 361 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 362 cl::desc("Define custom MSan OriginBase"), 363 cl::Hidden, cl::init(0)); 364 365 static cl::opt<int> 366 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 367 cl::desc("Define threshold for number of checks per " 368 "debug location to force origin update."), 369 cl::Hidden, cl::init(3)); 370 371 const char kMsanModuleCtorName[] = "msan.module_ctor"; 372 const char kMsanInitName[] = "__msan_init"; 373 374 namespace { 375 376 // Memory map parameters used in application-to-shadow address calculation. 377 // Offset = (Addr & ~AndMask) ^ XorMask 378 // Shadow = ShadowBase + Offset 379 // Origin = OriginBase + Offset 380 struct MemoryMapParams { 381 uint64_t AndMask; 382 uint64_t XorMask; 383 uint64_t ShadowBase; 384 uint64_t OriginBase; 385 }; 386 387 struct PlatformMemoryMapParams { 388 const MemoryMapParams *bits32; 389 const MemoryMapParams *bits64; 390 }; 391 392 } // end anonymous namespace 393 394 // i386 Linux 395 static const MemoryMapParams Linux_I386_MemoryMapParams = { 396 0x000080000000, // AndMask 397 0, // XorMask (not used) 398 0, // ShadowBase (not used) 399 0x000040000000, // OriginBase 400 }; 401 402 // x86_64 Linux 403 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 404 0, // AndMask (not used) 405 0x500000000000, // XorMask 406 0, // ShadowBase (not used) 407 0x100000000000, // OriginBase 408 }; 409 410 // mips64 Linux 411 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 412 0, // AndMask (not used) 413 0x008000000000, // XorMask 414 0, // ShadowBase (not used) 415 0x002000000000, // OriginBase 416 }; 417 418 // ppc64 Linux 419 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 420 0xE00000000000, // AndMask 421 0x100000000000, // XorMask 422 0x080000000000, // ShadowBase 423 0x1C0000000000, // OriginBase 424 }; 425 426 // s390x Linux 427 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 428 0xC00000000000, // AndMask 429 0, // XorMask (not used) 430 0x080000000000, // ShadowBase 431 0x1C0000000000, // OriginBase 432 }; 433 434 // aarch64 Linux 435 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 436 0, // AndMask (not used) 437 0x0B00000000000, // XorMask 438 0, // ShadowBase (not used) 439 0x0200000000000, // OriginBase 440 }; 441 442 // loongarch64 Linux 443 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 444 0, // AndMask (not used) 445 0x500000000000, // XorMask 446 0, // ShadowBase (not used) 447 0x100000000000, // OriginBase 448 }; 449 450 // aarch64 FreeBSD 451 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 452 0x1800000000000, // AndMask 453 0x0400000000000, // XorMask 454 0x0200000000000, // ShadowBase 455 0x0700000000000, // OriginBase 456 }; 457 458 // i386 FreeBSD 459 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 460 0x000180000000, // AndMask 461 0x000040000000, // XorMask 462 0x000020000000, // ShadowBase 463 0x000700000000, // OriginBase 464 }; 465 466 // x86_64 FreeBSD 467 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 468 0xc00000000000, // AndMask 469 0x200000000000, // XorMask 470 0x100000000000, // ShadowBase 471 0x380000000000, // OriginBase 472 }; 473 474 // x86_64 NetBSD 475 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 476 0, // AndMask 477 0x500000000000, // XorMask 478 0, // ShadowBase 479 0x100000000000, // OriginBase 480 }; 481 482 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 483 &Linux_I386_MemoryMapParams, 484 &Linux_X86_64_MemoryMapParams, 485 }; 486 487 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 488 nullptr, 489 &Linux_MIPS64_MemoryMapParams, 490 }; 491 492 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 493 nullptr, 494 &Linux_PowerPC64_MemoryMapParams, 495 }; 496 497 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 498 nullptr, 499 &Linux_S390X_MemoryMapParams, 500 }; 501 502 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 503 nullptr, 504 &Linux_AArch64_MemoryMapParams, 505 }; 506 507 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { 508 nullptr, 509 &Linux_LoongArch64_MemoryMapParams, 510 }; 511 512 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 513 nullptr, 514 &FreeBSD_AArch64_MemoryMapParams, 515 }; 516 517 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 518 &FreeBSD_I386_MemoryMapParams, 519 &FreeBSD_X86_64_MemoryMapParams, 520 }; 521 522 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 523 nullptr, 524 &NetBSD_X86_64_MemoryMapParams, 525 }; 526 527 namespace { 528 529 /// Instrument functions of a module to detect uninitialized reads. 530 /// 531 /// Instantiating MemorySanitizer inserts the msan runtime library API function 532 /// declarations into the module if they don't exist already. Instantiating 533 /// ensures the __msan_init function is in the list of global constructors for 534 /// the module. 535 class MemorySanitizer { 536 public: 537 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 538 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 539 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 540 initializeModule(M); 541 } 542 543 // MSan cannot be moved or copied because of MapParams. 544 MemorySanitizer(MemorySanitizer &&) = delete; 545 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 546 MemorySanitizer(const MemorySanitizer &) = delete; 547 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 548 549 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 550 551 private: 552 friend struct MemorySanitizerVisitor; 553 friend struct VarArgAMD64Helper; 554 friend struct VarArgMIPS64Helper; 555 friend struct VarArgAArch64Helper; 556 friend struct VarArgPowerPC64Helper; 557 friend struct VarArgSystemZHelper; 558 559 void initializeModule(Module &M); 560 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 561 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 562 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 563 564 template <typename... ArgsTy> 565 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 566 ArgsTy... Args); 567 568 /// True if we're compiling the Linux kernel. 569 bool CompileKernel; 570 /// Track origins (allocation points) of uninitialized values. 571 int TrackOrigins; 572 bool Recover; 573 bool EagerChecks; 574 575 Triple TargetTriple; 576 LLVMContext *C; 577 Type *IntptrTy; 578 Type *OriginTy; 579 580 // XxxTLS variables represent the per-thread state in MSan and per-task state 581 // in KMSAN. 582 // For the userspace these point to thread-local globals. In the kernel land 583 // they point to the members of a per-task struct obtained via a call to 584 // __msan_get_context_state(). 585 586 /// Thread-local shadow storage for function parameters. 587 Value *ParamTLS; 588 589 /// Thread-local origin storage for function parameters. 590 Value *ParamOriginTLS; 591 592 /// Thread-local shadow storage for function return value. 593 Value *RetvalTLS; 594 595 /// Thread-local origin storage for function return value. 596 Value *RetvalOriginTLS; 597 598 /// Thread-local shadow storage for in-register va_arg function 599 /// parameters (x86_64-specific). 600 Value *VAArgTLS; 601 602 /// Thread-local shadow storage for in-register va_arg function 603 /// parameters (x86_64-specific). 604 Value *VAArgOriginTLS; 605 606 /// Thread-local shadow storage for va_arg overflow area 607 /// (x86_64-specific). 608 Value *VAArgOverflowSizeTLS; 609 610 /// Are the instrumentation callbacks set up? 611 bool CallbacksInitialized = false; 612 613 /// The run-time callback to print a warning. 614 FunctionCallee WarningFn; 615 616 // These arrays are indexed by log2(AccessSize). 617 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 618 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 619 620 /// Run-time helper that generates a new origin value for a stack 621 /// allocation. 622 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 623 // No description version 624 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 625 626 /// Run-time helper that poisons stack on function entry. 627 FunctionCallee MsanPoisonStackFn; 628 629 /// Run-time helper that records a store (or any event) of an 630 /// uninitialized value and returns an updated origin id encoding this info. 631 FunctionCallee MsanChainOriginFn; 632 633 /// Run-time helper that paints an origin over a region. 634 FunctionCallee MsanSetOriginFn; 635 636 /// MSan runtime replacements for memmove, memcpy and memset. 637 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 638 639 /// KMSAN callback for task-local function argument shadow. 640 StructType *MsanContextStateTy; 641 FunctionCallee MsanGetContextStateFn; 642 643 /// Functions for poisoning/unpoisoning local variables 644 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 645 646 /// Pair of shadow/origin pointers. 647 Type *MsanMetadata; 648 649 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. 650 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 651 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 652 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 653 FunctionCallee MsanInstrumentAsmStoreFn; 654 655 /// Storage for return values of the MsanMetadataPtrXxx functions. 656 Value *MsanMetadataAlloca; 657 658 /// Helper to choose between different MsanMetadataPtrXxx(). 659 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 660 661 /// Memory map parameters used in application-to-shadow calculation. 662 const MemoryMapParams *MapParams; 663 664 /// Custom memory map parameters used when -msan-shadow-base or 665 // -msan-origin-base is provided. 666 MemoryMapParams CustomMapParams; 667 668 MDNode *ColdCallWeights; 669 670 /// Branch weights for origin store. 671 MDNode *OriginStoreWeights; 672 }; 673 674 void insertModuleCtor(Module &M) { 675 getOrCreateSanitizerCtorAndInitFunctions( 676 M, kMsanModuleCtorName, kMsanInitName, 677 /*InitArgTypes=*/{}, 678 /*InitArgs=*/{}, 679 // This callback is invoked when the functions are created the first 680 // time. Hook them into the global ctors list in that case: 681 [&](Function *Ctor, FunctionCallee) { 682 if (!ClWithComdat) { 683 appendToGlobalCtors(M, Ctor, 0); 684 return; 685 } 686 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 687 Ctor->setComdat(MsanCtorComdat); 688 appendToGlobalCtors(M, Ctor, 0, Ctor); 689 }); 690 } 691 692 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 693 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 694 } 695 696 } // end anonymous namespace 697 698 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 699 bool EagerChecks) 700 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 701 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 702 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 703 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 704 705 PreservedAnalyses MemorySanitizerPass::run(Module &M, 706 ModuleAnalysisManager &AM) { 707 bool Modified = false; 708 if (!Options.Kernel) { 709 insertModuleCtor(M); 710 Modified = true; 711 } 712 713 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 714 for (Function &F : M) { 715 if (F.empty()) 716 continue; 717 MemorySanitizer Msan(*F.getParent(), Options); 718 Modified |= 719 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 720 } 721 722 if (!Modified) 723 return PreservedAnalyses::all(); 724 725 PreservedAnalyses PA = PreservedAnalyses::none(); 726 // GlobalsAA is considered stateless and does not get invalidated unless 727 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 728 // make changes that require GlobalsAA to be invalidated. 729 PA.abandon<GlobalsAA>(); 730 return PA; 731 } 732 733 void MemorySanitizerPass::printPipeline( 734 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 735 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 736 OS, MapClassName2PassName); 737 OS << '<'; 738 if (Options.Recover) 739 OS << "recover;"; 740 if (Options.Kernel) 741 OS << "kernel;"; 742 if (Options.EagerChecks) 743 OS << "eager-checks;"; 744 OS << "track-origins=" << Options.TrackOrigins; 745 OS << '>'; 746 } 747 748 /// Create a non-const global initialized with the given string. 749 /// 750 /// Creates a writable global for Str so that we can pass it to the 751 /// run-time lib. Runtime uses first 4 bytes of the string to store the 752 /// frame ID, so the string needs to be mutable. 753 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 754 StringRef Str) { 755 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 756 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 757 GlobalValue::PrivateLinkage, StrConst, ""); 758 } 759 760 template <typename... ArgsTy> 761 FunctionCallee 762 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 763 ArgsTy... Args) { 764 if (TargetTriple.getArch() == Triple::systemz) { 765 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. 766 return M.getOrInsertFunction(Name, Type::getVoidTy(*C), 767 PointerType::get(MsanMetadata, 0), 768 std::forward<ArgsTy>(Args)...); 769 } 770 771 return M.getOrInsertFunction(Name, MsanMetadata, 772 std::forward<ArgsTy>(Args)...); 773 } 774 775 /// Create KMSAN API callbacks. 776 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 777 IRBuilder<> IRB(*C); 778 779 // These will be initialized in insertKmsanPrologue(). 780 RetvalTLS = nullptr; 781 RetvalOriginTLS = nullptr; 782 ParamTLS = nullptr; 783 ParamOriginTLS = nullptr; 784 VAArgTLS = nullptr; 785 VAArgOriginTLS = nullptr; 786 VAArgOverflowSizeTLS = nullptr; 787 788 WarningFn = M.getOrInsertFunction("__msan_warning", 789 TLI.getAttrList(C, {0}, /*Signed=*/false), 790 IRB.getVoidTy(), IRB.getInt32Ty()); 791 792 // Requests the per-task context state (kmsan_context_state*) from the 793 // runtime library. 794 MsanContextStateTy = StructType::get( 795 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 796 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 797 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 798 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 799 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 800 OriginTy); 801 MsanGetContextStateFn = M.getOrInsertFunction( 802 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 803 804 MsanMetadata = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 805 PointerType::get(IRB.getInt32Ty(), 0)); 806 807 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 808 std::string name_load = 809 "__msan_metadata_ptr_for_load_" + std::to_string(size); 810 std::string name_store = 811 "__msan_metadata_ptr_for_store_" + std::to_string(size); 812 MsanMetadataPtrForLoad_1_8[ind] = getOrInsertMsanMetadataFunction( 813 M, name_load, PointerType::get(IRB.getInt8Ty(), 0)); 814 MsanMetadataPtrForStore_1_8[ind] = getOrInsertMsanMetadataFunction( 815 M, name_store, PointerType::get(IRB.getInt8Ty(), 0)); 816 } 817 818 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( 819 M, "__msan_metadata_ptr_for_load_n", PointerType::get(IRB.getInt8Ty(), 0), 820 IRB.getInt64Ty()); 821 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( 822 M, "__msan_metadata_ptr_for_store_n", 823 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 824 825 // Functions for poisoning and unpoisoning memory. 826 MsanPoisonAllocaFn = 827 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 828 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 829 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 830 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 831 } 832 833 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 834 return M.getOrInsertGlobal(Name, Ty, [&] { 835 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 836 nullptr, Name, nullptr, 837 GlobalVariable::InitialExecTLSModel); 838 }); 839 } 840 841 /// Insert declarations for userspace-specific functions and globals. 842 void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) { 843 IRBuilder<> IRB(*C); 844 845 // Create the callback. 846 // FIXME: this function should have "Cold" calling conv, 847 // which is not yet implemented. 848 if (TrackOrigins) { 849 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 850 : "__msan_warning_with_origin_noreturn"; 851 WarningFn = M.getOrInsertFunction(WarningFnName, 852 TLI.getAttrList(C, {0}, /*Signed=*/false), 853 IRB.getVoidTy(), IRB.getInt32Ty()); 854 } else { 855 StringRef WarningFnName = 856 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 857 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 858 } 859 860 // Create the global TLS variables. 861 RetvalTLS = 862 getOrInsertGlobal(M, "__msan_retval_tls", 863 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 864 865 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 866 867 ParamTLS = 868 getOrInsertGlobal(M, "__msan_param_tls", 869 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 870 871 ParamOriginTLS = 872 getOrInsertGlobal(M, "__msan_param_origin_tls", 873 ArrayType::get(OriginTy, kParamTLSSize / 4)); 874 875 VAArgTLS = 876 getOrInsertGlobal(M, "__msan_va_arg_tls", 877 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 878 879 VAArgOriginTLS = 880 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 881 ArrayType::get(OriginTy, kParamTLSSize / 4)); 882 883 VAArgOverflowSizeTLS = 884 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 885 886 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 887 AccessSizeIndex++) { 888 unsigned AccessSize = 1 << AccessSizeIndex; 889 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 890 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 891 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 892 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 893 894 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 895 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 896 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 897 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 898 IRB.getInt32Ty()); 899 } 900 901 MsanSetAllocaOriginWithDescriptionFn = M.getOrInsertFunction( 902 "__msan_set_alloca_origin_with_descr", IRB.getVoidTy(), 903 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 904 MsanSetAllocaOriginNoDescriptionFn = M.getOrInsertFunction( 905 "__msan_set_alloca_origin_no_descr", IRB.getVoidTy(), IRB.getInt8PtrTy(), 906 IntptrTy, IRB.getInt8PtrTy()); 907 MsanPoisonStackFn = M.getOrInsertFunction( 908 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 909 } 910 911 /// Insert extern declaration of runtime-provided functions and globals. 912 void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) { 913 // Only do this once. 914 if (CallbacksInitialized) 915 return; 916 917 IRBuilder<> IRB(*C); 918 // Initialize callbacks that are common for kernel and userspace 919 // instrumentation. 920 MsanChainOriginFn = M.getOrInsertFunction( 921 "__msan_chain_origin", 922 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 923 IRB.getInt32Ty()); 924 MsanSetOriginFn = M.getOrInsertFunction( 925 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 926 IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 927 MemmoveFn = 928 M.getOrInsertFunction("__msan_memmove", IRB.getInt8PtrTy(), 929 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 930 MemcpyFn = 931 M.getOrInsertFunction("__msan_memcpy", IRB.getInt8PtrTy(), 932 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 933 MemsetFn = M.getOrInsertFunction( 934 "__msan_memset", TLI.getAttrList(C, {1}, /*Signed=*/true), 935 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 936 937 MsanInstrumentAsmStoreFn = 938 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 939 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 940 941 if (CompileKernel) { 942 createKernelApi(M, TLI); 943 } else { 944 createUserspaceApi(M, TLI); 945 } 946 CallbacksInitialized = true; 947 } 948 949 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 950 int size) { 951 FunctionCallee *Fns = 952 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 953 switch (size) { 954 case 1: 955 return Fns[0]; 956 case 2: 957 return Fns[1]; 958 case 4: 959 return Fns[2]; 960 case 8: 961 return Fns[3]; 962 default: 963 return nullptr; 964 } 965 } 966 967 /// Module-level initialization. 968 /// 969 /// inserts a call to __msan_init to the module's constructor list. 970 void MemorySanitizer::initializeModule(Module &M) { 971 auto &DL = M.getDataLayout(); 972 973 TargetTriple = Triple(M.getTargetTriple()); 974 975 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 976 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 977 // Check the overrides first 978 if (ShadowPassed || OriginPassed) { 979 CustomMapParams.AndMask = ClAndMask; 980 CustomMapParams.XorMask = ClXorMask; 981 CustomMapParams.ShadowBase = ClShadowBase; 982 CustomMapParams.OriginBase = ClOriginBase; 983 MapParams = &CustomMapParams; 984 } else { 985 switch (TargetTriple.getOS()) { 986 case Triple::FreeBSD: 987 switch (TargetTriple.getArch()) { 988 case Triple::aarch64: 989 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 990 break; 991 case Triple::x86_64: 992 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 993 break; 994 case Triple::x86: 995 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 996 break; 997 default: 998 report_fatal_error("unsupported architecture"); 999 } 1000 break; 1001 case Triple::NetBSD: 1002 switch (TargetTriple.getArch()) { 1003 case Triple::x86_64: 1004 MapParams = NetBSD_X86_MemoryMapParams.bits64; 1005 break; 1006 default: 1007 report_fatal_error("unsupported architecture"); 1008 } 1009 break; 1010 case Triple::Linux: 1011 switch (TargetTriple.getArch()) { 1012 case Triple::x86_64: 1013 MapParams = Linux_X86_MemoryMapParams.bits64; 1014 break; 1015 case Triple::x86: 1016 MapParams = Linux_X86_MemoryMapParams.bits32; 1017 break; 1018 case Triple::mips64: 1019 case Triple::mips64el: 1020 MapParams = Linux_MIPS_MemoryMapParams.bits64; 1021 break; 1022 case Triple::ppc64: 1023 case Triple::ppc64le: 1024 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 1025 break; 1026 case Triple::systemz: 1027 MapParams = Linux_S390_MemoryMapParams.bits64; 1028 break; 1029 case Triple::aarch64: 1030 case Triple::aarch64_be: 1031 MapParams = Linux_ARM_MemoryMapParams.bits64; 1032 break; 1033 case Triple::loongarch64: 1034 MapParams = Linux_LoongArch_MemoryMapParams.bits64; 1035 break; 1036 default: 1037 report_fatal_error("unsupported architecture"); 1038 } 1039 break; 1040 default: 1041 report_fatal_error("unsupported operating system"); 1042 } 1043 } 1044 1045 C = &(M.getContext()); 1046 IRBuilder<> IRB(*C); 1047 IntptrTy = IRB.getIntPtrTy(DL); 1048 OriginTy = IRB.getInt32Ty(); 1049 1050 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1051 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1052 1053 if (!CompileKernel) { 1054 if (TrackOrigins) 1055 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1056 return new GlobalVariable( 1057 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1058 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1059 }); 1060 1061 if (Recover) 1062 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1063 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1064 GlobalValue::WeakODRLinkage, 1065 IRB.getInt32(Recover), "__msan_keep_going"); 1066 }); 1067 } 1068 } 1069 1070 namespace { 1071 1072 /// A helper class that handles instrumentation of VarArg 1073 /// functions on a particular platform. 1074 /// 1075 /// Implementations are expected to insert the instrumentation 1076 /// necessary to propagate argument shadow through VarArg function 1077 /// calls. Visit* methods are called during an InstVisitor pass over 1078 /// the function, and should avoid creating new basic blocks. A new 1079 /// instance of this class is created for each instrumented function. 1080 struct VarArgHelper { 1081 virtual ~VarArgHelper() = default; 1082 1083 /// Visit a CallBase. 1084 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1085 1086 /// Visit a va_start call. 1087 virtual void visitVAStartInst(VAStartInst &I) = 0; 1088 1089 /// Visit a va_copy call. 1090 virtual void visitVACopyInst(VACopyInst &I) = 0; 1091 1092 /// Finalize function instrumentation. 1093 /// 1094 /// This method is called after visiting all interesting (see above) 1095 /// instructions in a function. 1096 virtual void finalizeInstrumentation() = 0; 1097 }; 1098 1099 struct MemorySanitizerVisitor; 1100 1101 } // end anonymous namespace 1102 1103 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1104 MemorySanitizerVisitor &Visitor); 1105 1106 static unsigned TypeSizeToSizeIndex(TypeSize TS) { 1107 if (TS.isScalable()) 1108 // Scalable types unconditionally take slowpaths. 1109 return kNumberOfAccessSizes; 1110 unsigned TypeSizeFixed = TS.getFixedValue(); 1111 if (TypeSizeFixed <= 8) 1112 return 0; 1113 return Log2_32_Ceil((TypeSizeFixed + 7) / 8); 1114 } 1115 1116 namespace { 1117 1118 /// Helper class to attach debug information of the given instruction onto new 1119 /// instructions inserted after. 1120 class NextNodeIRBuilder : public IRBuilder<> { 1121 public: 1122 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1123 SetCurrentDebugLocation(IP->getDebugLoc()); 1124 } 1125 }; 1126 1127 /// This class does all the work for a given function. Store and Load 1128 /// instructions store and load corresponding shadow and origin 1129 /// values. Most instructions propagate shadow from arguments to their 1130 /// return values. Certain instructions (most importantly, BranchInst) 1131 /// test their argument shadow and print reports (with a runtime call) if it's 1132 /// non-zero. 1133 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1134 Function &F; 1135 MemorySanitizer &MS; 1136 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1137 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1138 std::unique_ptr<VarArgHelper> VAHelper; 1139 const TargetLibraryInfo *TLI; 1140 Instruction *FnPrologueEnd; 1141 1142 // The following flags disable parts of MSan instrumentation based on 1143 // exclusion list contents and command-line options. 1144 bool InsertChecks; 1145 bool PropagateShadow; 1146 bool PoisonStack; 1147 bool PoisonUndef; 1148 1149 struct ShadowOriginAndInsertPoint { 1150 Value *Shadow; 1151 Value *Origin; 1152 Instruction *OrigIns; 1153 1154 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1155 : Shadow(S), Origin(O), OrigIns(I) {} 1156 }; 1157 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1158 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1159 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1160 SmallSetVector<AllocaInst *, 16> AllocaSet; 1161 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1162 SmallVector<StoreInst *, 16> StoreList; 1163 int64_t SplittableBlocksCount = 0; 1164 1165 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1166 const TargetLibraryInfo &TLI) 1167 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1168 bool SanitizeFunction = 1169 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1170 InsertChecks = SanitizeFunction; 1171 PropagateShadow = SanitizeFunction; 1172 PoisonStack = SanitizeFunction && ClPoisonStack; 1173 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1174 1175 // In the presence of unreachable blocks, we may see Phi nodes with 1176 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1177 // blocks, such nodes will not have any shadow value associated with them. 1178 // It's easier to remove unreachable blocks than deal with missing shadow. 1179 removeUnreachableBlocks(F); 1180 1181 MS.initializeCallbacks(*F.getParent(), TLI); 1182 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1183 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1184 1185 if (MS.CompileKernel) { 1186 IRBuilder<> IRB(FnPrologueEnd); 1187 insertKmsanPrologue(IRB); 1188 } 1189 1190 LLVM_DEBUG(if (!InsertChecks) dbgs() 1191 << "MemorySanitizer is not inserting checks into '" 1192 << F.getName() << "'\n"); 1193 } 1194 1195 bool instrumentWithCalls(Value *V) { 1196 // Constants likely will be eliminated by follow-up passes. 1197 if (isa<Constant>(V)) 1198 return false; 1199 1200 ++SplittableBlocksCount; 1201 return ClInstrumentationWithCallThreshold >= 0 && 1202 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1203 } 1204 1205 bool isInPrologue(Instruction &I) { 1206 return I.getParent() == FnPrologueEnd->getParent() && 1207 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1208 } 1209 1210 // Creates a new origin and records the stack trace. In general we can call 1211 // this function for any origin manipulation we like. However it will cost 1212 // runtime resources. So use this wisely only if it can provide additional 1213 // information helpful to a user. 1214 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1215 if (MS.TrackOrigins <= 1) 1216 return V; 1217 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1218 } 1219 1220 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1221 const DataLayout &DL = F.getParent()->getDataLayout(); 1222 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1223 if (IntptrSize == kOriginSize) 1224 return Origin; 1225 assert(IntptrSize == kOriginSize * 2); 1226 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1227 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1228 } 1229 1230 /// Fill memory range with the given origin value. 1231 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1232 TypeSize TS, Align Alignment) { 1233 const DataLayout &DL = F.getParent()->getDataLayout(); 1234 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1235 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1236 assert(IntptrAlignment >= kMinOriginAlignment); 1237 assert(IntptrSize >= kOriginSize); 1238 1239 // Note: The loop based formation works for fixed length vectors too, 1240 // however we prefer to unroll and specialize alignment below. 1241 if (TS.isScalable()) { 1242 Value *Size = IRB.CreateTypeSize(IRB.getInt32Ty(), TS); 1243 Value *RoundUp = IRB.CreateAdd(Size, IRB.getInt32(kOriginSize - 1)); 1244 Value *End = IRB.CreateUDiv(RoundUp, IRB.getInt32(kOriginSize)); 1245 auto [InsertPt, Index] = 1246 SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint()); 1247 IRB.SetInsertPoint(InsertPt); 1248 1249 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index); 1250 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment); 1251 return; 1252 } 1253 1254 unsigned Size = TS.getFixedValue(); 1255 1256 unsigned Ofs = 0; 1257 Align CurrentAlignment = Alignment; 1258 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1259 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1260 Value *IntptrOriginPtr = 1261 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1262 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1263 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1264 : IntptrOriginPtr; 1265 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1266 Ofs += IntptrSize / kOriginSize; 1267 CurrentAlignment = IntptrAlignment; 1268 } 1269 } 1270 1271 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1272 Value *GEP = 1273 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1274 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1275 CurrentAlignment = kMinOriginAlignment; 1276 } 1277 } 1278 1279 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1280 Value *OriginPtr, Align Alignment) { 1281 const DataLayout &DL = F.getParent()->getDataLayout(); 1282 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1283 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1284 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1285 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1286 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1287 // Origin is not needed: value is initialized or const shadow is 1288 // ignored. 1289 return; 1290 } 1291 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1292 // Copy origin as the value is definitely uninitialized. 1293 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1294 OriginAlignment); 1295 return; 1296 } 1297 // Fallback to runtime check, which still can be optimized out later. 1298 } 1299 1300 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1301 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1302 if (instrumentWithCalls(ConvertedShadow) && 1303 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1304 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1305 Value *ConvertedShadow2 = 1306 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1307 CallBase *CB = IRB.CreateCall( 1308 Fn, {ConvertedShadow2, 1309 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1310 CB->addParamAttr(0, Attribute::ZExt); 1311 CB->addParamAttr(2, Attribute::ZExt); 1312 } else { 1313 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1314 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1315 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1316 IRBuilder<> IRBNew(CheckTerm); 1317 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1318 OriginAlignment); 1319 } 1320 } 1321 1322 void materializeStores() { 1323 for (StoreInst *SI : StoreList) { 1324 IRBuilder<> IRB(SI); 1325 Value *Val = SI->getValueOperand(); 1326 Value *Addr = SI->getPointerOperand(); 1327 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1328 Value *ShadowPtr, *OriginPtr; 1329 Type *ShadowTy = Shadow->getType(); 1330 const Align Alignment = SI->getAlign(); 1331 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1332 std::tie(ShadowPtr, OriginPtr) = 1333 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1334 1335 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1336 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1337 (void)NewSI; 1338 1339 if (SI->isAtomic()) 1340 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1341 1342 if (MS.TrackOrigins && !SI->isAtomic()) 1343 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1344 OriginAlignment); 1345 } 1346 } 1347 1348 // Returns true if Debug Location curresponds to multiple warnings. 1349 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1350 if (MS.TrackOrigins < 2) 1351 return false; 1352 1353 if (LazyWarningDebugLocationCount.empty()) 1354 for (const auto &I : InstrumentationList) 1355 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1356 1357 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1358 } 1359 1360 /// Helper function to insert a warning at IRB's current insert point. 1361 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1362 if (!Origin) 1363 Origin = (Value *)IRB.getInt32(0); 1364 assert(Origin->getType()->isIntegerTy()); 1365 1366 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1367 // Try to create additional origin with debug info of the last origin 1368 // instruction. It may provide additional information to the user. 1369 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1370 assert(MS.TrackOrigins); 1371 auto NewDebugLoc = OI->getDebugLoc(); 1372 // Origin update with missing or the same debug location provides no 1373 // additional value. 1374 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1375 // Insert update just before the check, so we call runtime only just 1376 // before the report. 1377 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1378 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1379 Origin = updateOrigin(Origin, IRBOrigin); 1380 } 1381 } 1382 } 1383 1384 if (MS.CompileKernel || MS.TrackOrigins) 1385 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1386 else 1387 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1388 // FIXME: Insert UnreachableInst if !MS.Recover? 1389 // This may invalidate some of the following checks and needs to be done 1390 // at the very end. 1391 } 1392 1393 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1394 Value *Origin) { 1395 const DataLayout &DL = F.getParent()->getDataLayout(); 1396 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1397 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1398 if (instrumentWithCalls(ConvertedShadow) && 1399 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1400 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1401 Value *ConvertedShadow2 = 1402 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1403 CallBase *CB = IRB.CreateCall( 1404 Fn, {ConvertedShadow2, 1405 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1406 CB->addParamAttr(0, Attribute::ZExt); 1407 CB->addParamAttr(1, Attribute::ZExt); 1408 } else { 1409 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1410 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1411 Cmp, &*IRB.GetInsertPoint(), 1412 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1413 1414 IRB.SetInsertPoint(CheckTerm); 1415 insertWarningFn(IRB, Origin); 1416 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1417 } 1418 } 1419 1420 void materializeInstructionChecks( 1421 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1422 const DataLayout &DL = F.getParent()->getDataLayout(); 1423 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1424 // correct origin. 1425 bool Combine = !MS.TrackOrigins; 1426 Instruction *Instruction = InstructionChecks.front().OrigIns; 1427 Value *Shadow = nullptr; 1428 for (const auto &ShadowData : InstructionChecks) { 1429 assert(ShadowData.OrigIns == Instruction); 1430 IRBuilder<> IRB(Instruction); 1431 1432 Value *ConvertedShadow = ShadowData.Shadow; 1433 1434 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1435 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1436 // Skip, value is initialized or const shadow is ignored. 1437 continue; 1438 } 1439 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1440 // Report as the value is definitely uninitialized. 1441 insertWarningFn(IRB, ShadowData.Origin); 1442 if (!MS.Recover) 1443 return; // Always fail and stop here, not need to check the rest. 1444 // Skip entire instruction, 1445 continue; 1446 } 1447 // Fallback to runtime check, which still can be optimized out later. 1448 } 1449 1450 if (!Combine) { 1451 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1452 continue; 1453 } 1454 1455 if (!Shadow) { 1456 Shadow = ConvertedShadow; 1457 continue; 1458 } 1459 1460 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1461 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1462 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1463 } 1464 1465 if (Shadow) { 1466 assert(Combine); 1467 IRBuilder<> IRB(Instruction); 1468 materializeOneCheck(IRB, Shadow, nullptr); 1469 } 1470 } 1471 1472 void materializeChecks() { 1473 llvm::stable_sort(InstrumentationList, 1474 [](const ShadowOriginAndInsertPoint &L, 1475 const ShadowOriginAndInsertPoint &R) { 1476 return L.OrigIns < R.OrigIns; 1477 }); 1478 1479 for (auto I = InstrumentationList.begin(); 1480 I != InstrumentationList.end();) { 1481 auto J = 1482 std::find_if(I + 1, InstrumentationList.end(), 1483 [L = I->OrigIns](const ShadowOriginAndInsertPoint &R) { 1484 return L != R.OrigIns; 1485 }); 1486 // Process all checks of instruction at once. 1487 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1488 I = J; 1489 } 1490 1491 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1492 } 1493 1494 // Returns the last instruction in the new prologue 1495 void insertKmsanPrologue(IRBuilder<> &IRB) { 1496 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1497 Constant *Zero = IRB.getInt32(0); 1498 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1499 {Zero, IRB.getInt32(0)}, "param_shadow"); 1500 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1501 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1502 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1503 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1504 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1505 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1506 MS.VAArgOverflowSizeTLS = 1507 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1508 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1509 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1510 {Zero, IRB.getInt32(5)}, "param_origin"); 1511 MS.RetvalOriginTLS = 1512 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1513 {Zero, IRB.getInt32(6)}, "retval_origin"); 1514 if (MS.TargetTriple.getArch() == Triple::systemz) 1515 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u); 1516 } 1517 1518 /// Add MemorySanitizer instrumentation to a function. 1519 bool runOnFunction() { 1520 // Iterate all BBs in depth-first order and create shadow instructions 1521 // for all instructions (where applicable). 1522 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1523 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1524 visit(*BB); 1525 1526 // Finalize PHI nodes. 1527 for (PHINode *PN : ShadowPHINodes) { 1528 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1529 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1530 size_t NumValues = PN->getNumIncomingValues(); 1531 for (size_t v = 0; v < NumValues; v++) { 1532 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1533 if (PNO) 1534 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1535 } 1536 } 1537 1538 VAHelper->finalizeInstrumentation(); 1539 1540 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1541 // instrumenting only allocas. 1542 if (InstrumentLifetimeStart) { 1543 for (auto Item : LifetimeStartList) { 1544 instrumentAlloca(*Item.second, Item.first); 1545 AllocaSet.remove(Item.second); 1546 } 1547 } 1548 // Poison the allocas for which we didn't instrument the corresponding 1549 // lifetime intrinsics. 1550 for (AllocaInst *AI : AllocaSet) 1551 instrumentAlloca(*AI); 1552 1553 // Insert shadow value checks. 1554 materializeChecks(); 1555 1556 // Delayed instrumentation of StoreInst. 1557 // This may not add new address checks. 1558 materializeStores(); 1559 1560 return true; 1561 } 1562 1563 /// Compute the shadow type that corresponds to a given Value. 1564 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1565 1566 /// Compute the shadow type that corresponds to a given Type. 1567 Type *getShadowTy(Type *OrigTy) { 1568 if (!OrigTy->isSized()) { 1569 return nullptr; 1570 } 1571 // For integer type, shadow is the same as the original type. 1572 // This may return weird-sized types like i1. 1573 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1574 return IT; 1575 const DataLayout &DL = F.getParent()->getDataLayout(); 1576 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1577 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1578 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1579 VT->getElementCount()); 1580 } 1581 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1582 return ArrayType::get(getShadowTy(AT->getElementType()), 1583 AT->getNumElements()); 1584 } 1585 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1586 SmallVector<Type *, 4> Elements; 1587 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1588 Elements.push_back(getShadowTy(ST->getElementType(i))); 1589 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1590 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1591 return Res; 1592 } 1593 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1594 return IntegerType::get(*MS.C, TypeSize); 1595 } 1596 1597 /// Extract combined shadow of struct elements as a bool 1598 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1599 IRBuilder<> &IRB) { 1600 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1601 Value *Aggregator = FalseVal; 1602 1603 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1604 // Combine by ORing together each element's bool shadow 1605 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1606 Value *ShadowBool = convertToBool(ShadowItem, IRB); 1607 1608 if (Aggregator != FalseVal) 1609 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1610 else 1611 Aggregator = ShadowBool; 1612 } 1613 1614 return Aggregator; 1615 } 1616 1617 // Extract combined shadow of array elements 1618 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1619 IRBuilder<> &IRB) { 1620 if (!Array->getNumElements()) 1621 return IRB.getIntN(/* width */ 1, /* value */ 0); 1622 1623 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1624 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1625 1626 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1627 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1628 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1629 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1630 } 1631 return Aggregator; 1632 } 1633 1634 /// Convert a shadow value to it's flattened variant. The resulting 1635 /// shadow may not necessarily have the same bit width as the input 1636 /// value, but it will always be comparable to zero. 1637 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1638 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1639 return collapseStructShadow(Struct, V, IRB); 1640 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1641 return collapseArrayShadow(Array, V, IRB); 1642 if (isa<VectorType>(V->getType())) { 1643 if (isa<ScalableVectorType>(V->getType())) 1644 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB); 1645 unsigned BitWidth = 1646 V->getType()->getPrimitiveSizeInBits().getFixedValue(); 1647 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth)); 1648 } 1649 return V; 1650 } 1651 1652 // Convert a scalar value to an i1 by comparing with 0 1653 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1654 Type *VTy = V->getType(); 1655 if (!VTy->isIntegerTy()) 1656 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1657 if (VTy->getIntegerBitWidth() == 1) 1658 // Just converting a bool to a bool, so do nothing. 1659 return V; 1660 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1661 } 1662 1663 Type *ptrToIntPtrType(Type *PtrTy) const { 1664 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) { 1665 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1666 VectTy->getElementCount()); 1667 } 1668 assert(PtrTy->isIntOrPtrTy()); 1669 return MS.IntptrTy; 1670 } 1671 1672 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1673 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1674 return VectorType::get( 1675 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1676 VectTy->getElementCount()); 1677 } 1678 assert(IntPtrTy == MS.IntptrTy); 1679 return ShadowTy->getPointerTo(); 1680 } 1681 1682 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1683 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1684 return ConstantVector::getSplat( 1685 VectTy->getElementCount(), constToIntPtr(VectTy->getElementType(), C)); 1686 } 1687 assert(IntPtrTy == MS.IntptrTy); 1688 return ConstantInt::get(MS.IntptrTy, C); 1689 } 1690 1691 /// Compute the integer shadow offset that corresponds to a given 1692 /// application address. 1693 /// 1694 /// Offset = (Addr & ~AndMask) ^ XorMask 1695 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1696 /// a single pointee. 1697 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1698 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1699 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1700 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1701 1702 if (uint64_t AndMask = MS.MapParams->AndMask) 1703 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1704 1705 if (uint64_t XorMask = MS.MapParams->XorMask) 1706 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1707 return OffsetLong; 1708 } 1709 1710 /// Compute the shadow and origin addresses corresponding to a given 1711 /// application address. 1712 /// 1713 /// Shadow = ShadowBase + Offset 1714 /// Origin = (OriginBase + Offset) & ~3ULL 1715 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1716 /// a single pointee. 1717 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1718 std::pair<Value *, Value *> 1719 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1720 MaybeAlign Alignment) { 1721 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1722 if (!VectTy) { 1723 assert(Addr->getType()->isPointerTy()); 1724 } else { 1725 assert(VectTy->getElementType()->isPointerTy()); 1726 } 1727 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1728 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1729 Value *ShadowLong = ShadowOffset; 1730 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1731 ShadowLong = 1732 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1733 } 1734 Value *ShadowPtr = IRB.CreateIntToPtr( 1735 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1736 1737 Value *OriginPtr = nullptr; 1738 if (MS.TrackOrigins) { 1739 Value *OriginLong = ShadowOffset; 1740 uint64_t OriginBase = MS.MapParams->OriginBase; 1741 if (OriginBase != 0) 1742 OriginLong = 1743 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1744 if (!Alignment || *Alignment < kMinOriginAlignment) { 1745 uint64_t Mask = kMinOriginAlignment.value() - 1; 1746 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1747 } 1748 OriginPtr = IRB.CreateIntToPtr( 1749 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1750 } 1751 return std::make_pair(ShadowPtr, OriginPtr); 1752 } 1753 1754 template <typename... ArgsTy> 1755 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, 1756 ArgsTy... Args) { 1757 if (MS.TargetTriple.getArch() == Triple::systemz) { 1758 IRB.CreateCall(Callee, 1759 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); 1760 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca); 1761 } 1762 1763 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); 1764 } 1765 1766 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1767 IRBuilder<> &IRB, 1768 Type *ShadowTy, 1769 bool isStore) { 1770 Value *ShadowOriginPtrs; 1771 const DataLayout &DL = F.getParent()->getDataLayout(); 1772 TypeSize Size = DL.getTypeStoreSize(ShadowTy); 1773 1774 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1775 Value *AddrCast = 1776 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1777 if (Getter) { 1778 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast); 1779 } else { 1780 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1781 ShadowOriginPtrs = createMetadataCall( 1782 IRB, 1783 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, 1784 AddrCast, SizeVal); 1785 } 1786 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1787 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1788 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1789 1790 return std::make_pair(ShadowPtr, OriginPtr); 1791 } 1792 1793 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1794 /// a single pointee. 1795 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1796 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1797 IRBuilder<> &IRB, 1798 Type *ShadowTy, 1799 bool isStore) { 1800 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1801 if (!VectTy) { 1802 assert(Addr->getType()->isPointerTy()); 1803 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1804 } 1805 1806 // TODO: Support callbacs with vectors of addresses. 1807 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements(); 1808 Value *ShadowPtrs = ConstantInt::getNullValue( 1809 FixedVectorType::get(ShadowTy->getPointerTo(), NumElements)); 1810 Value *OriginPtrs = nullptr; 1811 if (MS.TrackOrigins) 1812 OriginPtrs = ConstantInt::getNullValue( 1813 FixedVectorType::get(MS.OriginTy->getPointerTo(), NumElements)); 1814 for (unsigned i = 0; i < NumElements; ++i) { 1815 Value *OneAddr = 1816 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1817 auto [ShadowPtr, OriginPtr] = 1818 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1819 1820 ShadowPtrs = IRB.CreateInsertElement( 1821 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1822 if (MS.TrackOrigins) 1823 OriginPtrs = IRB.CreateInsertElement( 1824 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1825 } 1826 return {ShadowPtrs, OriginPtrs}; 1827 } 1828 1829 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1830 Type *ShadowTy, 1831 MaybeAlign Alignment, 1832 bool isStore) { 1833 if (MS.CompileKernel) 1834 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1835 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1836 } 1837 1838 /// Compute the shadow address for a given function argument. 1839 /// 1840 /// Shadow = ParamTLS+ArgOffset. 1841 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) { 1842 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1843 if (ArgOffset) 1844 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1845 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1846 "_msarg"); 1847 } 1848 1849 /// Compute the origin address for a given function argument. 1850 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) { 1851 if (!MS.TrackOrigins) 1852 return nullptr; 1853 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1854 if (ArgOffset) 1855 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1856 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1857 "_msarg_o"); 1858 } 1859 1860 /// Compute the shadow address for a retval. 1861 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1862 return IRB.CreatePointerCast(MS.RetvalTLS, 1863 PointerType::get(getShadowTy(A), 0), "_msret"); 1864 } 1865 1866 /// Compute the origin address for a retval. 1867 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1868 // We keep a single origin for the entire retval. Might be too optimistic. 1869 return MS.RetvalOriginTLS; 1870 } 1871 1872 /// Set SV to be the shadow value for V. 1873 void setShadow(Value *V, Value *SV) { 1874 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1875 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1876 } 1877 1878 /// Set Origin to be the origin value for V. 1879 void setOrigin(Value *V, Value *Origin) { 1880 if (!MS.TrackOrigins) 1881 return; 1882 assert(!OriginMap.count(V) && "Values may only have one origin"); 1883 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1884 OriginMap[V] = Origin; 1885 } 1886 1887 Constant *getCleanShadow(Type *OrigTy) { 1888 Type *ShadowTy = getShadowTy(OrigTy); 1889 if (!ShadowTy) 1890 return nullptr; 1891 return Constant::getNullValue(ShadowTy); 1892 } 1893 1894 /// Create a clean shadow value for a given value. 1895 /// 1896 /// Clean shadow (all zeroes) means all bits of the value are defined 1897 /// (initialized). 1898 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1899 1900 /// Create a dirty shadow of a given shadow type. 1901 Constant *getPoisonedShadow(Type *ShadowTy) { 1902 assert(ShadowTy); 1903 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1904 return Constant::getAllOnesValue(ShadowTy); 1905 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1906 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1907 getPoisonedShadow(AT->getElementType())); 1908 return ConstantArray::get(AT, Vals); 1909 } 1910 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1911 SmallVector<Constant *, 4> Vals; 1912 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1913 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1914 return ConstantStruct::get(ST, Vals); 1915 } 1916 llvm_unreachable("Unexpected shadow type"); 1917 } 1918 1919 /// Create a dirty shadow for a given value. 1920 Constant *getPoisonedShadow(Value *V) { 1921 Type *ShadowTy = getShadowTy(V); 1922 if (!ShadowTy) 1923 return nullptr; 1924 return getPoisonedShadow(ShadowTy); 1925 } 1926 1927 /// Create a clean (zero) origin. 1928 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1929 1930 /// Get the shadow value for a given Value. 1931 /// 1932 /// This function either returns the value set earlier with setShadow, 1933 /// or extracts if from ParamTLS (for function arguments). 1934 Value *getShadow(Value *V) { 1935 if (Instruction *I = dyn_cast<Instruction>(V)) { 1936 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1937 return getCleanShadow(V); 1938 // For instructions the shadow is already stored in the map. 1939 Value *Shadow = ShadowMap[V]; 1940 if (!Shadow) { 1941 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1942 (void)I; 1943 assert(Shadow && "No shadow for a value"); 1944 } 1945 return Shadow; 1946 } 1947 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1948 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1949 : getCleanShadow(V); 1950 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1951 (void)U; 1952 return AllOnes; 1953 } 1954 if (Argument *A = dyn_cast<Argument>(V)) { 1955 // For arguments we compute the shadow on demand and store it in the map. 1956 Value *&ShadowPtr = ShadowMap[V]; 1957 if (ShadowPtr) 1958 return ShadowPtr; 1959 Function *F = A->getParent(); 1960 IRBuilder<> EntryIRB(FnPrologueEnd); 1961 unsigned ArgOffset = 0; 1962 const DataLayout &DL = F->getParent()->getDataLayout(); 1963 for (auto &FArg : F->args()) { 1964 if (!FArg.getType()->isSized()) { 1965 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1966 continue; 1967 } 1968 1969 unsigned Size = FArg.hasByValAttr() 1970 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1971 : DL.getTypeAllocSize(FArg.getType()); 1972 1973 if (A == &FArg) { 1974 bool Overflow = ArgOffset + Size > kParamTLSSize; 1975 if (FArg.hasByValAttr()) { 1976 // ByVal pointer itself has clean shadow. We copy the actual 1977 // argument shadow to the underlying memory. 1978 // Figure out maximal valid memcpy alignment. 1979 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1980 FArg.getParamAlign(), FArg.getParamByValType()); 1981 Value *CpShadowPtr, *CpOriginPtr; 1982 std::tie(CpShadowPtr, CpOriginPtr) = 1983 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1984 /*isStore*/ true); 1985 if (!PropagateShadow || Overflow) { 1986 // ParamTLS overflow. 1987 EntryIRB.CreateMemSet( 1988 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1989 Size, ArgAlign); 1990 } else { 1991 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1992 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1993 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1994 CopyAlign, Size); 1995 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1996 (void)Cpy; 1997 1998 if (MS.TrackOrigins) { 1999 Value *OriginPtr = 2000 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 2001 // FIXME: OriginSize should be: 2002 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 2003 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 2004 EntryIRB.CreateMemCpy( 2005 CpOriginPtr, 2006 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 2007 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 2008 OriginSize); 2009 } 2010 } 2011 } 2012 2013 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 2014 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 2015 ShadowPtr = getCleanShadow(V); 2016 setOrigin(A, getCleanOrigin()); 2017 } else { 2018 // Shadow over TLS 2019 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 2020 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 2021 kShadowTLSAlignment); 2022 if (MS.TrackOrigins) { 2023 Value *OriginPtr = 2024 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 2025 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 2026 } 2027 } 2028 LLVM_DEBUG(dbgs() 2029 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 2030 break; 2031 } 2032 2033 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2034 } 2035 assert(ShadowPtr && "Could not find shadow for an argument"); 2036 return ShadowPtr; 2037 } 2038 // For everything else the shadow is zero. 2039 return getCleanShadow(V); 2040 } 2041 2042 /// Get the shadow for i-th argument of the instruction I. 2043 Value *getShadow(Instruction *I, int i) { 2044 return getShadow(I->getOperand(i)); 2045 } 2046 2047 /// Get the origin for a value. 2048 Value *getOrigin(Value *V) { 2049 if (!MS.TrackOrigins) 2050 return nullptr; 2051 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 2052 return getCleanOrigin(); 2053 assert((isa<Instruction>(V) || isa<Argument>(V)) && 2054 "Unexpected value type in getOrigin()"); 2055 if (Instruction *I = dyn_cast<Instruction>(V)) { 2056 if (I->getMetadata(LLVMContext::MD_nosanitize)) 2057 return getCleanOrigin(); 2058 } 2059 Value *Origin = OriginMap[V]; 2060 assert(Origin && "Missing origin"); 2061 return Origin; 2062 } 2063 2064 /// Get the origin for i-th argument of the instruction I. 2065 Value *getOrigin(Instruction *I, int i) { 2066 return getOrigin(I->getOperand(i)); 2067 } 2068 2069 /// Remember the place where a shadow check should be inserted. 2070 /// 2071 /// This location will be later instrumented with a check that will print a 2072 /// UMR warning in runtime if the shadow value is not 0. 2073 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 2074 assert(Shadow); 2075 if (!InsertChecks) 2076 return; 2077 2078 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 2079 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 2080 << *OrigIns << "\n"); 2081 return; 2082 } 2083 #ifndef NDEBUG 2084 Type *ShadowTy = Shadow->getType(); 2085 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2086 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2087 "Can only insert checks for integer, vector, and aggregate shadow " 2088 "types"); 2089 #endif 2090 InstrumentationList.push_back( 2091 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2092 } 2093 2094 /// Remember the place where a shadow check should be inserted. 2095 /// 2096 /// This location will be later instrumented with a check that will print a 2097 /// UMR warning in runtime if the value is not fully defined. 2098 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2099 assert(Val); 2100 Value *Shadow, *Origin; 2101 if (ClCheckConstantShadow) { 2102 Shadow = getShadow(Val); 2103 if (!Shadow) 2104 return; 2105 Origin = getOrigin(Val); 2106 } else { 2107 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2108 if (!Shadow) 2109 return; 2110 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2111 } 2112 insertShadowCheck(Shadow, Origin, OrigIns); 2113 } 2114 2115 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2116 switch (a) { 2117 case AtomicOrdering::NotAtomic: 2118 return AtomicOrdering::NotAtomic; 2119 case AtomicOrdering::Unordered: 2120 case AtomicOrdering::Monotonic: 2121 case AtomicOrdering::Release: 2122 return AtomicOrdering::Release; 2123 case AtomicOrdering::Acquire: 2124 case AtomicOrdering::AcquireRelease: 2125 return AtomicOrdering::AcquireRelease; 2126 case AtomicOrdering::SequentiallyConsistent: 2127 return AtomicOrdering::SequentiallyConsistent; 2128 } 2129 llvm_unreachable("Unknown ordering"); 2130 } 2131 2132 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2133 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2134 uint32_t OrderingTable[NumOrderings] = {}; 2135 2136 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2137 OrderingTable[(int)AtomicOrderingCABI::release] = 2138 (int)AtomicOrderingCABI::release; 2139 OrderingTable[(int)AtomicOrderingCABI::consume] = 2140 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2141 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2142 (int)AtomicOrderingCABI::acq_rel; 2143 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2144 (int)AtomicOrderingCABI::seq_cst; 2145 2146 return ConstantDataVector::get(IRB.getContext(), 2147 ArrayRef(OrderingTable, NumOrderings)); 2148 } 2149 2150 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2151 switch (a) { 2152 case AtomicOrdering::NotAtomic: 2153 return AtomicOrdering::NotAtomic; 2154 case AtomicOrdering::Unordered: 2155 case AtomicOrdering::Monotonic: 2156 case AtomicOrdering::Acquire: 2157 return AtomicOrdering::Acquire; 2158 case AtomicOrdering::Release: 2159 case AtomicOrdering::AcquireRelease: 2160 return AtomicOrdering::AcquireRelease; 2161 case AtomicOrdering::SequentiallyConsistent: 2162 return AtomicOrdering::SequentiallyConsistent; 2163 } 2164 llvm_unreachable("Unknown ordering"); 2165 } 2166 2167 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2168 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2169 uint32_t OrderingTable[NumOrderings] = {}; 2170 2171 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2172 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2173 OrderingTable[(int)AtomicOrderingCABI::consume] = 2174 (int)AtomicOrderingCABI::acquire; 2175 OrderingTable[(int)AtomicOrderingCABI::release] = 2176 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2177 (int)AtomicOrderingCABI::acq_rel; 2178 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2179 (int)AtomicOrderingCABI::seq_cst; 2180 2181 return ConstantDataVector::get(IRB.getContext(), 2182 ArrayRef(OrderingTable, NumOrderings)); 2183 } 2184 2185 // ------------------- Visitors. 2186 using InstVisitor<MemorySanitizerVisitor>::visit; 2187 void visit(Instruction &I) { 2188 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2189 return; 2190 // Don't want to visit if we're in the prologue 2191 if (isInPrologue(I)) 2192 return; 2193 InstVisitor<MemorySanitizerVisitor>::visit(I); 2194 } 2195 2196 /// Instrument LoadInst 2197 /// 2198 /// Loads the corresponding shadow and (optionally) origin. 2199 /// Optionally, checks that the load address is fully defined. 2200 void visitLoadInst(LoadInst &I) { 2201 assert(I.getType()->isSized() && "Load type must have size"); 2202 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2203 NextNodeIRBuilder IRB(&I); 2204 Type *ShadowTy = getShadowTy(&I); 2205 Value *Addr = I.getPointerOperand(); 2206 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2207 const Align Alignment = I.getAlign(); 2208 if (PropagateShadow) { 2209 std::tie(ShadowPtr, OriginPtr) = 2210 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2211 setShadow(&I, 2212 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2213 } else { 2214 setShadow(&I, getCleanShadow(&I)); 2215 } 2216 2217 if (ClCheckAccessAddress) 2218 insertShadowCheck(I.getPointerOperand(), &I); 2219 2220 if (I.isAtomic()) 2221 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2222 2223 if (MS.TrackOrigins) { 2224 if (PropagateShadow) { 2225 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2226 setOrigin( 2227 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2228 } else { 2229 setOrigin(&I, getCleanOrigin()); 2230 } 2231 } 2232 } 2233 2234 /// Instrument StoreInst 2235 /// 2236 /// Stores the corresponding shadow and (optionally) origin. 2237 /// Optionally, checks that the store address is fully defined. 2238 void visitStoreInst(StoreInst &I) { 2239 StoreList.push_back(&I); 2240 if (ClCheckAccessAddress) 2241 insertShadowCheck(I.getPointerOperand(), &I); 2242 } 2243 2244 void handleCASOrRMW(Instruction &I) { 2245 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2246 2247 IRBuilder<> IRB(&I); 2248 Value *Addr = I.getOperand(0); 2249 Value *Val = I.getOperand(1); 2250 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2251 /*isStore*/ true) 2252 .first; 2253 2254 if (ClCheckAccessAddress) 2255 insertShadowCheck(Addr, &I); 2256 2257 // Only test the conditional argument of cmpxchg instruction. 2258 // The other argument can potentially be uninitialized, but we can not 2259 // detect this situation reliably without possible false positives. 2260 if (isa<AtomicCmpXchgInst>(I)) 2261 insertShadowCheck(Val, &I); 2262 2263 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2264 2265 setShadow(&I, getCleanShadow(&I)); 2266 setOrigin(&I, getCleanOrigin()); 2267 } 2268 2269 void visitAtomicRMWInst(AtomicRMWInst &I) { 2270 handleCASOrRMW(I); 2271 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2272 } 2273 2274 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2275 handleCASOrRMW(I); 2276 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2277 } 2278 2279 // Vector manipulation. 2280 void visitExtractElementInst(ExtractElementInst &I) { 2281 insertShadowCheck(I.getOperand(1), &I); 2282 IRBuilder<> IRB(&I); 2283 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2284 "_msprop")); 2285 setOrigin(&I, getOrigin(&I, 0)); 2286 } 2287 2288 void visitInsertElementInst(InsertElementInst &I) { 2289 insertShadowCheck(I.getOperand(2), &I); 2290 IRBuilder<> IRB(&I); 2291 auto *Shadow0 = getShadow(&I, 0); 2292 auto *Shadow1 = getShadow(&I, 1); 2293 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2294 "_msprop")); 2295 setOriginForNaryOp(I); 2296 } 2297 2298 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2299 IRBuilder<> IRB(&I); 2300 auto *Shadow0 = getShadow(&I, 0); 2301 auto *Shadow1 = getShadow(&I, 1); 2302 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2303 "_msprop")); 2304 setOriginForNaryOp(I); 2305 } 2306 2307 // Casts. 2308 void visitSExtInst(SExtInst &I) { 2309 IRBuilder<> IRB(&I); 2310 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2311 setOrigin(&I, getOrigin(&I, 0)); 2312 } 2313 2314 void visitZExtInst(ZExtInst &I) { 2315 IRBuilder<> IRB(&I); 2316 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2317 setOrigin(&I, getOrigin(&I, 0)); 2318 } 2319 2320 void visitTruncInst(TruncInst &I) { 2321 IRBuilder<> IRB(&I); 2322 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2323 setOrigin(&I, getOrigin(&I, 0)); 2324 } 2325 2326 void visitBitCastInst(BitCastInst &I) { 2327 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2328 // a musttail call and a ret, don't instrument. New instructions are not 2329 // allowed after a musttail call. 2330 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2331 if (CI->isMustTailCall()) 2332 return; 2333 IRBuilder<> IRB(&I); 2334 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2335 setOrigin(&I, getOrigin(&I, 0)); 2336 } 2337 2338 void visitPtrToIntInst(PtrToIntInst &I) { 2339 IRBuilder<> IRB(&I); 2340 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2341 "_msprop_ptrtoint")); 2342 setOrigin(&I, getOrigin(&I, 0)); 2343 } 2344 2345 void visitIntToPtrInst(IntToPtrInst &I) { 2346 IRBuilder<> IRB(&I); 2347 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2348 "_msprop_inttoptr")); 2349 setOrigin(&I, getOrigin(&I, 0)); 2350 } 2351 2352 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2353 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2354 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2355 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2356 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2357 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2358 2359 /// Propagate shadow for bitwise AND. 2360 /// 2361 /// This code is exact, i.e. if, for example, a bit in the left argument 2362 /// is defined and 0, then neither the value not definedness of the 2363 /// corresponding bit in B don't affect the resulting shadow. 2364 void visitAnd(BinaryOperator &I) { 2365 IRBuilder<> IRB(&I); 2366 // "And" of 0 and a poisoned value results in unpoisoned value. 2367 // 1&1 => 1; 0&1 => 0; p&1 => p; 2368 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2369 // 1&p => p; 0&p => 0; p&p => p; 2370 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2371 Value *S1 = getShadow(&I, 0); 2372 Value *S2 = getShadow(&I, 1); 2373 Value *V1 = I.getOperand(0); 2374 Value *V2 = I.getOperand(1); 2375 if (V1->getType() != S1->getType()) { 2376 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2377 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2378 } 2379 Value *S1S2 = IRB.CreateAnd(S1, S2); 2380 Value *V1S2 = IRB.CreateAnd(V1, S2); 2381 Value *S1V2 = IRB.CreateAnd(S1, V2); 2382 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2383 setOriginForNaryOp(I); 2384 } 2385 2386 void visitOr(BinaryOperator &I) { 2387 IRBuilder<> IRB(&I); 2388 // "Or" of 1 and a poisoned value results in unpoisoned value. 2389 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2390 // 1|0 => 1; 0|0 => 0; p|0 => p; 2391 // 1|p => 1; 0|p => p; p|p => p; 2392 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2393 Value *S1 = getShadow(&I, 0); 2394 Value *S2 = getShadow(&I, 1); 2395 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2396 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2397 if (V1->getType() != S1->getType()) { 2398 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2399 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2400 } 2401 Value *S1S2 = IRB.CreateAnd(S1, S2); 2402 Value *V1S2 = IRB.CreateAnd(V1, S2); 2403 Value *S1V2 = IRB.CreateAnd(S1, V2); 2404 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2405 setOriginForNaryOp(I); 2406 } 2407 2408 /// Default propagation of shadow and/or origin. 2409 /// 2410 /// This class implements the general case of shadow propagation, used in all 2411 /// cases where we don't know and/or don't care about what the operation 2412 /// actually does. It converts all input shadow values to a common type 2413 /// (extending or truncating as necessary), and bitwise OR's them. 2414 /// 2415 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2416 /// fully initialized), and less prone to false positives. 2417 /// 2418 /// This class also implements the general case of origin propagation. For a 2419 /// Nary operation, result origin is set to the origin of an argument that is 2420 /// not entirely initialized. If there is more than one such arguments, the 2421 /// rightmost of them is picked. It does not matter which one is picked if all 2422 /// arguments are initialized. 2423 template <bool CombineShadow> class Combiner { 2424 Value *Shadow = nullptr; 2425 Value *Origin = nullptr; 2426 IRBuilder<> &IRB; 2427 MemorySanitizerVisitor *MSV; 2428 2429 public: 2430 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2431 : IRB(IRB), MSV(MSV) {} 2432 2433 /// Add a pair of shadow and origin values to the mix. 2434 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2435 if (CombineShadow) { 2436 assert(OpShadow); 2437 if (!Shadow) 2438 Shadow = OpShadow; 2439 else { 2440 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2441 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2442 } 2443 } 2444 2445 if (MSV->MS.TrackOrigins) { 2446 assert(OpOrigin); 2447 if (!Origin) { 2448 Origin = OpOrigin; 2449 } else { 2450 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2451 // No point in adding something that might result in 0 origin value. 2452 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2453 Value *Cond = MSV->convertToBool(OpShadow, IRB); 2454 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2455 } 2456 } 2457 } 2458 return *this; 2459 } 2460 2461 /// Add an application value to the mix. 2462 Combiner &Add(Value *V) { 2463 Value *OpShadow = MSV->getShadow(V); 2464 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2465 return Add(OpShadow, OpOrigin); 2466 } 2467 2468 /// Set the current combined values as the given instruction's shadow 2469 /// and origin. 2470 void Done(Instruction *I) { 2471 if (CombineShadow) { 2472 assert(Shadow); 2473 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2474 MSV->setShadow(I, Shadow); 2475 } 2476 if (MSV->MS.TrackOrigins) { 2477 assert(Origin); 2478 MSV->setOrigin(I, Origin); 2479 } 2480 } 2481 }; 2482 2483 using ShadowAndOriginCombiner = Combiner<true>; 2484 using OriginCombiner = Combiner<false>; 2485 2486 /// Propagate origin for arbitrary operation. 2487 void setOriginForNaryOp(Instruction &I) { 2488 if (!MS.TrackOrigins) 2489 return; 2490 IRBuilder<> IRB(&I); 2491 OriginCombiner OC(this, IRB); 2492 for (Use &Op : I.operands()) 2493 OC.Add(Op.get()); 2494 OC.Done(&I); 2495 } 2496 2497 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2498 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2499 "Vector of pointers is not a valid shadow type"); 2500 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2501 Ty->getScalarSizeInBits() 2502 : Ty->getPrimitiveSizeInBits(); 2503 } 2504 2505 /// Cast between two shadow types, extending or truncating as 2506 /// necessary. 2507 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2508 bool Signed = false) { 2509 Type *srcTy = V->getType(); 2510 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2511 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2512 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2513 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2514 2515 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2516 return IRB.CreateIntCast(V, dstTy, Signed); 2517 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2518 cast<VectorType>(dstTy)->getElementCount() == 2519 cast<VectorType>(srcTy)->getElementCount()) 2520 return IRB.CreateIntCast(V, dstTy, Signed); 2521 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2522 Value *V2 = 2523 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2524 return IRB.CreateBitCast(V2, dstTy); 2525 // TODO: handle struct types. 2526 } 2527 2528 /// Cast an application value to the type of its own shadow. 2529 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2530 Type *ShadowTy = getShadowTy(V); 2531 if (V->getType() == ShadowTy) 2532 return V; 2533 if (V->getType()->isPtrOrPtrVectorTy()) 2534 return IRB.CreatePtrToInt(V, ShadowTy); 2535 else 2536 return IRB.CreateBitCast(V, ShadowTy); 2537 } 2538 2539 /// Propagate shadow for arbitrary operation. 2540 void handleShadowOr(Instruction &I) { 2541 IRBuilder<> IRB(&I); 2542 ShadowAndOriginCombiner SC(this, IRB); 2543 for (Use &Op : I.operands()) 2544 SC.Add(Op.get()); 2545 SC.Done(&I); 2546 } 2547 2548 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2549 2550 // Handle multiplication by constant. 2551 // 2552 // Handle a special case of multiplication by constant that may have one or 2553 // more zeros in the lower bits. This makes corresponding number of lower bits 2554 // of the result zero as well. We model it by shifting the other operand 2555 // shadow left by the required number of bits. Effectively, we transform 2556 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2557 // We use multiplication by 2**N instead of shift to cover the case of 2558 // multiplication by 0, which may occur in some elements of a vector operand. 2559 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2560 Value *OtherArg) { 2561 Constant *ShadowMul; 2562 Type *Ty = ConstArg->getType(); 2563 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2564 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2565 Type *EltTy = VTy->getElementType(); 2566 SmallVector<Constant *, 16> Elements; 2567 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2568 if (ConstantInt *Elt = 2569 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2570 const APInt &V = Elt->getValue(); 2571 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2572 Elements.push_back(ConstantInt::get(EltTy, V2)); 2573 } else { 2574 Elements.push_back(ConstantInt::get(EltTy, 1)); 2575 } 2576 } 2577 ShadowMul = ConstantVector::get(Elements); 2578 } else { 2579 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2580 const APInt &V = Elt->getValue(); 2581 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2582 ShadowMul = ConstantInt::get(Ty, V2); 2583 } else { 2584 ShadowMul = ConstantInt::get(Ty, 1); 2585 } 2586 } 2587 2588 IRBuilder<> IRB(&I); 2589 setShadow(&I, 2590 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2591 setOrigin(&I, getOrigin(OtherArg)); 2592 } 2593 2594 void visitMul(BinaryOperator &I) { 2595 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2596 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2597 if (constOp0 && !constOp1) 2598 handleMulByConstant(I, constOp0, I.getOperand(1)); 2599 else if (constOp1 && !constOp0) 2600 handleMulByConstant(I, constOp1, I.getOperand(0)); 2601 else 2602 handleShadowOr(I); 2603 } 2604 2605 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2606 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2607 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2608 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2609 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2610 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2611 2612 void handleIntegerDiv(Instruction &I) { 2613 IRBuilder<> IRB(&I); 2614 // Strict on the second argument. 2615 insertShadowCheck(I.getOperand(1), &I); 2616 setShadow(&I, getShadow(&I, 0)); 2617 setOrigin(&I, getOrigin(&I, 0)); 2618 } 2619 2620 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2621 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2622 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2623 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2624 2625 // Floating point division is side-effect free. We can not require that the 2626 // divisor is fully initialized and must propagate shadow. See PR37523. 2627 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2628 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2629 2630 /// Instrument == and != comparisons. 2631 /// 2632 /// Sometimes the comparison result is known even if some of the bits of the 2633 /// arguments are not. 2634 void handleEqualityComparison(ICmpInst &I) { 2635 IRBuilder<> IRB(&I); 2636 Value *A = I.getOperand(0); 2637 Value *B = I.getOperand(1); 2638 Value *Sa = getShadow(A); 2639 Value *Sb = getShadow(B); 2640 2641 // Get rid of pointers and vectors of pointers. 2642 // For ints (and vectors of ints), types of A and Sa match, 2643 // and this is a no-op. 2644 A = IRB.CreatePointerCast(A, Sa->getType()); 2645 B = IRB.CreatePointerCast(B, Sb->getType()); 2646 2647 // A == B <==> (C = A^B) == 0 2648 // A != B <==> (C = A^B) != 0 2649 // Sc = Sa | Sb 2650 Value *C = IRB.CreateXor(A, B); 2651 Value *Sc = IRB.CreateOr(Sa, Sb); 2652 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2653 // Result is defined if one of the following is true 2654 // * there is a defined 1 bit in C 2655 // * C is fully defined 2656 // Si = !(C & ~Sc) && Sc 2657 Value *Zero = Constant::getNullValue(Sc->getType()); 2658 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2659 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2660 Value *RHS = 2661 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2662 Value *Si = IRB.CreateAnd(LHS, RHS); 2663 Si->setName("_msprop_icmp"); 2664 setShadow(&I, Si); 2665 setOriginForNaryOp(I); 2666 } 2667 2668 /// Build the lowest possible value of V, taking into account V's 2669 /// uninitialized bits. 2670 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2671 bool isSigned) { 2672 if (isSigned) { 2673 // Split shadow into sign bit and other bits. 2674 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2675 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2676 // Maximise the undefined shadow bit, minimize other undefined bits. 2677 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), 2678 SaSignBit); 2679 } else { 2680 // Minimize undefined bits. 2681 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2682 } 2683 } 2684 2685 /// Build the highest possible value of V, taking into account V's 2686 /// uninitialized bits. 2687 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2688 bool isSigned) { 2689 if (isSigned) { 2690 // Split shadow into sign bit and other bits. 2691 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2692 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2693 // Minimise the undefined shadow bit, maximise other undefined bits. 2694 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), 2695 SaOtherBits); 2696 } else { 2697 // Maximize undefined bits. 2698 return IRB.CreateOr(A, Sa); 2699 } 2700 } 2701 2702 /// Instrument relational comparisons. 2703 /// 2704 /// This function does exact shadow propagation for all relational 2705 /// comparisons of integers, pointers and vectors of those. 2706 /// FIXME: output seems suboptimal when one of the operands is a constant 2707 void handleRelationalComparisonExact(ICmpInst &I) { 2708 IRBuilder<> IRB(&I); 2709 Value *A = I.getOperand(0); 2710 Value *B = I.getOperand(1); 2711 Value *Sa = getShadow(A); 2712 Value *Sb = getShadow(B); 2713 2714 // Get rid of pointers and vectors of pointers. 2715 // For ints (and vectors of ints), types of A and Sa match, 2716 // and this is a no-op. 2717 A = IRB.CreatePointerCast(A, Sa->getType()); 2718 B = IRB.CreatePointerCast(B, Sb->getType()); 2719 2720 // Let [a0, a1] be the interval of possible values of A, taking into account 2721 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2722 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2723 bool IsSigned = I.isSigned(); 2724 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2725 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2726 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2727 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2728 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2729 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2730 Value *Si = IRB.CreateXor(S1, S2); 2731 setShadow(&I, Si); 2732 setOriginForNaryOp(I); 2733 } 2734 2735 /// Instrument signed relational comparisons. 2736 /// 2737 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2738 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2739 void handleSignedRelationalComparison(ICmpInst &I) { 2740 Constant *constOp; 2741 Value *op = nullptr; 2742 CmpInst::Predicate pre; 2743 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2744 op = I.getOperand(0); 2745 pre = I.getPredicate(); 2746 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2747 op = I.getOperand(1); 2748 pre = I.getSwappedPredicate(); 2749 } else { 2750 handleShadowOr(I); 2751 return; 2752 } 2753 2754 if ((constOp->isNullValue() && 2755 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2756 (constOp->isAllOnesValue() && 2757 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2758 IRBuilder<> IRB(&I); 2759 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2760 "_msprop_icmp_s"); 2761 setShadow(&I, Shadow); 2762 setOrigin(&I, getOrigin(op)); 2763 } else { 2764 handleShadowOr(I); 2765 } 2766 } 2767 2768 void visitICmpInst(ICmpInst &I) { 2769 if (!ClHandleICmp) { 2770 handleShadowOr(I); 2771 return; 2772 } 2773 if (I.isEquality()) { 2774 handleEqualityComparison(I); 2775 return; 2776 } 2777 2778 assert(I.isRelational()); 2779 if (ClHandleICmpExact) { 2780 handleRelationalComparisonExact(I); 2781 return; 2782 } 2783 if (I.isSigned()) { 2784 handleSignedRelationalComparison(I); 2785 return; 2786 } 2787 2788 assert(I.isUnsigned()); 2789 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2790 handleRelationalComparisonExact(I); 2791 return; 2792 } 2793 2794 handleShadowOr(I); 2795 } 2796 2797 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2798 2799 void handleShift(BinaryOperator &I) { 2800 IRBuilder<> IRB(&I); 2801 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2802 // Otherwise perform the same shift on S1. 2803 Value *S1 = getShadow(&I, 0); 2804 Value *S2 = getShadow(&I, 1); 2805 Value *S2Conv = 2806 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2807 Value *V2 = I.getOperand(1); 2808 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2809 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2810 setOriginForNaryOp(I); 2811 } 2812 2813 void visitShl(BinaryOperator &I) { handleShift(I); } 2814 void visitAShr(BinaryOperator &I) { handleShift(I); } 2815 void visitLShr(BinaryOperator &I) { handleShift(I); } 2816 2817 void handleFunnelShift(IntrinsicInst &I) { 2818 IRBuilder<> IRB(&I); 2819 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2820 // Otherwise perform the same shift on S0 and S1. 2821 Value *S0 = getShadow(&I, 0); 2822 Value *S1 = getShadow(&I, 1); 2823 Value *S2 = getShadow(&I, 2); 2824 Value *S2Conv = 2825 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2826 Value *V2 = I.getOperand(2); 2827 Function *Intrin = Intrinsic::getDeclaration( 2828 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2829 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2830 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2831 setOriginForNaryOp(I); 2832 } 2833 2834 /// Instrument llvm.memmove 2835 /// 2836 /// At this point we don't know if llvm.memmove will be inlined or not. 2837 /// If we don't instrument it and it gets inlined, 2838 /// our interceptor will not kick in and we will lose the memmove. 2839 /// If we instrument the call here, but it does not get inlined, 2840 /// we will memove the shadow twice: which is bad in case 2841 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2842 /// 2843 /// Similar situation exists for memcpy and memset. 2844 void visitMemMoveInst(MemMoveInst &I) { 2845 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2846 IRBuilder<> IRB(&I); 2847 IRB.CreateCall( 2848 MS.MemmoveFn, 2849 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2850 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2851 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2852 I.eraseFromParent(); 2853 } 2854 2855 /// Instrument memcpy 2856 /// 2857 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2858 /// unfortunate as it may slowdown small constant memcpys. 2859 /// FIXME: consider doing manual inline for small constant sizes and proper 2860 /// alignment. 2861 /// 2862 /// Note: This also handles memcpy.inline, which promises no calls to external 2863 /// functions as an optimization. However, with instrumentation enabled this 2864 /// is difficult to promise; additionally, we know that the MSan runtime 2865 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2866 /// instrumentation it's safe to turn memcpy.inline into a call to 2867 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2868 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2869 void visitMemCpyInst(MemCpyInst &I) { 2870 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2871 IRBuilder<> IRB(&I); 2872 IRB.CreateCall( 2873 MS.MemcpyFn, 2874 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2875 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2876 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2877 I.eraseFromParent(); 2878 } 2879 2880 // Same as memcpy. 2881 void visitMemSetInst(MemSetInst &I) { 2882 IRBuilder<> IRB(&I); 2883 IRB.CreateCall( 2884 MS.MemsetFn, 2885 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2886 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2887 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2888 I.eraseFromParent(); 2889 } 2890 2891 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2892 2893 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2894 2895 /// Handle vector store-like intrinsics. 2896 /// 2897 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2898 /// has 1 pointer argument and 1 vector argument, returns void. 2899 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2900 IRBuilder<> IRB(&I); 2901 Value *Addr = I.getArgOperand(0); 2902 Value *Shadow = getShadow(&I, 1); 2903 Value *ShadowPtr, *OriginPtr; 2904 2905 // We don't know the pointer alignment (could be unaligned SSE store!). 2906 // Have to assume to worst case. 2907 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2908 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2909 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2910 2911 if (ClCheckAccessAddress) 2912 insertShadowCheck(Addr, &I); 2913 2914 // FIXME: factor out common code from materializeStores 2915 if (MS.TrackOrigins) 2916 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2917 return true; 2918 } 2919 2920 /// Handle vector load-like intrinsics. 2921 /// 2922 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2923 /// has 1 pointer argument, returns a vector. 2924 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2925 IRBuilder<> IRB(&I); 2926 Value *Addr = I.getArgOperand(0); 2927 2928 Type *ShadowTy = getShadowTy(&I); 2929 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2930 if (PropagateShadow) { 2931 // We don't know the pointer alignment (could be unaligned SSE load!). 2932 // Have to assume to worst case. 2933 const Align Alignment = Align(1); 2934 std::tie(ShadowPtr, OriginPtr) = 2935 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2936 setShadow(&I, 2937 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2938 } else { 2939 setShadow(&I, getCleanShadow(&I)); 2940 } 2941 2942 if (ClCheckAccessAddress) 2943 insertShadowCheck(Addr, &I); 2944 2945 if (MS.TrackOrigins) { 2946 if (PropagateShadow) 2947 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2948 else 2949 setOrigin(&I, getCleanOrigin()); 2950 } 2951 return true; 2952 } 2953 2954 /// Handle (SIMD arithmetic)-like intrinsics. 2955 /// 2956 /// Instrument intrinsics with any number of arguments of the same type, 2957 /// equal to the return type. The type should be simple (no aggregates or 2958 /// pointers; vectors are fine). 2959 /// Caller guarantees that this intrinsic does not access memory. 2960 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2961 Type *RetTy = I.getType(); 2962 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() || 2963 RetTy->isX86_MMXTy())) 2964 return false; 2965 2966 unsigned NumArgOperands = I.arg_size(); 2967 for (unsigned i = 0; i < NumArgOperands; ++i) { 2968 Type *Ty = I.getArgOperand(i)->getType(); 2969 if (Ty != RetTy) 2970 return false; 2971 } 2972 2973 IRBuilder<> IRB(&I); 2974 ShadowAndOriginCombiner SC(this, IRB); 2975 for (unsigned i = 0; i < NumArgOperands; ++i) 2976 SC.Add(I.getArgOperand(i)); 2977 SC.Done(&I); 2978 2979 return true; 2980 } 2981 2982 /// Heuristically instrument unknown intrinsics. 2983 /// 2984 /// The main purpose of this code is to do something reasonable with all 2985 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2986 /// We recognize several classes of intrinsics by their argument types and 2987 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2988 /// sure that we know what the intrinsic does. 2989 /// 2990 /// We special-case intrinsics where this approach fails. See llvm.bswap 2991 /// handling as an example of that. 2992 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2993 unsigned NumArgOperands = I.arg_size(); 2994 if (NumArgOperands == 0) 2995 return false; 2996 2997 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 2998 I.getArgOperand(1)->getType()->isVectorTy() && 2999 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 3000 // This looks like a vector store. 3001 return handleVectorStoreIntrinsic(I); 3002 } 3003 3004 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 3005 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 3006 // This looks like a vector load. 3007 return handleVectorLoadIntrinsic(I); 3008 } 3009 3010 if (I.doesNotAccessMemory()) 3011 if (maybeHandleSimpleNomemIntrinsic(I)) 3012 return true; 3013 3014 // FIXME: detect and handle SSE maskstore/maskload 3015 return false; 3016 } 3017 3018 void handleInvariantGroup(IntrinsicInst &I) { 3019 setShadow(&I, getShadow(&I, 0)); 3020 setOrigin(&I, getOrigin(&I, 0)); 3021 } 3022 3023 void handleLifetimeStart(IntrinsicInst &I) { 3024 if (!PoisonStack) 3025 return; 3026 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 3027 if (!AI) 3028 InstrumentLifetimeStart = false; 3029 LifetimeStartList.push_back(std::make_pair(&I, AI)); 3030 } 3031 3032 void handleBswap(IntrinsicInst &I) { 3033 IRBuilder<> IRB(&I); 3034 Value *Op = I.getArgOperand(0); 3035 Type *OpType = Op->getType(); 3036 Function *BswapFunc = Intrinsic::getDeclaration( 3037 F.getParent(), Intrinsic::bswap, ArrayRef(&OpType, 1)); 3038 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 3039 setOrigin(&I, getOrigin(Op)); 3040 } 3041 3042 void handleCountZeroes(IntrinsicInst &I) { 3043 IRBuilder<> IRB(&I); 3044 Value *Src = I.getArgOperand(0); 3045 3046 // Set the Output shadow based on input Shadow 3047 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 3048 3049 // If zero poison is requested, mix in with the shadow 3050 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 3051 if (!IsZeroPoison->isZeroValue()) { 3052 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 3053 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 3054 } 3055 3056 Value *OutputShadow = 3057 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 3058 3059 setShadow(&I, OutputShadow); 3060 setOriginForNaryOp(I); 3061 } 3062 3063 // Instrument vector convert intrinsic. 3064 // 3065 // This function instruments intrinsics like cvtsi2ss: 3066 // %Out = int_xxx_cvtyyy(%ConvertOp) 3067 // or 3068 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 3069 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 3070 // number \p Out elements, and (if has 2 arguments) copies the rest of the 3071 // elements from \p CopyOp. 3072 // In most cases conversion involves floating-point value which may trigger a 3073 // hardware exception when not fully initialized. For this reason we require 3074 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 3075 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 3076 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 3077 // return a fully initialized value. 3078 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 3079 bool HasRoundingMode = false) { 3080 IRBuilder<> IRB(&I); 3081 Value *CopyOp, *ConvertOp; 3082 3083 assert((!HasRoundingMode || 3084 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3085 "Invalid rounding mode"); 3086 3087 switch (I.arg_size() - HasRoundingMode) { 3088 case 2: 3089 CopyOp = I.getArgOperand(0); 3090 ConvertOp = I.getArgOperand(1); 3091 break; 3092 case 1: 3093 ConvertOp = I.getArgOperand(0); 3094 CopyOp = nullptr; 3095 break; 3096 default: 3097 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3098 } 3099 3100 // The first *NumUsedElements* elements of ConvertOp are converted to the 3101 // same number of output elements. The rest of the output is copied from 3102 // CopyOp, or (if not available) filled with zeroes. 3103 // Combine shadow for elements of ConvertOp that are used in this operation, 3104 // and insert a check. 3105 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3106 // int->any conversion. 3107 Value *ConvertShadow = getShadow(ConvertOp); 3108 Value *AggShadow = nullptr; 3109 if (ConvertOp->getType()->isVectorTy()) { 3110 AggShadow = IRB.CreateExtractElement( 3111 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3112 for (int i = 1; i < NumUsedElements; ++i) { 3113 Value *MoreShadow = IRB.CreateExtractElement( 3114 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3115 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3116 } 3117 } else { 3118 AggShadow = ConvertShadow; 3119 } 3120 assert(AggShadow->getType()->isIntegerTy()); 3121 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3122 3123 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3124 // ConvertOp. 3125 if (CopyOp) { 3126 assert(CopyOp->getType() == I.getType()); 3127 assert(CopyOp->getType()->isVectorTy()); 3128 Value *ResultShadow = getShadow(CopyOp); 3129 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3130 for (int i = 0; i < NumUsedElements; ++i) { 3131 ResultShadow = IRB.CreateInsertElement( 3132 ResultShadow, ConstantInt::getNullValue(EltTy), 3133 ConstantInt::get(IRB.getInt32Ty(), i)); 3134 } 3135 setShadow(&I, ResultShadow); 3136 setOrigin(&I, getOrigin(CopyOp)); 3137 } else { 3138 setShadow(&I, getCleanShadow(&I)); 3139 setOrigin(&I, getCleanOrigin()); 3140 } 3141 } 3142 3143 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3144 // zeroes if it is zero, and all ones otherwise. 3145 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3146 if (S->getType()->isVectorTy()) 3147 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3148 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3149 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3150 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3151 } 3152 3153 // Given a vector, extract its first element, and return all 3154 // zeroes if it is zero, and all ones otherwise. 3155 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3156 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3157 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3158 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3159 } 3160 3161 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3162 Type *T = S->getType(); 3163 assert(T->isVectorTy()); 3164 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3165 return IRB.CreateSExt(S2, T); 3166 } 3167 3168 // Instrument vector shift intrinsic. 3169 // 3170 // This function instruments intrinsics like int_x86_avx2_psll_w. 3171 // Intrinsic shifts %In by %ShiftSize bits. 3172 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3173 // size, and the rest is ignored. Behavior is defined even if shift size is 3174 // greater than register (or field) width. 3175 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3176 assert(I.arg_size() == 2); 3177 IRBuilder<> IRB(&I); 3178 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3179 // Otherwise perform the same shift on S1. 3180 Value *S1 = getShadow(&I, 0); 3181 Value *S2 = getShadow(&I, 1); 3182 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3183 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3184 Value *V1 = I.getOperand(0); 3185 Value *V2 = I.getOperand(1); 3186 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3187 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3188 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3189 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3190 setOriginForNaryOp(I); 3191 } 3192 3193 // Get an X86_MMX-sized vector type. 3194 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3195 const unsigned X86_MMXSizeInBits = 64; 3196 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3197 "Illegal MMX vector element size"); 3198 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3199 X86_MMXSizeInBits / EltSizeInBits); 3200 } 3201 3202 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3203 // intrinsic. 3204 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3205 switch (id) { 3206 case Intrinsic::x86_sse2_packsswb_128: 3207 case Intrinsic::x86_sse2_packuswb_128: 3208 return Intrinsic::x86_sse2_packsswb_128; 3209 3210 case Intrinsic::x86_sse2_packssdw_128: 3211 case Intrinsic::x86_sse41_packusdw: 3212 return Intrinsic::x86_sse2_packssdw_128; 3213 3214 case Intrinsic::x86_avx2_packsswb: 3215 case Intrinsic::x86_avx2_packuswb: 3216 return Intrinsic::x86_avx2_packsswb; 3217 3218 case Intrinsic::x86_avx2_packssdw: 3219 case Intrinsic::x86_avx2_packusdw: 3220 return Intrinsic::x86_avx2_packssdw; 3221 3222 case Intrinsic::x86_mmx_packsswb: 3223 case Intrinsic::x86_mmx_packuswb: 3224 return Intrinsic::x86_mmx_packsswb; 3225 3226 case Intrinsic::x86_mmx_packssdw: 3227 return Intrinsic::x86_mmx_packssdw; 3228 default: 3229 llvm_unreachable("unexpected intrinsic id"); 3230 } 3231 } 3232 3233 // Instrument vector pack intrinsic. 3234 // 3235 // This function instruments intrinsics like x86_mmx_packsswb, that 3236 // packs elements of 2 input vectors into half as many bits with saturation. 3237 // Shadow is propagated with the signed variant of the same intrinsic applied 3238 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3239 // EltSizeInBits is used only for x86mmx arguments. 3240 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 3241 assert(I.arg_size() == 2); 3242 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3243 IRBuilder<> IRB(&I); 3244 Value *S1 = getShadow(&I, 0); 3245 Value *S2 = getShadow(&I, 1); 3246 assert(isX86_MMX || S1->getType()->isVectorTy()); 3247 3248 // SExt and ICmpNE below must apply to individual elements of input vectors. 3249 // In case of x86mmx arguments, cast them to appropriate vector types and 3250 // back. 3251 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 3252 if (isX86_MMX) { 3253 S1 = IRB.CreateBitCast(S1, T); 3254 S2 = IRB.CreateBitCast(S2, T); 3255 } 3256 Value *S1_ext = 3257 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3258 Value *S2_ext = 3259 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3260 if (isX86_MMX) { 3261 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 3262 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 3263 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 3264 } 3265 3266 Function *ShadowFn = Intrinsic::getDeclaration( 3267 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 3268 3269 Value *S = 3270 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 3271 if (isX86_MMX) 3272 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3273 setShadow(&I, S); 3274 setOriginForNaryOp(I); 3275 } 3276 3277 // Instrument sum-of-absolute-differences intrinsic. 3278 void handleVectorSadIntrinsic(IntrinsicInst &I) { 3279 const unsigned SignificantBitsPerResultElement = 16; 3280 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3281 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3282 unsigned ZeroBitsPerResultElement = 3283 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3284 3285 IRBuilder<> IRB(&I); 3286 auto *Shadow0 = getShadow(&I, 0); 3287 auto *Shadow1 = getShadow(&I, 1); 3288 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3289 S = IRB.CreateBitCast(S, ResTy); 3290 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3291 ResTy); 3292 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3293 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3294 setShadow(&I, S); 3295 setOriginForNaryOp(I); 3296 } 3297 3298 // Instrument multiply-add intrinsic. 3299 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3300 unsigned EltSizeInBits = 0) { 3301 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3302 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3303 IRBuilder<> IRB(&I); 3304 auto *Shadow0 = getShadow(&I, 0); 3305 auto *Shadow1 = getShadow(&I, 1); 3306 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3307 S = IRB.CreateBitCast(S, ResTy); 3308 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3309 ResTy); 3310 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3311 setShadow(&I, S); 3312 setOriginForNaryOp(I); 3313 } 3314 3315 // Instrument compare-packed intrinsic. 3316 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3317 // all-ones shadow. 3318 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3319 IRBuilder<> IRB(&I); 3320 Type *ResTy = getShadowTy(&I); 3321 auto *Shadow0 = getShadow(&I, 0); 3322 auto *Shadow1 = getShadow(&I, 1); 3323 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3324 Value *S = IRB.CreateSExt( 3325 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3326 setShadow(&I, S); 3327 setOriginForNaryOp(I); 3328 } 3329 3330 // Instrument compare-scalar intrinsic. 3331 // This handles both cmp* intrinsics which return the result in the first 3332 // element of a vector, and comi* which return the result as i32. 3333 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3334 IRBuilder<> IRB(&I); 3335 auto *Shadow0 = getShadow(&I, 0); 3336 auto *Shadow1 = getShadow(&I, 1); 3337 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3338 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3339 setShadow(&I, S); 3340 setOriginForNaryOp(I); 3341 } 3342 3343 // Instrument generic vector reduction intrinsics 3344 // by ORing together all their fields. 3345 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3346 IRBuilder<> IRB(&I); 3347 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3348 setShadow(&I, S); 3349 setOrigin(&I, getOrigin(&I, 0)); 3350 } 3351 3352 // Instrument vector.reduce.or intrinsic. 3353 // Valid (non-poisoned) set bits in the operand pull low the 3354 // corresponding shadow bits. 3355 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3356 IRBuilder<> IRB(&I); 3357 Value *OperandShadow = getShadow(&I, 0); 3358 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3359 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3360 // Bit N is clean if any field's bit N is 1 and unpoison 3361 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3362 // Otherwise, it is clean if every field's bit N is unpoison 3363 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3364 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3365 3366 setShadow(&I, S); 3367 setOrigin(&I, getOrigin(&I, 0)); 3368 } 3369 3370 // Instrument vector.reduce.and intrinsic. 3371 // Valid (non-poisoned) unset bits in the operand pull down the 3372 // corresponding shadow bits. 3373 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3374 IRBuilder<> IRB(&I); 3375 Value *OperandShadow = getShadow(&I, 0); 3376 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3377 // Bit N is clean if any field's bit N is 0 and unpoison 3378 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3379 // Otherwise, it is clean if every field's bit N is unpoison 3380 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3381 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3382 3383 setShadow(&I, S); 3384 setOrigin(&I, getOrigin(&I, 0)); 3385 } 3386 3387 void handleStmxcsr(IntrinsicInst &I) { 3388 IRBuilder<> IRB(&I); 3389 Value *Addr = I.getArgOperand(0); 3390 Type *Ty = IRB.getInt32Ty(); 3391 Value *ShadowPtr = 3392 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3393 3394 IRB.CreateStore(getCleanShadow(Ty), 3395 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3396 3397 if (ClCheckAccessAddress) 3398 insertShadowCheck(Addr, &I); 3399 } 3400 3401 void handleLdmxcsr(IntrinsicInst &I) { 3402 if (!InsertChecks) 3403 return; 3404 3405 IRBuilder<> IRB(&I); 3406 Value *Addr = I.getArgOperand(0); 3407 Type *Ty = IRB.getInt32Ty(); 3408 const Align Alignment = Align(1); 3409 Value *ShadowPtr, *OriginPtr; 3410 std::tie(ShadowPtr, OriginPtr) = 3411 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3412 3413 if (ClCheckAccessAddress) 3414 insertShadowCheck(Addr, &I); 3415 3416 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3417 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3418 : getCleanOrigin(); 3419 insertShadowCheck(Shadow, Origin, &I); 3420 } 3421 3422 void handleMaskedExpandLoad(IntrinsicInst &I) { 3423 IRBuilder<> IRB(&I); 3424 Value *Ptr = I.getArgOperand(0); 3425 Value *Mask = I.getArgOperand(1); 3426 Value *PassThru = I.getArgOperand(2); 3427 3428 if (ClCheckAccessAddress) { 3429 insertShadowCheck(Ptr, &I); 3430 insertShadowCheck(Mask, &I); 3431 } 3432 3433 if (!PropagateShadow) { 3434 setShadow(&I, getCleanShadow(&I)); 3435 setOrigin(&I, getCleanOrigin()); 3436 return; 3437 } 3438 3439 Type *ShadowTy = getShadowTy(&I); 3440 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3441 auto [ShadowPtr, OriginPtr] = 3442 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ false); 3443 3444 Value *Shadow = IRB.CreateMaskedExpandLoad( 3445 ShadowTy, ShadowPtr, Mask, getShadow(PassThru), "_msmaskedexpload"); 3446 3447 setShadow(&I, Shadow); 3448 3449 // TODO: Store origins. 3450 setOrigin(&I, getCleanOrigin()); 3451 } 3452 3453 void handleMaskedCompressStore(IntrinsicInst &I) { 3454 IRBuilder<> IRB(&I); 3455 Value *Values = I.getArgOperand(0); 3456 Value *Ptr = I.getArgOperand(1); 3457 Value *Mask = I.getArgOperand(2); 3458 3459 if (ClCheckAccessAddress) { 3460 insertShadowCheck(Ptr, &I); 3461 insertShadowCheck(Mask, &I); 3462 } 3463 3464 Value *Shadow = getShadow(Values); 3465 Type *ElementShadowTy = 3466 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3467 auto [ShadowPtr, OriginPtrs] = 3468 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ true); 3469 3470 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Mask); 3471 3472 // TODO: Store origins. 3473 } 3474 3475 void handleMaskedGather(IntrinsicInst &I) { 3476 IRBuilder<> IRB(&I); 3477 Value *Ptrs = I.getArgOperand(0); 3478 const Align Alignment( 3479 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3480 Value *Mask = I.getArgOperand(2); 3481 Value *PassThru = I.getArgOperand(3); 3482 3483 Type *PtrsShadowTy = getShadowTy(Ptrs); 3484 if (ClCheckAccessAddress) { 3485 insertShadowCheck(Mask, &I); 3486 Value *MaskedPtrShadow = IRB.CreateSelect( 3487 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3488 "_msmaskedptrs"); 3489 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3490 } 3491 3492 if (!PropagateShadow) { 3493 setShadow(&I, getCleanShadow(&I)); 3494 setOrigin(&I, getCleanOrigin()); 3495 return; 3496 } 3497 3498 Type *ShadowTy = getShadowTy(&I); 3499 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3500 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3501 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3502 3503 Value *Shadow = 3504 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3505 getShadow(PassThru), "_msmaskedgather"); 3506 3507 setShadow(&I, Shadow); 3508 3509 // TODO: Store origins. 3510 setOrigin(&I, getCleanOrigin()); 3511 } 3512 3513 void handleMaskedScatter(IntrinsicInst &I) { 3514 IRBuilder<> IRB(&I); 3515 Value *Values = I.getArgOperand(0); 3516 Value *Ptrs = I.getArgOperand(1); 3517 const Align Alignment( 3518 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3519 Value *Mask = I.getArgOperand(3); 3520 3521 Type *PtrsShadowTy = getShadowTy(Ptrs); 3522 if (ClCheckAccessAddress) { 3523 insertShadowCheck(Mask, &I); 3524 Value *MaskedPtrShadow = IRB.CreateSelect( 3525 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3526 "_msmaskedptrs"); 3527 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3528 } 3529 3530 Value *Shadow = getShadow(Values); 3531 Type *ElementShadowTy = 3532 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3533 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3534 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3535 3536 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3537 3538 // TODO: Store origin. 3539 } 3540 3541 void handleMaskedStore(IntrinsicInst &I) { 3542 IRBuilder<> IRB(&I); 3543 Value *V = I.getArgOperand(0); 3544 Value *Ptr = I.getArgOperand(1); 3545 const Align Alignment( 3546 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3547 Value *Mask = I.getArgOperand(3); 3548 Value *Shadow = getShadow(V); 3549 3550 if (ClCheckAccessAddress) { 3551 insertShadowCheck(Ptr, &I); 3552 insertShadowCheck(Mask, &I); 3553 } 3554 3555 Value *ShadowPtr; 3556 Value *OriginPtr; 3557 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3558 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3559 3560 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3561 3562 if (!MS.TrackOrigins) 3563 return; 3564 3565 auto &DL = F.getParent()->getDataLayout(); 3566 paintOrigin(IRB, getOrigin(V), OriginPtr, 3567 DL.getTypeStoreSize(Shadow->getType()), 3568 std::max(Alignment, kMinOriginAlignment)); 3569 } 3570 3571 void handleMaskedLoad(IntrinsicInst &I) { 3572 IRBuilder<> IRB(&I); 3573 Value *Ptr = I.getArgOperand(0); 3574 const Align Alignment( 3575 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3576 Value *Mask = I.getArgOperand(2); 3577 Value *PassThru = I.getArgOperand(3); 3578 3579 if (ClCheckAccessAddress) { 3580 insertShadowCheck(Ptr, &I); 3581 insertShadowCheck(Mask, &I); 3582 } 3583 3584 if (!PropagateShadow) { 3585 setShadow(&I, getCleanShadow(&I)); 3586 setOrigin(&I, getCleanOrigin()); 3587 return; 3588 } 3589 3590 Type *ShadowTy = getShadowTy(&I); 3591 Value *ShadowPtr, *OriginPtr; 3592 std::tie(ShadowPtr, OriginPtr) = 3593 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3594 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3595 getShadow(PassThru), "_msmaskedld")); 3596 3597 if (!MS.TrackOrigins) 3598 return; 3599 3600 // Choose between PassThru's and the loaded value's origins. 3601 Value *MaskedPassThruShadow = IRB.CreateAnd( 3602 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3603 3604 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp"); 3605 3606 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3607 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3608 3609 setOrigin(&I, Origin); 3610 } 3611 3612 // Instrument BMI / BMI2 intrinsics. 3613 // All of these intrinsics are Z = I(X, Y) 3614 // where the types of all operands and the result match, and are either i32 or 3615 // i64. The following instrumentation happens to work for all of them: 3616 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3617 void handleBmiIntrinsic(IntrinsicInst &I) { 3618 IRBuilder<> IRB(&I); 3619 Type *ShadowTy = getShadowTy(&I); 3620 3621 // If any bit of the mask operand is poisoned, then the whole thing is. 3622 Value *SMask = getShadow(&I, 1); 3623 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3624 ShadowTy); 3625 // Apply the same intrinsic to the shadow of the first operand. 3626 Value *S = IRB.CreateCall(I.getCalledFunction(), 3627 {getShadow(&I, 0), I.getOperand(1)}); 3628 S = IRB.CreateOr(SMask, S); 3629 setShadow(&I, S); 3630 setOriginForNaryOp(I); 3631 } 3632 3633 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3634 SmallVector<int, 8> Mask; 3635 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3636 Mask.append(2, X); 3637 } 3638 return Mask; 3639 } 3640 3641 // Instrument pclmul intrinsics. 3642 // These intrinsics operate either on odd or on even elements of the input 3643 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3644 // Replace the unused elements with copies of the used ones, ex: 3645 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3646 // or 3647 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3648 // and then apply the usual shadow combining logic. 3649 void handlePclmulIntrinsic(IntrinsicInst &I) { 3650 IRBuilder<> IRB(&I); 3651 unsigned Width = 3652 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3653 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3654 "pclmul 3rd operand must be a constant"); 3655 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3656 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3657 getPclmulMask(Width, Imm & 0x01)); 3658 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3659 getPclmulMask(Width, Imm & 0x10)); 3660 ShadowAndOriginCombiner SOC(this, IRB); 3661 SOC.Add(Shuf0, getOrigin(&I, 0)); 3662 SOC.Add(Shuf1, getOrigin(&I, 1)); 3663 SOC.Done(&I); 3664 } 3665 3666 // Instrument _mm_*_sd|ss intrinsics 3667 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3668 IRBuilder<> IRB(&I); 3669 unsigned Width = 3670 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3671 Value *First = getShadow(&I, 0); 3672 Value *Second = getShadow(&I, 1); 3673 // First element of second operand, remaining elements of first operand 3674 SmallVector<int, 16> Mask; 3675 Mask.push_back(Width); 3676 for (unsigned i = 1; i < Width; i++) 3677 Mask.push_back(i); 3678 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3679 3680 setShadow(&I, Shadow); 3681 setOriginForNaryOp(I); 3682 } 3683 3684 void handleVtestIntrinsic(IntrinsicInst &I) { 3685 IRBuilder<> IRB(&I); 3686 Value *Shadow0 = getShadow(&I, 0); 3687 Value *Shadow1 = getShadow(&I, 1); 3688 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3689 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3690 Value *Scalar = convertShadowToScalar(NZ, IRB); 3691 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3692 3693 setShadow(&I, Shadow); 3694 setOriginForNaryOp(I); 3695 } 3696 3697 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3698 IRBuilder<> IRB(&I); 3699 unsigned Width = 3700 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3701 Value *First = getShadow(&I, 0); 3702 Value *Second = getShadow(&I, 1); 3703 Value *OrShadow = IRB.CreateOr(First, Second); 3704 // First element of both OR'd together, remaining elements of first operand 3705 SmallVector<int, 16> Mask; 3706 Mask.push_back(Width); 3707 for (unsigned i = 1; i < Width; i++) 3708 Mask.push_back(i); 3709 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3710 3711 setShadow(&I, Shadow); 3712 setOriginForNaryOp(I); 3713 } 3714 3715 // Instrument abs intrinsic. 3716 // handleUnknownIntrinsic can't handle it because of the last 3717 // is_int_min_poison argument which does not match the result type. 3718 void handleAbsIntrinsic(IntrinsicInst &I) { 3719 assert(I.getType()->isIntOrIntVectorTy()); 3720 assert(I.getArgOperand(0)->getType() == I.getType()); 3721 3722 // FIXME: Handle is_int_min_poison. 3723 IRBuilder<> IRB(&I); 3724 setShadow(&I, getShadow(&I, 0)); 3725 setOrigin(&I, getOrigin(&I, 0)); 3726 } 3727 3728 void handleIsFpClass(IntrinsicInst &I) { 3729 IRBuilder<> IRB(&I); 3730 Value *Shadow = getShadow(&I, 0); 3731 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow))); 3732 setOrigin(&I, getOrigin(&I, 0)); 3733 } 3734 3735 void visitIntrinsicInst(IntrinsicInst &I) { 3736 switch (I.getIntrinsicID()) { 3737 case Intrinsic::abs: 3738 handleAbsIntrinsic(I); 3739 break; 3740 case Intrinsic::is_fpclass: 3741 handleIsFpClass(I); 3742 break; 3743 case Intrinsic::lifetime_start: 3744 handleLifetimeStart(I); 3745 break; 3746 case Intrinsic::launder_invariant_group: 3747 case Intrinsic::strip_invariant_group: 3748 handleInvariantGroup(I); 3749 break; 3750 case Intrinsic::bswap: 3751 handleBswap(I); 3752 break; 3753 case Intrinsic::ctlz: 3754 case Intrinsic::cttz: 3755 handleCountZeroes(I); 3756 break; 3757 case Intrinsic::masked_compressstore: 3758 handleMaskedCompressStore(I); 3759 break; 3760 case Intrinsic::masked_expandload: 3761 handleMaskedExpandLoad(I); 3762 break; 3763 case Intrinsic::masked_gather: 3764 handleMaskedGather(I); 3765 break; 3766 case Intrinsic::masked_scatter: 3767 handleMaskedScatter(I); 3768 break; 3769 case Intrinsic::masked_store: 3770 handleMaskedStore(I); 3771 break; 3772 case Intrinsic::masked_load: 3773 handleMaskedLoad(I); 3774 break; 3775 case Intrinsic::vector_reduce_and: 3776 handleVectorReduceAndIntrinsic(I); 3777 break; 3778 case Intrinsic::vector_reduce_or: 3779 handleVectorReduceOrIntrinsic(I); 3780 break; 3781 case Intrinsic::vector_reduce_add: 3782 case Intrinsic::vector_reduce_xor: 3783 case Intrinsic::vector_reduce_mul: 3784 handleVectorReduceIntrinsic(I); 3785 break; 3786 case Intrinsic::x86_sse_stmxcsr: 3787 handleStmxcsr(I); 3788 break; 3789 case Intrinsic::x86_sse_ldmxcsr: 3790 handleLdmxcsr(I); 3791 break; 3792 case Intrinsic::x86_avx512_vcvtsd2usi64: 3793 case Intrinsic::x86_avx512_vcvtsd2usi32: 3794 case Intrinsic::x86_avx512_vcvtss2usi64: 3795 case Intrinsic::x86_avx512_vcvtss2usi32: 3796 case Intrinsic::x86_avx512_cvttss2usi64: 3797 case Intrinsic::x86_avx512_cvttss2usi: 3798 case Intrinsic::x86_avx512_cvttsd2usi64: 3799 case Intrinsic::x86_avx512_cvttsd2usi: 3800 case Intrinsic::x86_avx512_cvtusi2ss: 3801 case Intrinsic::x86_avx512_cvtusi642sd: 3802 case Intrinsic::x86_avx512_cvtusi642ss: 3803 handleVectorConvertIntrinsic(I, 1, true); 3804 break; 3805 case Intrinsic::x86_sse2_cvtsd2si64: 3806 case Intrinsic::x86_sse2_cvtsd2si: 3807 case Intrinsic::x86_sse2_cvtsd2ss: 3808 case Intrinsic::x86_sse2_cvttsd2si64: 3809 case Intrinsic::x86_sse2_cvttsd2si: 3810 case Intrinsic::x86_sse_cvtss2si64: 3811 case Intrinsic::x86_sse_cvtss2si: 3812 case Intrinsic::x86_sse_cvttss2si64: 3813 case Intrinsic::x86_sse_cvttss2si: 3814 handleVectorConvertIntrinsic(I, 1); 3815 break; 3816 case Intrinsic::x86_sse_cvtps2pi: 3817 case Intrinsic::x86_sse_cvttps2pi: 3818 handleVectorConvertIntrinsic(I, 2); 3819 break; 3820 3821 case Intrinsic::x86_avx512_psll_w_512: 3822 case Intrinsic::x86_avx512_psll_d_512: 3823 case Intrinsic::x86_avx512_psll_q_512: 3824 case Intrinsic::x86_avx512_pslli_w_512: 3825 case Intrinsic::x86_avx512_pslli_d_512: 3826 case Intrinsic::x86_avx512_pslli_q_512: 3827 case Intrinsic::x86_avx512_psrl_w_512: 3828 case Intrinsic::x86_avx512_psrl_d_512: 3829 case Intrinsic::x86_avx512_psrl_q_512: 3830 case Intrinsic::x86_avx512_psra_w_512: 3831 case Intrinsic::x86_avx512_psra_d_512: 3832 case Intrinsic::x86_avx512_psra_q_512: 3833 case Intrinsic::x86_avx512_psrli_w_512: 3834 case Intrinsic::x86_avx512_psrli_d_512: 3835 case Intrinsic::x86_avx512_psrli_q_512: 3836 case Intrinsic::x86_avx512_psrai_w_512: 3837 case Intrinsic::x86_avx512_psrai_d_512: 3838 case Intrinsic::x86_avx512_psrai_q_512: 3839 case Intrinsic::x86_avx512_psra_q_256: 3840 case Intrinsic::x86_avx512_psra_q_128: 3841 case Intrinsic::x86_avx512_psrai_q_256: 3842 case Intrinsic::x86_avx512_psrai_q_128: 3843 case Intrinsic::x86_avx2_psll_w: 3844 case Intrinsic::x86_avx2_psll_d: 3845 case Intrinsic::x86_avx2_psll_q: 3846 case Intrinsic::x86_avx2_pslli_w: 3847 case Intrinsic::x86_avx2_pslli_d: 3848 case Intrinsic::x86_avx2_pslli_q: 3849 case Intrinsic::x86_avx2_psrl_w: 3850 case Intrinsic::x86_avx2_psrl_d: 3851 case Intrinsic::x86_avx2_psrl_q: 3852 case Intrinsic::x86_avx2_psra_w: 3853 case Intrinsic::x86_avx2_psra_d: 3854 case Intrinsic::x86_avx2_psrli_w: 3855 case Intrinsic::x86_avx2_psrli_d: 3856 case Intrinsic::x86_avx2_psrli_q: 3857 case Intrinsic::x86_avx2_psrai_w: 3858 case Intrinsic::x86_avx2_psrai_d: 3859 case Intrinsic::x86_sse2_psll_w: 3860 case Intrinsic::x86_sse2_psll_d: 3861 case Intrinsic::x86_sse2_psll_q: 3862 case Intrinsic::x86_sse2_pslli_w: 3863 case Intrinsic::x86_sse2_pslli_d: 3864 case Intrinsic::x86_sse2_pslli_q: 3865 case Intrinsic::x86_sse2_psrl_w: 3866 case Intrinsic::x86_sse2_psrl_d: 3867 case Intrinsic::x86_sse2_psrl_q: 3868 case Intrinsic::x86_sse2_psra_w: 3869 case Intrinsic::x86_sse2_psra_d: 3870 case Intrinsic::x86_sse2_psrli_w: 3871 case Intrinsic::x86_sse2_psrli_d: 3872 case Intrinsic::x86_sse2_psrli_q: 3873 case Intrinsic::x86_sse2_psrai_w: 3874 case Intrinsic::x86_sse2_psrai_d: 3875 case Intrinsic::x86_mmx_psll_w: 3876 case Intrinsic::x86_mmx_psll_d: 3877 case Intrinsic::x86_mmx_psll_q: 3878 case Intrinsic::x86_mmx_pslli_w: 3879 case Intrinsic::x86_mmx_pslli_d: 3880 case Intrinsic::x86_mmx_pslli_q: 3881 case Intrinsic::x86_mmx_psrl_w: 3882 case Intrinsic::x86_mmx_psrl_d: 3883 case Intrinsic::x86_mmx_psrl_q: 3884 case Intrinsic::x86_mmx_psra_w: 3885 case Intrinsic::x86_mmx_psra_d: 3886 case Intrinsic::x86_mmx_psrli_w: 3887 case Intrinsic::x86_mmx_psrli_d: 3888 case Intrinsic::x86_mmx_psrli_q: 3889 case Intrinsic::x86_mmx_psrai_w: 3890 case Intrinsic::x86_mmx_psrai_d: 3891 handleVectorShiftIntrinsic(I, /* Variable */ false); 3892 break; 3893 case Intrinsic::x86_avx2_psllv_d: 3894 case Intrinsic::x86_avx2_psllv_d_256: 3895 case Intrinsic::x86_avx512_psllv_d_512: 3896 case Intrinsic::x86_avx2_psllv_q: 3897 case Intrinsic::x86_avx2_psllv_q_256: 3898 case Intrinsic::x86_avx512_psllv_q_512: 3899 case Intrinsic::x86_avx2_psrlv_d: 3900 case Intrinsic::x86_avx2_psrlv_d_256: 3901 case Intrinsic::x86_avx512_psrlv_d_512: 3902 case Intrinsic::x86_avx2_psrlv_q: 3903 case Intrinsic::x86_avx2_psrlv_q_256: 3904 case Intrinsic::x86_avx512_psrlv_q_512: 3905 case Intrinsic::x86_avx2_psrav_d: 3906 case Intrinsic::x86_avx2_psrav_d_256: 3907 case Intrinsic::x86_avx512_psrav_d_512: 3908 case Intrinsic::x86_avx512_psrav_q_128: 3909 case Intrinsic::x86_avx512_psrav_q_256: 3910 case Intrinsic::x86_avx512_psrav_q_512: 3911 handleVectorShiftIntrinsic(I, /* Variable */ true); 3912 break; 3913 3914 case Intrinsic::x86_sse2_packsswb_128: 3915 case Intrinsic::x86_sse2_packssdw_128: 3916 case Intrinsic::x86_sse2_packuswb_128: 3917 case Intrinsic::x86_sse41_packusdw: 3918 case Intrinsic::x86_avx2_packsswb: 3919 case Intrinsic::x86_avx2_packssdw: 3920 case Intrinsic::x86_avx2_packuswb: 3921 case Intrinsic::x86_avx2_packusdw: 3922 handleVectorPackIntrinsic(I); 3923 break; 3924 3925 case Intrinsic::x86_mmx_packsswb: 3926 case Intrinsic::x86_mmx_packuswb: 3927 handleVectorPackIntrinsic(I, 16); 3928 break; 3929 3930 case Intrinsic::x86_mmx_packssdw: 3931 handleVectorPackIntrinsic(I, 32); 3932 break; 3933 3934 case Intrinsic::x86_mmx_psad_bw: 3935 case Intrinsic::x86_sse2_psad_bw: 3936 case Intrinsic::x86_avx2_psad_bw: 3937 handleVectorSadIntrinsic(I); 3938 break; 3939 3940 case Intrinsic::x86_sse2_pmadd_wd: 3941 case Intrinsic::x86_avx2_pmadd_wd: 3942 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3943 case Intrinsic::x86_avx2_pmadd_ub_sw: 3944 handleVectorPmaddIntrinsic(I); 3945 break; 3946 3947 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3948 handleVectorPmaddIntrinsic(I, 8); 3949 break; 3950 3951 case Intrinsic::x86_mmx_pmadd_wd: 3952 handleVectorPmaddIntrinsic(I, 16); 3953 break; 3954 3955 case Intrinsic::x86_sse_cmp_ss: 3956 case Intrinsic::x86_sse2_cmp_sd: 3957 case Intrinsic::x86_sse_comieq_ss: 3958 case Intrinsic::x86_sse_comilt_ss: 3959 case Intrinsic::x86_sse_comile_ss: 3960 case Intrinsic::x86_sse_comigt_ss: 3961 case Intrinsic::x86_sse_comige_ss: 3962 case Intrinsic::x86_sse_comineq_ss: 3963 case Intrinsic::x86_sse_ucomieq_ss: 3964 case Intrinsic::x86_sse_ucomilt_ss: 3965 case Intrinsic::x86_sse_ucomile_ss: 3966 case Intrinsic::x86_sse_ucomigt_ss: 3967 case Intrinsic::x86_sse_ucomige_ss: 3968 case Intrinsic::x86_sse_ucomineq_ss: 3969 case Intrinsic::x86_sse2_comieq_sd: 3970 case Intrinsic::x86_sse2_comilt_sd: 3971 case Intrinsic::x86_sse2_comile_sd: 3972 case Intrinsic::x86_sse2_comigt_sd: 3973 case Intrinsic::x86_sse2_comige_sd: 3974 case Intrinsic::x86_sse2_comineq_sd: 3975 case Intrinsic::x86_sse2_ucomieq_sd: 3976 case Intrinsic::x86_sse2_ucomilt_sd: 3977 case Intrinsic::x86_sse2_ucomile_sd: 3978 case Intrinsic::x86_sse2_ucomigt_sd: 3979 case Intrinsic::x86_sse2_ucomige_sd: 3980 case Intrinsic::x86_sse2_ucomineq_sd: 3981 handleVectorCompareScalarIntrinsic(I); 3982 break; 3983 3984 case Intrinsic::x86_avx_cmp_pd_256: 3985 case Intrinsic::x86_avx_cmp_ps_256: 3986 case Intrinsic::x86_sse2_cmp_pd: 3987 case Intrinsic::x86_sse_cmp_ps: 3988 handleVectorComparePackedIntrinsic(I); 3989 break; 3990 3991 case Intrinsic::x86_bmi_bextr_32: 3992 case Intrinsic::x86_bmi_bextr_64: 3993 case Intrinsic::x86_bmi_bzhi_32: 3994 case Intrinsic::x86_bmi_bzhi_64: 3995 case Intrinsic::x86_bmi_pdep_32: 3996 case Intrinsic::x86_bmi_pdep_64: 3997 case Intrinsic::x86_bmi_pext_32: 3998 case Intrinsic::x86_bmi_pext_64: 3999 handleBmiIntrinsic(I); 4000 break; 4001 4002 case Intrinsic::x86_pclmulqdq: 4003 case Intrinsic::x86_pclmulqdq_256: 4004 case Intrinsic::x86_pclmulqdq_512: 4005 handlePclmulIntrinsic(I); 4006 break; 4007 4008 case Intrinsic::x86_sse41_round_sd: 4009 case Intrinsic::x86_sse41_round_ss: 4010 handleUnarySdSsIntrinsic(I); 4011 break; 4012 case Intrinsic::x86_sse2_max_sd: 4013 case Intrinsic::x86_sse_max_ss: 4014 case Intrinsic::x86_sse2_min_sd: 4015 case Intrinsic::x86_sse_min_ss: 4016 handleBinarySdSsIntrinsic(I); 4017 break; 4018 4019 case Intrinsic::x86_avx_vtestc_pd: 4020 case Intrinsic::x86_avx_vtestc_pd_256: 4021 case Intrinsic::x86_avx_vtestc_ps: 4022 case Intrinsic::x86_avx_vtestc_ps_256: 4023 case Intrinsic::x86_avx_vtestnzc_pd: 4024 case Intrinsic::x86_avx_vtestnzc_pd_256: 4025 case Intrinsic::x86_avx_vtestnzc_ps: 4026 case Intrinsic::x86_avx_vtestnzc_ps_256: 4027 case Intrinsic::x86_avx_vtestz_pd: 4028 case Intrinsic::x86_avx_vtestz_pd_256: 4029 case Intrinsic::x86_avx_vtestz_ps: 4030 case Intrinsic::x86_avx_vtestz_ps_256: 4031 case Intrinsic::x86_avx_ptestc_256: 4032 case Intrinsic::x86_avx_ptestnzc_256: 4033 case Intrinsic::x86_avx_ptestz_256: 4034 case Intrinsic::x86_sse41_ptestc: 4035 case Intrinsic::x86_sse41_ptestnzc: 4036 case Intrinsic::x86_sse41_ptestz: 4037 handleVtestIntrinsic(I); 4038 break; 4039 4040 case Intrinsic::fshl: 4041 case Intrinsic::fshr: 4042 handleFunnelShift(I); 4043 break; 4044 4045 case Intrinsic::is_constant: 4046 // The result of llvm.is.constant() is always defined. 4047 setShadow(&I, getCleanShadow(&I)); 4048 setOrigin(&I, getCleanOrigin()); 4049 break; 4050 4051 default: 4052 if (!handleUnknownIntrinsic(I)) 4053 visitInstruction(I); 4054 break; 4055 } 4056 } 4057 4058 void visitLibAtomicLoad(CallBase &CB) { 4059 // Since we use getNextNode here, we can't have CB terminate the BB. 4060 assert(isa<CallInst>(CB)); 4061 4062 IRBuilder<> IRB(&CB); 4063 Value *Size = CB.getArgOperand(0); 4064 Value *SrcPtr = CB.getArgOperand(1); 4065 Value *DstPtr = CB.getArgOperand(2); 4066 Value *Ordering = CB.getArgOperand(3); 4067 // Convert the call to have at least Acquire ordering to make sure 4068 // the shadow operations aren't reordered before it. 4069 Value *NewOrdering = 4070 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 4071 CB.setArgOperand(3, NewOrdering); 4072 4073 NextNodeIRBuilder NextIRB(&CB); 4074 Value *SrcShadowPtr, *SrcOriginPtr; 4075 std::tie(SrcShadowPtr, SrcOriginPtr) = 4076 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4077 /*isStore*/ false); 4078 Value *DstShadowPtr = 4079 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4080 /*isStore*/ true) 4081 .first; 4082 4083 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 4084 if (MS.TrackOrigins) { 4085 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 4086 kMinOriginAlignment); 4087 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 4088 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 4089 } 4090 } 4091 4092 void visitLibAtomicStore(CallBase &CB) { 4093 IRBuilder<> IRB(&CB); 4094 Value *Size = CB.getArgOperand(0); 4095 Value *DstPtr = CB.getArgOperand(2); 4096 Value *Ordering = CB.getArgOperand(3); 4097 // Convert the call to have at least Release ordering to make sure 4098 // the shadow operations aren't reordered after it. 4099 Value *NewOrdering = 4100 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4101 CB.setArgOperand(3, NewOrdering); 4102 4103 Value *DstShadowPtr = 4104 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4105 /*isStore*/ true) 4106 .first; 4107 4108 // Atomic store always paints clean shadow/origin. See file header. 4109 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4110 Align(1)); 4111 } 4112 4113 void visitCallBase(CallBase &CB) { 4114 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4115 if (CB.isInlineAsm()) { 4116 // For inline asm (either a call to asm function, or callbr instruction), 4117 // do the usual thing: check argument shadow and mark all outputs as 4118 // clean. Note that any side effects of the inline asm that are not 4119 // immediately visible in its constraints are not handled. 4120 if (ClHandleAsmConservative && MS.CompileKernel) 4121 visitAsmInstruction(CB); 4122 else 4123 visitInstruction(CB); 4124 return; 4125 } 4126 LibFunc LF; 4127 if (TLI->getLibFunc(CB, LF)) { 4128 // libatomic.a functions need to have special handling because there isn't 4129 // a good way to intercept them or compile the library with 4130 // instrumentation. 4131 switch (LF) { 4132 case LibFunc_atomic_load: 4133 if (!isa<CallInst>(CB)) { 4134 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4135 "Ignoring!\n"; 4136 break; 4137 } 4138 visitLibAtomicLoad(CB); 4139 return; 4140 case LibFunc_atomic_store: 4141 visitLibAtomicStore(CB); 4142 return; 4143 default: 4144 break; 4145 } 4146 } 4147 4148 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4149 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4150 4151 // We are going to insert code that relies on the fact that the callee 4152 // will become a non-readonly function after it is instrumented by us. To 4153 // prevent this code from being optimized out, mark that function 4154 // non-readonly in advance. 4155 // TODO: We can likely do better than dropping memory() completely here. 4156 AttributeMask B; 4157 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4158 4159 Call->removeFnAttrs(B); 4160 if (Function *Func = Call->getCalledFunction()) { 4161 Func->removeFnAttrs(B); 4162 } 4163 4164 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4165 } 4166 IRBuilder<> IRB(&CB); 4167 bool MayCheckCall = MS.EagerChecks; 4168 if (Function *Func = CB.getCalledFunction()) { 4169 // __sanitizer_unaligned_{load,store} functions may be called by users 4170 // and always expects shadows in the TLS. So don't check them. 4171 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 4172 } 4173 4174 unsigned ArgOffset = 0; 4175 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4176 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4177 if (!A->getType()->isSized()) { 4178 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4179 continue; 4180 } 4181 unsigned Size = 0; 4182 const DataLayout &DL = F.getParent()->getDataLayout(); 4183 4184 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4185 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4186 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4187 4188 if (EagerCheck) { 4189 insertShadowCheck(A, &CB); 4190 Size = DL.getTypeAllocSize(A->getType()); 4191 } else { 4192 Value *Store = nullptr; 4193 // Compute the Shadow for arg even if it is ByVal, because 4194 // in that case getShadow() will copy the actual arg shadow to 4195 // __msan_param_tls. 4196 Value *ArgShadow = getShadow(A); 4197 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 4198 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4199 << " Shadow: " << *ArgShadow << "\n"); 4200 if (ByVal) { 4201 // ByVal requires some special handling as it's too big for a single 4202 // load 4203 assert(A->getType()->isPointerTy() && 4204 "ByVal argument is not a pointer!"); 4205 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4206 if (ArgOffset + Size > kParamTLSSize) 4207 break; 4208 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4209 MaybeAlign Alignment = std::nullopt; 4210 if (ParamAlignment) 4211 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4212 Value *AShadowPtr, *AOriginPtr; 4213 std::tie(AShadowPtr, AOriginPtr) = 4214 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4215 /*isStore*/ false); 4216 if (!PropagateShadow) { 4217 Store = IRB.CreateMemSet(ArgShadowBase, 4218 Constant::getNullValue(IRB.getInt8Ty()), 4219 Size, Alignment); 4220 } else { 4221 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4222 Alignment, Size); 4223 if (MS.TrackOrigins) { 4224 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 4225 // FIXME: OriginSize should be: 4226 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4227 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4228 IRB.CreateMemCpy( 4229 ArgOriginBase, 4230 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4231 AOriginPtr, 4232 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4233 } 4234 } 4235 } else { 4236 // Any other parameters mean we need bit-grained tracking of uninit 4237 // data 4238 Size = DL.getTypeAllocSize(A->getType()); 4239 if (ArgOffset + Size > kParamTLSSize) 4240 break; 4241 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4242 kShadowTLSAlignment); 4243 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4244 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4245 IRB.CreateStore(getOrigin(A), 4246 getOriginPtrForArgument(A, IRB, ArgOffset)); 4247 } 4248 } 4249 (void)Store; 4250 assert(Store != nullptr); 4251 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4252 } 4253 assert(Size != 0); 4254 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4255 } 4256 LLVM_DEBUG(dbgs() << " done with call args\n"); 4257 4258 FunctionType *FT = CB.getFunctionType(); 4259 if (FT->isVarArg()) { 4260 VAHelper->visitCallBase(CB, IRB); 4261 } 4262 4263 // Now, get the shadow for the RetVal. 4264 if (!CB.getType()->isSized()) 4265 return; 4266 // Don't emit the epilogue for musttail call returns. 4267 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4268 return; 4269 4270 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4271 setShadow(&CB, getCleanShadow(&CB)); 4272 setOrigin(&CB, getCleanOrigin()); 4273 return; 4274 } 4275 4276 IRBuilder<> IRBBefore(&CB); 4277 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4278 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 4279 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4280 kShadowTLSAlignment); 4281 BasicBlock::iterator NextInsn; 4282 if (isa<CallInst>(CB)) { 4283 NextInsn = ++CB.getIterator(); 4284 assert(NextInsn != CB.getParent()->end()); 4285 } else { 4286 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4287 if (!NormalDest->getSinglePredecessor()) { 4288 // FIXME: this case is tricky, so we are just conservative here. 4289 // Perhaps we need to split the edge between this BB and NormalDest, 4290 // but a naive attempt to use SplitEdge leads to a crash. 4291 setShadow(&CB, getCleanShadow(&CB)); 4292 setOrigin(&CB, getCleanOrigin()); 4293 return; 4294 } 4295 // FIXME: NextInsn is likely in a basic block that has not been visited 4296 // yet. Anything inserted there will be instrumented by MSan later! 4297 NextInsn = NormalDest->getFirstInsertionPt(); 4298 assert(NextInsn != NormalDest->end() && 4299 "Could not find insertion point for retval shadow load"); 4300 } 4301 IRBuilder<> IRBAfter(&*NextInsn); 4302 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4303 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 4304 kShadowTLSAlignment, "_msret"); 4305 setShadow(&CB, RetvalShadow); 4306 if (MS.TrackOrigins) 4307 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 4308 getOriginPtrForRetval(IRBAfter))); 4309 } 4310 4311 bool isAMustTailRetVal(Value *RetVal) { 4312 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4313 RetVal = I->getOperand(0); 4314 } 4315 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4316 return I->isMustTailCall(); 4317 } 4318 return false; 4319 } 4320 4321 void visitReturnInst(ReturnInst &I) { 4322 IRBuilder<> IRB(&I); 4323 Value *RetVal = I.getReturnValue(); 4324 if (!RetVal) 4325 return; 4326 // Don't emit the epilogue for musttail call returns. 4327 if (isAMustTailRetVal(RetVal)) 4328 return; 4329 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 4330 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4331 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4332 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4333 // must always return fully initialized values. For now, we hardcode "main". 4334 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4335 4336 Value *Shadow = getShadow(RetVal); 4337 bool StoreOrigin = true; 4338 if (EagerCheck) { 4339 insertShadowCheck(RetVal, &I); 4340 Shadow = getCleanShadow(RetVal); 4341 StoreOrigin = false; 4342 } 4343 4344 // The caller may still expect information passed over TLS if we pass our 4345 // check 4346 if (StoreShadow) { 4347 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4348 if (MS.TrackOrigins && StoreOrigin) 4349 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 4350 } 4351 } 4352 4353 void visitPHINode(PHINode &I) { 4354 IRBuilder<> IRB(&I); 4355 if (!PropagateShadow) { 4356 setShadow(&I, getCleanShadow(&I)); 4357 setOrigin(&I, getCleanOrigin()); 4358 return; 4359 } 4360 4361 ShadowPHINodes.push_back(&I); 4362 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4363 "_msphi_s")); 4364 if (MS.TrackOrigins) 4365 setOrigin( 4366 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4367 } 4368 4369 Value *getLocalVarIdptr(AllocaInst &I) { 4370 ConstantInt *IntConst = 4371 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4372 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4373 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4374 IntConst); 4375 } 4376 4377 Value *getLocalVarDescription(AllocaInst &I) { 4378 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4379 } 4380 4381 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4382 if (PoisonStack && ClPoisonStackWithCall) { 4383 IRB.CreateCall(MS.MsanPoisonStackFn, 4384 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 4385 } else { 4386 Value *ShadowBase, *OriginBase; 4387 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4388 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4389 4390 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4391 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4392 } 4393 4394 if (PoisonStack && MS.TrackOrigins) { 4395 Value *Idptr = getLocalVarIdptr(I); 4396 if (ClPrintStackNames) { 4397 Value *Descr = getLocalVarDescription(I); 4398 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4399 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4400 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy()), 4401 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 4402 } else { 4403 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, 4404 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4405 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy())}); 4406 } 4407 } 4408 } 4409 4410 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4411 Value *Descr = getLocalVarDescription(I); 4412 if (PoisonStack) { 4413 IRB.CreateCall(MS.MsanPoisonAllocaFn, 4414 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4415 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 4416 } else { 4417 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 4418 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 4419 } 4420 } 4421 4422 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4423 if (!InsPoint) 4424 InsPoint = &I; 4425 NextNodeIRBuilder IRB(InsPoint); 4426 const DataLayout &DL = F.getParent()->getDataLayout(); 4427 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 4428 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 4429 if (I.isArrayAllocation()) 4430 Len = IRB.CreateMul(Len, 4431 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4432 4433 if (MS.CompileKernel) 4434 poisonAllocaKmsan(I, IRB, Len); 4435 else 4436 poisonAllocaUserspace(I, IRB, Len); 4437 } 4438 4439 void visitAllocaInst(AllocaInst &I) { 4440 setShadow(&I, getCleanShadow(&I)); 4441 setOrigin(&I, getCleanOrigin()); 4442 // We'll get to this alloca later unless it's poisoned at the corresponding 4443 // llvm.lifetime.start. 4444 AllocaSet.insert(&I); 4445 } 4446 4447 void visitSelectInst(SelectInst &I) { 4448 IRBuilder<> IRB(&I); 4449 // a = select b, c, d 4450 Value *B = I.getCondition(); 4451 Value *C = I.getTrueValue(); 4452 Value *D = I.getFalseValue(); 4453 Value *Sb = getShadow(B); 4454 Value *Sc = getShadow(C); 4455 Value *Sd = getShadow(D); 4456 4457 // Result shadow if condition shadow is 0. 4458 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4459 Value *Sa1; 4460 if (I.getType()->isAggregateType()) { 4461 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4462 // an extra "select". This results in much more compact IR. 4463 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4464 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4465 } else { 4466 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4467 // If Sb (condition is poisoned), look for bits in c and d that are equal 4468 // and both unpoisoned. 4469 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4470 4471 // Cast arguments to shadow-compatible type. 4472 C = CreateAppToShadowCast(IRB, C); 4473 D = CreateAppToShadowCast(IRB, D); 4474 4475 // Result shadow if condition shadow is 1. 4476 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4477 } 4478 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4479 setShadow(&I, Sa); 4480 if (MS.TrackOrigins) { 4481 // Origins are always i32, so any vector conditions must be flattened. 4482 // FIXME: consider tracking vector origins for app vectors? 4483 if (B->getType()->isVectorTy()) { 4484 B = convertToBool(B, IRB); 4485 Sb = convertToBool(Sb, IRB); 4486 } 4487 // a = select b, c, d 4488 // Oa = Sb ? Ob : (b ? Oc : Od) 4489 setOrigin( 4490 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 4491 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 4492 getOrigin(I.getFalseValue())))); 4493 } 4494 } 4495 4496 void visitLandingPadInst(LandingPadInst &I) { 4497 // Do nothing. 4498 // See https://github.com/google/sanitizers/issues/504 4499 setShadow(&I, getCleanShadow(&I)); 4500 setOrigin(&I, getCleanOrigin()); 4501 } 4502 4503 void visitCatchSwitchInst(CatchSwitchInst &I) { 4504 setShadow(&I, getCleanShadow(&I)); 4505 setOrigin(&I, getCleanOrigin()); 4506 } 4507 4508 void visitFuncletPadInst(FuncletPadInst &I) { 4509 setShadow(&I, getCleanShadow(&I)); 4510 setOrigin(&I, getCleanOrigin()); 4511 } 4512 4513 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4514 4515 void visitExtractValueInst(ExtractValueInst &I) { 4516 IRBuilder<> IRB(&I); 4517 Value *Agg = I.getAggregateOperand(); 4518 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4519 Value *AggShadow = getShadow(Agg); 4520 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4521 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4522 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4523 setShadow(&I, ResShadow); 4524 setOriginForNaryOp(I); 4525 } 4526 4527 void visitInsertValueInst(InsertValueInst &I) { 4528 IRBuilder<> IRB(&I); 4529 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4530 Value *AggShadow = getShadow(I.getAggregateOperand()); 4531 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4532 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4533 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4534 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4535 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4536 setShadow(&I, Res); 4537 setOriginForNaryOp(I); 4538 } 4539 4540 void dumpInst(Instruction &I) { 4541 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4542 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4543 } else { 4544 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4545 } 4546 errs() << "QQQ " << I << "\n"; 4547 } 4548 4549 void visitResumeInst(ResumeInst &I) { 4550 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4551 // Nothing to do here. 4552 } 4553 4554 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4555 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4556 // Nothing to do here. 4557 } 4558 4559 void visitCatchReturnInst(CatchReturnInst &CRI) { 4560 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4561 // Nothing to do here. 4562 } 4563 4564 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4565 IRBuilder<> &IRB, const DataLayout &DL, 4566 bool isOutput) { 4567 // For each assembly argument, we check its value for being initialized. 4568 // If the argument is a pointer, we assume it points to a single element 4569 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4570 // Each such pointer is instrumented with a call to the runtime library. 4571 Type *OpType = Operand->getType(); 4572 // Check the operand value itself. 4573 insertShadowCheck(Operand, &I); 4574 if (!OpType->isPointerTy() || !isOutput) { 4575 assert(!isOutput); 4576 return; 4577 } 4578 if (!ElemTy->isSized()) 4579 return; 4580 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4581 Value *SizeVal = 4582 IRB.CreateTypeSize(MS.IntptrTy, DL.getTypeStoreSize(ElemTy)); 4583 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4584 } 4585 4586 /// Get the number of output arguments returned by pointers. 4587 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4588 int NumRetOutputs = 0; 4589 int NumOutputs = 0; 4590 Type *RetTy = cast<Value>(CB)->getType(); 4591 if (!RetTy->isVoidTy()) { 4592 // Register outputs are returned via the CallInst return value. 4593 auto *ST = dyn_cast<StructType>(RetTy); 4594 if (ST) 4595 NumRetOutputs = ST->getNumElements(); 4596 else 4597 NumRetOutputs = 1; 4598 } 4599 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4600 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4601 switch (Info.Type) { 4602 case InlineAsm::isOutput: 4603 NumOutputs++; 4604 break; 4605 default: 4606 break; 4607 } 4608 } 4609 return NumOutputs - NumRetOutputs; 4610 } 4611 4612 void visitAsmInstruction(Instruction &I) { 4613 // Conservative inline assembly handling: check for poisoned shadow of 4614 // asm() arguments, then unpoison the result and all the memory locations 4615 // pointed to by those arguments. 4616 // An inline asm() statement in C++ contains lists of input and output 4617 // arguments used by the assembly code. These are mapped to operands of the 4618 // CallInst as follows: 4619 // - nR register outputs ("=r) are returned by value in a single structure 4620 // (SSA value of the CallInst); 4621 // - nO other outputs ("=m" and others) are returned by pointer as first 4622 // nO operands of the CallInst; 4623 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4624 // remaining nI operands. 4625 // The total number of asm() arguments in the source is nR+nO+nI, and the 4626 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4627 // function to be called). 4628 const DataLayout &DL = F.getParent()->getDataLayout(); 4629 CallBase *CB = cast<CallBase>(&I); 4630 IRBuilder<> IRB(&I); 4631 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4632 int OutputArgs = getNumOutputArgs(IA, CB); 4633 // The last operand of a CallInst is the function itself. 4634 int NumOperands = CB->getNumOperands() - 1; 4635 4636 // Check input arguments. Doing so before unpoisoning output arguments, so 4637 // that we won't overwrite uninit values before checking them. 4638 for (int i = OutputArgs; i < NumOperands; i++) { 4639 Value *Operand = CB->getOperand(i); 4640 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4641 /*isOutput*/ false); 4642 } 4643 // Unpoison output arguments. This must happen before the actual InlineAsm 4644 // call, so that the shadow for memory published in the asm() statement 4645 // remains valid. 4646 for (int i = 0; i < OutputArgs; i++) { 4647 Value *Operand = CB->getOperand(i); 4648 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4649 /*isOutput*/ true); 4650 } 4651 4652 setShadow(&I, getCleanShadow(&I)); 4653 setOrigin(&I, getCleanOrigin()); 4654 } 4655 4656 void visitFreezeInst(FreezeInst &I) { 4657 // Freeze always returns a fully defined value. 4658 setShadow(&I, getCleanShadow(&I)); 4659 setOrigin(&I, getCleanOrigin()); 4660 } 4661 4662 void visitInstruction(Instruction &I) { 4663 // Everything else: stop propagating and check for poisoned shadow. 4664 if (ClDumpStrictInstructions) 4665 dumpInst(I); 4666 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4667 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4668 Value *Operand = I.getOperand(i); 4669 if (Operand->getType()->isSized()) 4670 insertShadowCheck(Operand, &I); 4671 } 4672 setShadow(&I, getCleanShadow(&I)); 4673 setOrigin(&I, getCleanOrigin()); 4674 } 4675 }; 4676 4677 /// AMD64-specific implementation of VarArgHelper. 4678 struct VarArgAMD64Helper : public VarArgHelper { 4679 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4680 // See a comment in visitCallBase for more details. 4681 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4682 static const unsigned AMD64FpEndOffsetSSE = 176; 4683 // If SSE is disabled, fp_offset in va_list is zero. 4684 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4685 4686 unsigned AMD64FpEndOffset; 4687 Function &F; 4688 MemorySanitizer &MS; 4689 MemorySanitizerVisitor &MSV; 4690 AllocaInst *VAArgTLSCopy = nullptr; 4691 AllocaInst *VAArgTLSOriginCopy = nullptr; 4692 Value *VAArgOverflowSize = nullptr; 4693 4694 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4695 4696 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4697 4698 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4699 MemorySanitizerVisitor &MSV) 4700 : F(F), MS(MS), MSV(MSV) { 4701 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4702 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4703 if (Attr.isStringAttribute() && 4704 (Attr.getKindAsString() == "target-features")) { 4705 if (Attr.getValueAsString().contains("-sse")) 4706 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4707 break; 4708 } 4709 } 4710 } 4711 4712 ArgKind classifyArgument(Value *arg) { 4713 // A very rough approximation of X86_64 argument classification rules. 4714 Type *T = arg->getType(); 4715 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4716 return AK_FloatingPoint; 4717 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4718 return AK_GeneralPurpose; 4719 if (T->isPointerTy()) 4720 return AK_GeneralPurpose; 4721 return AK_Memory; 4722 } 4723 4724 // For VarArg functions, store the argument shadow in an ABI-specific format 4725 // that corresponds to va_list layout. 4726 // We do this because Clang lowers va_arg in the frontend, and this pass 4727 // only sees the low level code that deals with va_list internals. 4728 // A much easier alternative (provided that Clang emits va_arg instructions) 4729 // would have been to associate each live instance of va_list with a copy of 4730 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4731 // order. 4732 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4733 unsigned GpOffset = 0; 4734 unsigned FpOffset = AMD64GpEndOffset; 4735 unsigned OverflowOffset = AMD64FpEndOffset; 4736 const DataLayout &DL = F.getParent()->getDataLayout(); 4737 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 4738 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4739 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4740 if (IsByVal) { 4741 // ByVal arguments always go to the overflow area. 4742 // Fixed arguments passed through the overflow area will be stepped 4743 // over by va_start, so don't count them towards the offset. 4744 if (IsFixed) 4745 continue; 4746 assert(A->getType()->isPointerTy()); 4747 Type *RealTy = CB.getParamByValType(ArgNo); 4748 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4749 Value *ShadowBase = getShadowPtrForVAArgument( 4750 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4751 Value *OriginBase = nullptr; 4752 if (MS.TrackOrigins) 4753 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4754 OverflowOffset += alignTo(ArgSize, 8); 4755 if (!ShadowBase) 4756 continue; 4757 Value *ShadowPtr, *OriginPtr; 4758 std::tie(ShadowPtr, OriginPtr) = 4759 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4760 /*isStore*/ false); 4761 4762 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4763 kShadowTLSAlignment, ArgSize); 4764 if (MS.TrackOrigins) 4765 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4766 kShadowTLSAlignment, ArgSize); 4767 } else { 4768 ArgKind AK = classifyArgument(A); 4769 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4770 AK = AK_Memory; 4771 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4772 AK = AK_Memory; 4773 Value *ShadowBase, *OriginBase = nullptr; 4774 switch (AK) { 4775 case AK_GeneralPurpose: 4776 ShadowBase = 4777 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4778 if (MS.TrackOrigins) 4779 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4780 GpOffset += 8; 4781 break; 4782 case AK_FloatingPoint: 4783 ShadowBase = 4784 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4785 if (MS.TrackOrigins) 4786 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4787 FpOffset += 16; 4788 break; 4789 case AK_Memory: 4790 if (IsFixed) 4791 continue; 4792 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4793 ShadowBase = 4794 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4795 if (MS.TrackOrigins) 4796 OriginBase = 4797 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4798 OverflowOffset += alignTo(ArgSize, 8); 4799 } 4800 // Take fixed arguments into account for GpOffset and FpOffset, 4801 // but don't actually store shadows for them. 4802 // TODO(glider): don't call get*PtrForVAArgument() for them. 4803 if (IsFixed) 4804 continue; 4805 if (!ShadowBase) 4806 continue; 4807 Value *Shadow = MSV.getShadow(A); 4808 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4809 if (MS.TrackOrigins) { 4810 Value *Origin = MSV.getOrigin(A); 4811 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4812 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4813 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4814 } 4815 } 4816 } 4817 Constant *OverflowSize = 4818 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4819 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4820 } 4821 4822 /// Compute the shadow address for a given va_arg. 4823 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4824 unsigned ArgOffset, unsigned ArgSize) { 4825 // Make sure we don't overflow __msan_va_arg_tls. 4826 if (ArgOffset + ArgSize > kParamTLSSize) 4827 return nullptr; 4828 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4829 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4830 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4831 "_msarg_va_s"); 4832 } 4833 4834 /// Compute the origin address for a given va_arg. 4835 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4836 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4837 // getOriginPtrForVAArgument() is always called after 4838 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4839 // overflow. 4840 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4841 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4842 "_msarg_va_o"); 4843 } 4844 4845 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4846 IRBuilder<> IRB(&I); 4847 Value *VAListTag = I.getArgOperand(0); 4848 Value *ShadowPtr, *OriginPtr; 4849 const Align Alignment = Align(8); 4850 std::tie(ShadowPtr, OriginPtr) = 4851 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4852 /*isStore*/ true); 4853 4854 // Unpoison the whole __va_list_tag. 4855 // FIXME: magic ABI constants. 4856 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4857 /* size */ 24, Alignment, false); 4858 // We shouldn't need to zero out the origins, as they're only checked for 4859 // nonzero shadow. 4860 } 4861 4862 void visitVAStartInst(VAStartInst &I) override { 4863 if (F.getCallingConv() == CallingConv::Win64) 4864 return; 4865 VAStartInstrumentationList.push_back(&I); 4866 unpoisonVAListTagForInst(I); 4867 } 4868 4869 void visitVACopyInst(VACopyInst &I) override { 4870 if (F.getCallingConv() == CallingConv::Win64) 4871 return; 4872 unpoisonVAListTagForInst(I); 4873 } 4874 4875 void finalizeInstrumentation() override { 4876 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4877 "finalizeInstrumentation called twice"); 4878 if (!VAStartInstrumentationList.empty()) { 4879 // If there is a va_start in this function, make a backup copy of 4880 // va_arg_tls somewhere in the function entry block. 4881 IRBuilder<> IRB(MSV.FnPrologueEnd); 4882 VAArgOverflowSize = 4883 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4884 Value *CopySize = IRB.CreateAdd( 4885 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 4886 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4887 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 4888 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 4889 CopySize, kShadowTLSAlignment, false); 4890 4891 Value *SrcSize = IRB.CreateBinaryIntrinsic( 4892 Intrinsic::umin, CopySize, 4893 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 4894 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 4895 kShadowTLSAlignment, SrcSize); 4896 if (MS.TrackOrigins) { 4897 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4898 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 4899 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 4900 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 4901 } 4902 } 4903 4904 // Instrument va_start. 4905 // Copy va_list shadow from the backup copy of the TLS contents. 4906 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4907 CallInst *OrigInst = VAStartInstrumentationList[i]; 4908 NextNodeIRBuilder IRB(OrigInst); 4909 Value *VAListTag = OrigInst->getArgOperand(0); 4910 4911 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4912 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4913 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4914 ConstantInt::get(MS.IntptrTy, 16)), 4915 PointerType::get(RegSaveAreaPtrTy, 0)); 4916 Value *RegSaveAreaPtr = 4917 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4918 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4919 const Align Alignment = Align(16); 4920 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4921 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4922 Alignment, /*isStore*/ true); 4923 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4924 AMD64FpEndOffset); 4925 if (MS.TrackOrigins) 4926 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4927 Alignment, AMD64FpEndOffset); 4928 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4929 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4930 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4931 ConstantInt::get(MS.IntptrTy, 8)), 4932 PointerType::get(OverflowArgAreaPtrTy, 0)); 4933 Value *OverflowArgAreaPtr = 4934 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4935 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4936 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4937 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4938 Alignment, /*isStore*/ true); 4939 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4940 AMD64FpEndOffset); 4941 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4942 VAArgOverflowSize); 4943 if (MS.TrackOrigins) { 4944 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4945 AMD64FpEndOffset); 4946 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4947 VAArgOverflowSize); 4948 } 4949 } 4950 } 4951 }; 4952 4953 /// MIPS64-specific implementation of VarArgHelper. 4954 struct VarArgMIPS64Helper : public VarArgHelper { 4955 Function &F; 4956 MemorySanitizer &MS; 4957 MemorySanitizerVisitor &MSV; 4958 AllocaInst *VAArgTLSCopy = nullptr; 4959 Value *VAArgSize = nullptr; 4960 4961 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4962 4963 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4964 MemorySanitizerVisitor &MSV) 4965 : F(F), MS(MS), MSV(MSV) {} 4966 4967 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4968 unsigned VAArgOffset = 0; 4969 const DataLayout &DL = F.getParent()->getDataLayout(); 4970 for (Value *A : 4971 llvm::drop_begin(CB.args(), CB.getFunctionType()->getNumParams())) { 4972 Triple TargetTriple(F.getParent()->getTargetTriple()); 4973 Value *Base; 4974 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4975 if (TargetTriple.getArch() == Triple::mips64) { 4976 // Adjusting the shadow for argument with size < 8 to match the 4977 // placement of bits in big endian system 4978 if (ArgSize < 8) 4979 VAArgOffset += (8 - ArgSize); 4980 } 4981 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4982 VAArgOffset += ArgSize; 4983 VAArgOffset = alignTo(VAArgOffset, 8); 4984 if (!Base) 4985 continue; 4986 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4987 } 4988 4989 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4990 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4991 // a new class member i.e. it is the total size of all VarArgs. 4992 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4993 } 4994 4995 /// Compute the shadow address for a given va_arg. 4996 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4997 unsigned ArgOffset, unsigned ArgSize) { 4998 // Make sure we don't overflow __msan_va_arg_tls. 4999 if (ArgOffset + ArgSize > kParamTLSSize) 5000 return nullptr; 5001 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5002 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5003 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 5004 "_msarg"); 5005 } 5006 5007 void visitVAStartInst(VAStartInst &I) override { 5008 IRBuilder<> IRB(&I); 5009 VAStartInstrumentationList.push_back(&I); 5010 Value *VAListTag = I.getArgOperand(0); 5011 Value *ShadowPtr, *OriginPtr; 5012 const Align Alignment = Align(8); 5013 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5014 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5015 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5016 /* size */ 8, Alignment, false); 5017 } 5018 5019 void visitVACopyInst(VACopyInst &I) override { 5020 IRBuilder<> IRB(&I); 5021 VAStartInstrumentationList.push_back(&I); 5022 Value *VAListTag = I.getArgOperand(0); 5023 Value *ShadowPtr, *OriginPtr; 5024 const Align Alignment = Align(8); 5025 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5026 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5027 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5028 /* size */ 8, Alignment, false); 5029 } 5030 5031 void finalizeInstrumentation() override { 5032 assert(!VAArgSize && !VAArgTLSCopy && 5033 "finalizeInstrumentation called twice"); 5034 IRBuilder<> IRB(MSV.FnPrologueEnd); 5035 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5036 Value *CopySize = 5037 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 5038 5039 if (!VAStartInstrumentationList.empty()) { 5040 // If there is a va_start in this function, make a backup copy of 5041 // va_arg_tls somewhere in the function entry block. 5042 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5043 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5044 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5045 CopySize, kShadowTLSAlignment, false); 5046 5047 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5048 Intrinsic::umin, CopySize, 5049 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5050 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5051 kShadowTLSAlignment, SrcSize); 5052 } 5053 5054 // Instrument va_start. 5055 // Copy va_list shadow from the backup copy of the TLS contents. 5056 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5057 CallInst *OrigInst = VAStartInstrumentationList[i]; 5058 NextNodeIRBuilder IRB(OrigInst); 5059 Value *VAListTag = OrigInst->getArgOperand(0); 5060 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5061 Value *RegSaveAreaPtrPtr = 5062 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5063 PointerType::get(RegSaveAreaPtrTy, 0)); 5064 Value *RegSaveAreaPtr = 5065 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5066 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5067 const Align Alignment = Align(8); 5068 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5069 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5070 Alignment, /*isStore*/ true); 5071 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5072 CopySize); 5073 } 5074 } 5075 }; 5076 5077 /// AArch64-specific implementation of VarArgHelper. 5078 struct VarArgAArch64Helper : public VarArgHelper { 5079 static const unsigned kAArch64GrArgSize = 64; 5080 static const unsigned kAArch64VrArgSize = 128; 5081 5082 static const unsigned AArch64GrBegOffset = 0; 5083 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 5084 // Make VR space aligned to 16 bytes. 5085 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 5086 static const unsigned AArch64VrEndOffset = 5087 AArch64VrBegOffset + kAArch64VrArgSize; 5088 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 5089 5090 Function &F; 5091 MemorySanitizer &MS; 5092 MemorySanitizerVisitor &MSV; 5093 AllocaInst *VAArgTLSCopy = nullptr; 5094 Value *VAArgOverflowSize = nullptr; 5095 5096 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5097 5098 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5099 5100 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 5101 MemorySanitizerVisitor &MSV) 5102 : F(F), MS(MS), MSV(MSV) {} 5103 5104 ArgKind classifyArgument(Value *arg) { 5105 Type *T = arg->getType(); 5106 if (T->isFPOrFPVectorTy()) 5107 return AK_FloatingPoint; 5108 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) || 5109 (T->isPointerTy())) 5110 return AK_GeneralPurpose; 5111 return AK_Memory; 5112 } 5113 5114 // The instrumentation stores the argument shadow in a non ABI-specific 5115 // format because it does not know which argument is named (since Clang, 5116 // like x86_64 case, lowers the va_args in the frontend and this pass only 5117 // sees the low level code that deals with va_list internals). 5118 // The first seven GR registers are saved in the first 56 bytes of the 5119 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 5120 // the remaining arguments. 5121 // Using constant offset within the va_arg TLS array allows fast copy 5122 // in the finalize instrumentation. 5123 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5124 unsigned GrOffset = AArch64GrBegOffset; 5125 unsigned VrOffset = AArch64VrBegOffset; 5126 unsigned OverflowOffset = AArch64VAEndOffset; 5127 5128 const DataLayout &DL = F.getParent()->getDataLayout(); 5129 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5130 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5131 ArgKind AK = classifyArgument(A); 5132 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 5133 AK = AK_Memory; 5134 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 5135 AK = AK_Memory; 5136 Value *Base; 5137 switch (AK) { 5138 case AK_GeneralPurpose: 5139 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 5140 GrOffset += 8; 5141 break; 5142 case AK_FloatingPoint: 5143 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 5144 VrOffset += 16; 5145 break; 5146 case AK_Memory: 5147 // Don't count fixed arguments in the overflow area - va_start will 5148 // skip right over them. 5149 if (IsFixed) 5150 continue; 5151 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5152 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 5153 alignTo(ArgSize, 8)); 5154 OverflowOffset += alignTo(ArgSize, 8); 5155 break; 5156 } 5157 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5158 // bother to actually store a shadow. 5159 if (IsFixed) 5160 continue; 5161 if (!Base) 5162 continue; 5163 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5164 } 5165 Constant *OverflowSize = 5166 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5167 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5168 } 5169 5170 /// Compute the shadow address for a given va_arg. 5171 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 5172 unsigned ArgOffset, unsigned ArgSize) { 5173 // Make sure we don't overflow __msan_va_arg_tls. 5174 if (ArgOffset + ArgSize > kParamTLSSize) 5175 return nullptr; 5176 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5177 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5178 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 5179 "_msarg"); 5180 } 5181 5182 void visitVAStartInst(VAStartInst &I) override { 5183 IRBuilder<> IRB(&I); 5184 VAStartInstrumentationList.push_back(&I); 5185 Value *VAListTag = I.getArgOperand(0); 5186 Value *ShadowPtr, *OriginPtr; 5187 const Align Alignment = Align(8); 5188 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5189 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5190 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5191 /* size */ 32, Alignment, false); 5192 } 5193 5194 void visitVACopyInst(VACopyInst &I) override { 5195 IRBuilder<> IRB(&I); 5196 VAStartInstrumentationList.push_back(&I); 5197 Value *VAListTag = I.getArgOperand(0); 5198 Value *ShadowPtr, *OriginPtr; 5199 const Align Alignment = Align(8); 5200 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5201 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5202 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5203 /* size */ 32, Alignment, false); 5204 } 5205 5206 // Retrieve a va_list field of 'void*' size. 5207 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5208 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5209 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5210 ConstantInt::get(MS.IntptrTy, offset)), 5211 Type::getInt64PtrTy(*MS.C)); 5212 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5213 } 5214 5215 // Retrieve a va_list field of 'int' size. 5216 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5217 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5218 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5219 ConstantInt::get(MS.IntptrTy, offset)), 5220 Type::getInt32PtrTy(*MS.C)); 5221 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5222 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5223 } 5224 5225 void finalizeInstrumentation() override { 5226 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5227 "finalizeInstrumentation called twice"); 5228 if (!VAStartInstrumentationList.empty()) { 5229 // If there is a va_start in this function, make a backup copy of 5230 // va_arg_tls somewhere in the function entry block. 5231 IRBuilder<> IRB(MSV.FnPrologueEnd); 5232 VAArgOverflowSize = 5233 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5234 Value *CopySize = IRB.CreateAdd( 5235 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5236 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5237 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5238 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5239 CopySize, kShadowTLSAlignment, false); 5240 5241 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5242 Intrinsic::umin, CopySize, 5243 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5244 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5245 kShadowTLSAlignment, SrcSize); 5246 } 5247 5248 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5249 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5250 5251 // Instrument va_start, copy va_list shadow from the backup copy of 5252 // the TLS contents. 5253 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5254 CallInst *OrigInst = VAStartInstrumentationList[i]; 5255 NextNodeIRBuilder IRB(OrigInst); 5256 5257 Value *VAListTag = OrigInst->getArgOperand(0); 5258 5259 // The variadic ABI for AArch64 creates two areas to save the incoming 5260 // argument registers (one for 64-bit general register xn-x7 and another 5261 // for 128-bit FP/SIMD vn-v7). 5262 // We need then to propagate the shadow arguments on both regions 5263 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5264 // The remaining arguments are saved on shadow for 'va::stack'. 5265 // One caveat is it requires only to propagate the non-named arguments, 5266 // however on the call site instrumentation 'all' the arguments are 5267 // saved. So to copy the shadow values from the va_arg TLS array 5268 // we need to adjust the offset for both GR and VR fields based on 5269 // the __{gr,vr}_offs value (since they are stores based on incoming 5270 // named arguments). 5271 Type *RegSaveAreaPtrTy = IRB.getInt8PtrTy(); 5272 5273 // Read the stack pointer from the va_list. 5274 Value *StackSaveAreaPtr = 5275 IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy); 5276 5277 // Read both the __gr_top and __gr_off and add them up. 5278 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5279 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5280 5281 Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( 5282 IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy); 5283 5284 // Read both the __vr_top and __vr_off and add them up. 5285 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5286 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5287 5288 Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( 5289 IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy); 5290 5291 // It does not know how many named arguments is being used and, on the 5292 // callsite all the arguments were saved. Since __gr_off is defined as 5293 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5294 // argument by ignoring the bytes of shadow from named arguments. 5295 Value *GrRegSaveAreaShadowPtrOff = 5296 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5297 5298 Value *GrRegSaveAreaShadowPtr = 5299 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5300 Align(8), /*isStore*/ true) 5301 .first; 5302 5303 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 5304 GrRegSaveAreaShadowPtrOff); 5305 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5306 5307 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5308 GrCopySize); 5309 5310 // Again, but for FP/SIMD values. 5311 Value *VrRegSaveAreaShadowPtrOff = 5312 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5313 5314 Value *VrRegSaveAreaShadowPtr = 5315 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5316 Align(8), /*isStore*/ true) 5317 .first; 5318 5319 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 5320 IRB.getInt8Ty(), 5321 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 5322 IRB.getInt32(AArch64VrBegOffset)), 5323 VrRegSaveAreaShadowPtrOff); 5324 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5325 5326 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5327 VrCopySize); 5328 5329 // And finally for remaining arguments. 5330 Value *StackSaveAreaShadowPtr = 5331 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5332 Align(16), /*isStore*/ true) 5333 .first; 5334 5335 Value *StackSrcPtr = IRB.CreateInBoundsGEP( 5336 IRB.getInt8Ty(), VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5337 5338 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5339 Align(16), VAArgOverflowSize); 5340 } 5341 } 5342 }; 5343 5344 /// PowerPC64-specific implementation of VarArgHelper. 5345 struct VarArgPowerPC64Helper : public VarArgHelper { 5346 Function &F; 5347 MemorySanitizer &MS; 5348 MemorySanitizerVisitor &MSV; 5349 AllocaInst *VAArgTLSCopy = nullptr; 5350 Value *VAArgSize = nullptr; 5351 5352 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5353 5354 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 5355 MemorySanitizerVisitor &MSV) 5356 : F(F), MS(MS), MSV(MSV) {} 5357 5358 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5359 // For PowerPC, we need to deal with alignment of stack arguments - 5360 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5361 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5362 // For that reason, we compute current offset from stack pointer (which is 5363 // always properly aligned), and offset for the first vararg, then subtract 5364 // them. 5365 unsigned VAArgBase; 5366 Triple TargetTriple(F.getParent()->getTargetTriple()); 5367 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5368 // and 32 bytes for ABIv2. This is usually determined by target 5369 // endianness, but in theory could be overridden by function attribute. 5370 if (TargetTriple.getArch() == Triple::ppc64) 5371 VAArgBase = 48; 5372 else 5373 VAArgBase = 32; 5374 unsigned VAArgOffset = VAArgBase; 5375 const DataLayout &DL = F.getParent()->getDataLayout(); 5376 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5377 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5378 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5379 if (IsByVal) { 5380 assert(A->getType()->isPointerTy()); 5381 Type *RealTy = CB.getParamByValType(ArgNo); 5382 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5383 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5384 if (ArgAlign < 8) 5385 ArgAlign = Align(8); 5386 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5387 if (!IsFixed) { 5388 Value *Base = getShadowPtrForVAArgument( 5389 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 5390 if (Base) { 5391 Value *AShadowPtr, *AOriginPtr; 5392 std::tie(AShadowPtr, AOriginPtr) = 5393 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5394 kShadowTLSAlignment, /*isStore*/ false); 5395 5396 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5397 kShadowTLSAlignment, ArgSize); 5398 } 5399 } 5400 VAArgOffset += alignTo(ArgSize, Align(8)); 5401 } else { 5402 Value *Base; 5403 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5404 Align ArgAlign = Align(8); 5405 if (A->getType()->isArrayTy()) { 5406 // Arrays are aligned to element size, except for long double 5407 // arrays, which are aligned to 8 bytes. 5408 Type *ElementTy = A->getType()->getArrayElementType(); 5409 if (!ElementTy->isPPC_FP128Ty()) 5410 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5411 } else if (A->getType()->isVectorTy()) { 5412 // Vectors are naturally aligned. 5413 ArgAlign = Align(ArgSize); 5414 } 5415 if (ArgAlign < 8) 5416 ArgAlign = Align(8); 5417 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5418 if (DL.isBigEndian()) { 5419 // Adjusting the shadow for argument with size < 8 to match the 5420 // placement of bits in big endian system 5421 if (ArgSize < 8) 5422 VAArgOffset += (8 - ArgSize); 5423 } 5424 if (!IsFixed) { 5425 Base = getShadowPtrForVAArgument(A->getType(), IRB, 5426 VAArgOffset - VAArgBase, ArgSize); 5427 if (Base) 5428 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5429 } 5430 VAArgOffset += ArgSize; 5431 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5432 } 5433 if (IsFixed) 5434 VAArgBase = VAArgOffset; 5435 } 5436 5437 Constant *TotalVAArgSize = 5438 ConstantInt::get(IRB.getInt64Ty(), VAArgOffset - VAArgBase); 5439 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5440 // a new class member i.e. it is the total size of all VarArgs. 5441 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5442 } 5443 5444 /// Compute the shadow address for a given va_arg. 5445 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 5446 unsigned ArgOffset, unsigned ArgSize) { 5447 // Make sure we don't overflow __msan_va_arg_tls. 5448 if (ArgOffset + ArgSize > kParamTLSSize) 5449 return nullptr; 5450 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5451 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5452 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 5453 "_msarg"); 5454 } 5455 5456 void visitVAStartInst(VAStartInst &I) override { 5457 IRBuilder<> IRB(&I); 5458 VAStartInstrumentationList.push_back(&I); 5459 Value *VAListTag = I.getArgOperand(0); 5460 Value *ShadowPtr, *OriginPtr; 5461 const Align Alignment = Align(8); 5462 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5463 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5464 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5465 /* size */ 8, Alignment, false); 5466 } 5467 5468 void visitVACopyInst(VACopyInst &I) override { 5469 IRBuilder<> IRB(&I); 5470 Value *VAListTag = I.getArgOperand(0); 5471 Value *ShadowPtr, *OriginPtr; 5472 const Align Alignment = Align(8); 5473 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5474 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5475 // Unpoison the whole __va_list_tag. 5476 // FIXME: magic ABI constants. 5477 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5478 /* size */ 8, Alignment, false); 5479 } 5480 5481 void finalizeInstrumentation() override { 5482 assert(!VAArgSize && !VAArgTLSCopy && 5483 "finalizeInstrumentation called twice"); 5484 IRBuilder<> IRB(MSV.FnPrologueEnd); 5485 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5486 Value *CopySize = 5487 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 5488 5489 if (!VAStartInstrumentationList.empty()) { 5490 // If there is a va_start in this function, make a backup copy of 5491 // va_arg_tls somewhere in the function entry block. 5492 5493 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5494 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5495 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5496 CopySize, kShadowTLSAlignment, false); 5497 5498 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5499 Intrinsic::umin, CopySize, 5500 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5501 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5502 kShadowTLSAlignment, SrcSize); 5503 } 5504 5505 // Instrument va_start. 5506 // Copy va_list shadow from the backup copy of the TLS contents. 5507 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5508 CallInst *OrigInst = VAStartInstrumentationList[i]; 5509 NextNodeIRBuilder IRB(OrigInst); 5510 Value *VAListTag = OrigInst->getArgOperand(0); 5511 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5512 Value *RegSaveAreaPtrPtr = 5513 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5514 PointerType::get(RegSaveAreaPtrTy, 0)); 5515 Value *RegSaveAreaPtr = 5516 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5517 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5518 const Align Alignment = Align(8); 5519 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5520 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5521 Alignment, /*isStore*/ true); 5522 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5523 CopySize); 5524 } 5525 } 5526 }; 5527 5528 /// SystemZ-specific implementation of VarArgHelper. 5529 struct VarArgSystemZHelper : public VarArgHelper { 5530 static const unsigned SystemZGpOffset = 16; 5531 static const unsigned SystemZGpEndOffset = 56; 5532 static const unsigned SystemZFpOffset = 128; 5533 static const unsigned SystemZFpEndOffset = 160; 5534 static const unsigned SystemZMaxVrArgs = 8; 5535 static const unsigned SystemZRegSaveAreaSize = 160; 5536 static const unsigned SystemZOverflowOffset = 160; 5537 static const unsigned SystemZVAListTagSize = 32; 5538 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5539 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5540 5541 Function &F; 5542 MemorySanitizer &MS; 5543 MemorySanitizerVisitor &MSV; 5544 bool IsSoftFloatABI; 5545 AllocaInst *VAArgTLSCopy = nullptr; 5546 AllocaInst *VAArgTLSOriginCopy = nullptr; 5547 Value *VAArgOverflowSize = nullptr; 5548 5549 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5550 5551 enum class ArgKind { 5552 GeneralPurpose, 5553 FloatingPoint, 5554 Vector, 5555 Memory, 5556 Indirect, 5557 }; 5558 5559 enum class ShadowExtension { None, Zero, Sign }; 5560 5561 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5562 MemorySanitizerVisitor &MSV) 5563 : F(F), MS(MS), MSV(MSV), 5564 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {} 5565 5566 ArgKind classifyArgument(Type *T) { 5567 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5568 // only a few possibilities of what it can be. In particular, enums, single 5569 // element structs and large types have already been taken care of. 5570 5571 // Some i128 and fp128 arguments are converted to pointers only in the 5572 // back end. 5573 if (T->isIntegerTy(128) || T->isFP128Ty()) 5574 return ArgKind::Indirect; 5575 if (T->isFloatingPointTy()) 5576 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5577 if (T->isIntegerTy() || T->isPointerTy()) 5578 return ArgKind::GeneralPurpose; 5579 if (T->isVectorTy()) 5580 return ArgKind::Vector; 5581 return ArgKind::Memory; 5582 } 5583 5584 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5585 // ABI says: "One of the simple integer types no more than 64 bits wide. 5586 // ... If such an argument is shorter than 64 bits, replace it by a full 5587 // 64-bit integer representing the same number, using sign or zero 5588 // extension". Shadow for an integer argument has the same type as the 5589 // argument itself, so it can be sign or zero extended as well. 5590 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5591 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5592 if (ZExt) { 5593 assert(!SExt); 5594 return ShadowExtension::Zero; 5595 } 5596 if (SExt) { 5597 assert(!ZExt); 5598 return ShadowExtension::Sign; 5599 } 5600 return ShadowExtension::None; 5601 } 5602 5603 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5604 unsigned GpOffset = SystemZGpOffset; 5605 unsigned FpOffset = SystemZFpOffset; 5606 unsigned VrIndex = 0; 5607 unsigned OverflowOffset = SystemZOverflowOffset; 5608 const DataLayout &DL = F.getParent()->getDataLayout(); 5609 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5610 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5611 // SystemZABIInfo does not produce ByVal parameters. 5612 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5613 Type *T = A->getType(); 5614 ArgKind AK = classifyArgument(T); 5615 if (AK == ArgKind::Indirect) { 5616 T = PointerType::get(T, 0); 5617 AK = ArgKind::GeneralPurpose; 5618 } 5619 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5620 AK = ArgKind::Memory; 5621 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5622 AK = ArgKind::Memory; 5623 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5624 AK = ArgKind::Memory; 5625 Value *ShadowBase = nullptr; 5626 Value *OriginBase = nullptr; 5627 ShadowExtension SE = ShadowExtension::None; 5628 switch (AK) { 5629 case ArgKind::GeneralPurpose: { 5630 // Always keep track of GpOffset, but store shadow only for varargs. 5631 uint64_t ArgSize = 8; 5632 if (GpOffset + ArgSize <= kParamTLSSize) { 5633 if (!IsFixed) { 5634 SE = getShadowExtension(CB, ArgNo); 5635 uint64_t GapSize = 0; 5636 if (SE == ShadowExtension::None) { 5637 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5638 assert(ArgAllocSize <= ArgSize); 5639 GapSize = ArgSize - ArgAllocSize; 5640 } 5641 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5642 if (MS.TrackOrigins) 5643 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5644 } 5645 GpOffset += ArgSize; 5646 } else { 5647 GpOffset = kParamTLSSize; 5648 } 5649 break; 5650 } 5651 case ArgKind::FloatingPoint: { 5652 // Always keep track of FpOffset, but store shadow only for varargs. 5653 uint64_t ArgSize = 8; 5654 if (FpOffset + ArgSize <= kParamTLSSize) { 5655 if (!IsFixed) { 5656 // PoP says: "A short floating-point datum requires only the 5657 // left-most 32 bit positions of a floating-point register". 5658 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5659 // don't extend shadow and don't mind the gap. 5660 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5661 if (MS.TrackOrigins) 5662 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5663 } 5664 FpOffset += ArgSize; 5665 } else { 5666 FpOffset = kParamTLSSize; 5667 } 5668 break; 5669 } 5670 case ArgKind::Vector: { 5671 // Keep track of VrIndex. No need to store shadow, since vector varargs 5672 // go through AK_Memory. 5673 assert(IsFixed); 5674 VrIndex++; 5675 break; 5676 } 5677 case ArgKind::Memory: { 5678 // Keep track of OverflowOffset and store shadow only for varargs. 5679 // Ignore fixed args, since we need to copy only the vararg portion of 5680 // the overflow area shadow. 5681 if (!IsFixed) { 5682 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5683 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5684 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5685 SE = getShadowExtension(CB, ArgNo); 5686 uint64_t GapSize = 5687 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5688 ShadowBase = 5689 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5690 if (MS.TrackOrigins) 5691 OriginBase = 5692 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5693 OverflowOffset += ArgSize; 5694 } else { 5695 OverflowOffset = kParamTLSSize; 5696 } 5697 } 5698 break; 5699 } 5700 case ArgKind::Indirect: 5701 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5702 } 5703 if (ShadowBase == nullptr) 5704 continue; 5705 Value *Shadow = MSV.getShadow(A); 5706 if (SE != ShadowExtension::None) 5707 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5708 /*Signed*/ SE == ShadowExtension::Sign); 5709 ShadowBase = IRB.CreateIntToPtr( 5710 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5711 IRB.CreateStore(Shadow, ShadowBase); 5712 if (MS.TrackOrigins) { 5713 Value *Origin = MSV.getOrigin(A); 5714 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5715 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5716 kMinOriginAlignment); 5717 } 5718 } 5719 Constant *OverflowSize = ConstantInt::get( 5720 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5721 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5722 } 5723 5724 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5725 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5726 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5727 } 5728 5729 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5730 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5731 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5732 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5733 "_msarg_va_o"); 5734 } 5735 5736 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5737 IRBuilder<> IRB(&I); 5738 Value *VAListTag = I.getArgOperand(0); 5739 Value *ShadowPtr, *OriginPtr; 5740 const Align Alignment = Align(8); 5741 std::tie(ShadowPtr, OriginPtr) = 5742 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5743 /*isStore*/ true); 5744 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5745 SystemZVAListTagSize, Alignment, false); 5746 } 5747 5748 void visitVAStartInst(VAStartInst &I) override { 5749 VAStartInstrumentationList.push_back(&I); 5750 unpoisonVAListTagForInst(I); 5751 } 5752 5753 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5754 5755 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5756 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5757 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5758 IRB.CreateAdd( 5759 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5760 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5761 PointerType::get(RegSaveAreaPtrTy, 0)); 5762 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5763 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5764 const Align Alignment = Align(8); 5765 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5766 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5767 /*isStore*/ true); 5768 // TODO(iii): copy only fragments filled by visitCallBase() 5769 // TODO(iii): support packed-stack && !use-soft-float 5770 // For use-soft-float functions, it is enough to copy just the GPRs. 5771 unsigned RegSaveAreaSize = 5772 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; 5773 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5774 RegSaveAreaSize); 5775 if (MS.TrackOrigins) 5776 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5777 Alignment, RegSaveAreaSize); 5778 } 5779 5780 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5781 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5782 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5783 IRB.CreateAdd( 5784 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5785 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5786 PointerType::get(OverflowArgAreaPtrTy, 0)); 5787 Value *OverflowArgAreaPtr = 5788 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5789 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5790 const Align Alignment = Align(8); 5791 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5792 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5793 Alignment, /*isStore*/ true); 5794 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5795 SystemZOverflowOffset); 5796 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5797 VAArgOverflowSize); 5798 if (MS.TrackOrigins) { 5799 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5800 SystemZOverflowOffset); 5801 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5802 VAArgOverflowSize); 5803 } 5804 } 5805 5806 void finalizeInstrumentation() override { 5807 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5808 "finalizeInstrumentation called twice"); 5809 if (!VAStartInstrumentationList.empty()) { 5810 // If there is a va_start in this function, make a backup copy of 5811 // va_arg_tls somewhere in the function entry block. 5812 IRBuilder<> IRB(MSV.FnPrologueEnd); 5813 VAArgOverflowSize = 5814 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5815 Value *CopySize = 5816 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5817 VAArgOverflowSize); 5818 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5819 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5820 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5821 CopySize, kShadowTLSAlignment, false); 5822 5823 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5824 Intrinsic::umin, CopySize, 5825 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5826 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5827 kShadowTLSAlignment, SrcSize); 5828 if (MS.TrackOrigins) { 5829 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5830 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 5831 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 5832 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 5833 } 5834 } 5835 5836 // Instrument va_start. 5837 // Copy va_list shadow from the backup copy of the TLS contents. 5838 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5839 VaStartNo < VaStartNum; VaStartNo++) { 5840 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5841 NextNodeIRBuilder IRB(OrigInst); 5842 Value *VAListTag = OrigInst->getArgOperand(0); 5843 copyRegSaveArea(IRB, VAListTag); 5844 copyOverflowArea(IRB, VAListTag); 5845 } 5846 } 5847 }; 5848 5849 /// A no-op implementation of VarArgHelper. 5850 struct VarArgNoOpHelper : public VarArgHelper { 5851 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5852 MemorySanitizerVisitor &MSV) {} 5853 5854 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5855 5856 void visitVAStartInst(VAStartInst &I) override {} 5857 5858 void visitVACopyInst(VACopyInst &I) override {} 5859 5860 void finalizeInstrumentation() override {} 5861 }; 5862 5863 } // end anonymous namespace 5864 5865 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5866 MemorySanitizerVisitor &Visitor) { 5867 // VarArg handling is only implemented on AMD64. False positives are possible 5868 // on other platforms. 5869 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5870 if (TargetTriple.getArch() == Triple::x86_64) 5871 return new VarArgAMD64Helper(Func, Msan, Visitor); 5872 else if (TargetTriple.isMIPS64()) 5873 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5874 else if (TargetTriple.getArch() == Triple::aarch64) 5875 return new VarArgAArch64Helper(Func, Msan, Visitor); 5876 else if (TargetTriple.getArch() == Triple::ppc64 || 5877 TargetTriple.getArch() == Triple::ppc64le) 5878 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5879 else if (TargetTriple.getArch() == Triple::systemz) 5880 return new VarArgSystemZHelper(Func, Msan, Visitor); 5881 else 5882 return new VarArgNoOpHelper(Func, Msan, Visitor); 5883 } 5884 5885 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5886 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5887 return false; 5888 5889 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5890 return false; 5891 5892 MemorySanitizerVisitor Visitor(F, *this, TLI); 5893 5894 // Clear out memory attributes. 5895 AttributeMask B; 5896 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 5897 F.removeFnAttrs(B); 5898 5899 return Visitor.runOnFunction(); 5900 } 5901