1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/MDBuilder.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/IR/Type.h" 180 #include "llvm/IR/Value.h" 181 #include "llvm/IR/ValueMap.h" 182 #include "llvm/Support/Alignment.h" 183 #include "llvm/Support/AtomicOrdering.h" 184 #include "llvm/Support/Casting.h" 185 #include "llvm/Support/CommandLine.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/ErrorHandling.h" 188 #include "llvm/Support/MathExtras.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 191 #include "llvm/Transforms/Utils/Local.h" 192 #include "llvm/Transforms/Utils/ModuleUtils.h" 193 #include <algorithm> 194 #include <cassert> 195 #include <cstddef> 196 #include <cstdint> 197 #include <memory> 198 #include <string> 199 #include <tuple> 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "msan" 204 205 static const unsigned kOriginSize = 4; 206 static const Align kMinOriginAlignment = Align(4); 207 static const Align kShadowTLSAlignment = Align(8); 208 209 // These constants must be kept in sync with the ones in msan.h. 210 static const unsigned kParamTLSSize = 800; 211 static const unsigned kRetvalTLSSize = 800; 212 213 // Accesses sizes are powers of two: 1, 2, 4, 8. 214 static const size_t kNumberOfAccessSizes = 4; 215 216 /// Track origins of uninitialized values. 217 /// 218 /// Adds a section to MemorySanitizer report that points to the allocation 219 /// (stack or heap) the uninitialized bits came from originally. 220 static cl::opt<int> ClTrackOrigins("msan-track-origins", 221 cl::desc("Track origins (allocation sites) of poisoned memory"), 222 cl::Hidden, cl::init(0)); 223 224 static cl::opt<bool> ClKeepGoing("msan-keep-going", 225 cl::desc("keep going after reporting a UMR"), 226 cl::Hidden, cl::init(false)); 227 228 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 229 cl::desc("poison uninitialized stack variables"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 233 cl::desc("poison uninitialized stack variables with a call"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 237 cl::desc("poison uninitialized stack variables with the given pattern"), 238 cl::Hidden, cl::init(0xff)); 239 240 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 241 cl::desc("poison undef temps"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 245 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 249 cl::desc("exact handling of relational integer ICmp"), 250 cl::Hidden, cl::init(false)); 251 252 static cl::opt<bool> ClHandleLifetimeIntrinsics( 253 "msan-handle-lifetime-intrinsics", 254 cl::desc( 255 "when possible, poison scoped variables at the beginning of the scope " 256 "(slower, but more precise)"), 257 cl::Hidden, cl::init(true)); 258 259 // When compiling the Linux kernel, we sometimes see false positives related to 260 // MSan being unable to understand that inline assembly calls may initialize 261 // local variables. 262 // This flag makes the compiler conservatively unpoison every memory location 263 // passed into an assembly call. Note that this may cause false positives. 264 // Because it's impossible to figure out the array sizes, we can only unpoison 265 // the first sizeof(type) bytes for each type* pointer. 266 // The instrumentation is only enabled in KMSAN builds, and only if 267 // -msan-handle-asm-conservative is on. This is done because we may want to 268 // quickly disable assembly instrumentation when it breaks. 269 static cl::opt<bool> ClHandleAsmConservative( 270 "msan-handle-asm-conservative", 271 cl::desc("conservative handling of inline assembly"), cl::Hidden, 272 cl::init(true)); 273 274 // This flag controls whether we check the shadow of the address 275 // operand of load or store. Such bugs are very rare, since load from 276 // a garbage address typically results in SEGV, but still happen 277 // (e.g. only lower bits of address are garbage, or the access happens 278 // early at program startup where malloc-ed memory is more likely to 279 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 280 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 281 cl::desc("report accesses through a pointer which has poisoned shadow"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClEagerChecks( 285 "msan-eager-checks", 286 cl::desc("check arguments and return values at function call boundaries"), 287 cl::Hidden, cl::init(false)); 288 289 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 290 cl::desc("print out instructions with default strict semantics"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<int> ClInstrumentationWithCallThreshold( 294 "msan-instrumentation-with-call-threshold", 295 cl::desc( 296 "If the function being instrumented requires more than " 297 "this number of checks and origin stores, use callbacks instead of " 298 "inline checks (-1 means never use callbacks)."), 299 cl::Hidden, cl::init(3500)); 300 301 static cl::opt<bool> 302 ClEnableKmsan("msan-kernel", 303 cl::desc("Enable KernelMemorySanitizer instrumentation"), 304 cl::Hidden, cl::init(false)); 305 306 static cl::opt<bool> 307 ClDisableChecks("msan-disable-checks", 308 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 309 cl::init(false)); 310 311 // This is an experiment to enable handling of cases where shadow is a non-zero 312 // compile-time constant. For some unexplainable reason they were silently 313 // ignored in the instrumentation. 314 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 315 cl::desc("Insert checks for constant shadow values"), 316 cl::Hidden, cl::init(false)); 317 318 // This is off by default because of a bug in gold: 319 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 320 static cl::opt<bool> ClWithComdat("msan-with-comdat", 321 cl::desc("Place MSan constructors in comdat sections"), 322 cl::Hidden, cl::init(false)); 323 324 // These options allow to specify custom memory map parameters 325 // See MemoryMapParams for details. 326 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 327 cl::desc("Define custom MSan AndMask"), 328 cl::Hidden, cl::init(0)); 329 330 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 331 cl::desc("Define custom MSan XorMask"), 332 cl::Hidden, cl::init(0)); 333 334 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 335 cl::desc("Define custom MSan ShadowBase"), 336 cl::Hidden, cl::init(0)); 337 338 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 339 cl::desc("Define custom MSan OriginBase"), 340 cl::Hidden, cl::init(0)); 341 342 const char kMsanModuleCtorName[] = "msan.module_ctor"; 343 const char kMsanInitName[] = "__msan_init"; 344 345 namespace { 346 347 // Memory map parameters used in application-to-shadow address calculation. 348 // Offset = (Addr & ~AndMask) ^ XorMask 349 // Shadow = ShadowBase + Offset 350 // Origin = OriginBase + Offset 351 struct MemoryMapParams { 352 uint64_t AndMask; 353 uint64_t XorMask; 354 uint64_t ShadowBase; 355 uint64_t OriginBase; 356 }; 357 358 struct PlatformMemoryMapParams { 359 const MemoryMapParams *bits32; 360 const MemoryMapParams *bits64; 361 }; 362 363 } // end anonymous namespace 364 365 // i386 Linux 366 static const MemoryMapParams Linux_I386_MemoryMapParams = { 367 0x000080000000, // AndMask 368 0, // XorMask (not used) 369 0, // ShadowBase (not used) 370 0x000040000000, // OriginBase 371 }; 372 373 // x86_64 Linux 374 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 375 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 376 0x400000000000, // AndMask 377 0, // XorMask (not used) 378 0, // ShadowBase (not used) 379 0x200000000000, // OriginBase 380 #else 381 0, // AndMask (not used) 382 0x500000000000, // XorMask 383 0, // ShadowBase (not used) 384 0x100000000000, // OriginBase 385 #endif 386 }; 387 388 // mips64 Linux 389 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 390 0, // AndMask (not used) 391 0x008000000000, // XorMask 392 0, // ShadowBase (not used) 393 0x002000000000, // OriginBase 394 }; 395 396 // ppc64 Linux 397 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 398 0xE00000000000, // AndMask 399 0x100000000000, // XorMask 400 0x080000000000, // ShadowBase 401 0x1C0000000000, // OriginBase 402 }; 403 404 // s390x Linux 405 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 406 0xC00000000000, // AndMask 407 0, // XorMask (not used) 408 0x080000000000, // ShadowBase 409 0x1C0000000000, // OriginBase 410 }; 411 412 // aarch64 Linux 413 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 414 0, // AndMask (not used) 415 0x06000000000, // XorMask 416 0, // ShadowBase (not used) 417 0x01000000000, // OriginBase 418 }; 419 420 // aarch64 FreeBSD 421 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 422 0x1800000000000, // AndMask 423 0x0400000000000, // XorMask 424 0x0200000000000, // ShadowBase 425 0x0700000000000, // OriginBase 426 }; 427 428 // i386 FreeBSD 429 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 430 0x000180000000, // AndMask 431 0x000040000000, // XorMask 432 0x000020000000, // ShadowBase 433 0x000700000000, // OriginBase 434 }; 435 436 // x86_64 FreeBSD 437 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 438 0xc00000000000, // AndMask 439 0x200000000000, // XorMask 440 0x100000000000, // ShadowBase 441 0x380000000000, // OriginBase 442 }; 443 444 // x86_64 NetBSD 445 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 446 0, // AndMask 447 0x500000000000, // XorMask 448 0, // ShadowBase 449 0x100000000000, // OriginBase 450 }; 451 452 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 453 &Linux_I386_MemoryMapParams, 454 &Linux_X86_64_MemoryMapParams, 455 }; 456 457 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 458 nullptr, 459 &Linux_MIPS64_MemoryMapParams, 460 }; 461 462 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 463 nullptr, 464 &Linux_PowerPC64_MemoryMapParams, 465 }; 466 467 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 468 nullptr, 469 &Linux_S390X_MemoryMapParams, 470 }; 471 472 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 473 nullptr, 474 &Linux_AArch64_MemoryMapParams, 475 }; 476 477 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 478 nullptr, 479 &FreeBSD_AArch64_MemoryMapParams, 480 }; 481 482 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 483 &FreeBSD_I386_MemoryMapParams, 484 &FreeBSD_X86_64_MemoryMapParams, 485 }; 486 487 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 488 nullptr, 489 &NetBSD_X86_64_MemoryMapParams, 490 }; 491 492 namespace { 493 494 /// Instrument functions of a module to detect uninitialized reads. 495 /// 496 /// Instantiating MemorySanitizer inserts the msan runtime library API function 497 /// declarations into the module if they don't exist already. Instantiating 498 /// ensures the __msan_init function is in the list of global constructors for 499 /// the module. 500 class MemorySanitizer { 501 public: 502 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 503 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 504 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 505 initializeModule(M); 506 } 507 508 // MSan cannot be moved or copied because of MapParams. 509 MemorySanitizer(MemorySanitizer &&) = delete; 510 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 511 MemorySanitizer(const MemorySanitizer &) = delete; 512 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 513 514 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 515 516 private: 517 friend struct MemorySanitizerVisitor; 518 friend struct VarArgAMD64Helper; 519 friend struct VarArgMIPS64Helper; 520 friend struct VarArgAArch64Helper; 521 friend struct VarArgPowerPC64Helper; 522 friend struct VarArgSystemZHelper; 523 524 void initializeModule(Module &M); 525 void initializeCallbacks(Module &M); 526 void createKernelApi(Module &M); 527 void createUserspaceApi(Module &M); 528 529 /// True if we're compiling the Linux kernel. 530 bool CompileKernel; 531 /// Track origins (allocation points) of uninitialized values. 532 int TrackOrigins; 533 bool Recover; 534 bool EagerChecks; 535 536 LLVMContext *C; 537 Type *IntptrTy; 538 Type *OriginTy; 539 540 // XxxTLS variables represent the per-thread state in MSan and per-task state 541 // in KMSAN. 542 // For the userspace these point to thread-local globals. In the kernel land 543 // they point to the members of a per-task struct obtained via a call to 544 // __msan_get_context_state(). 545 546 /// Thread-local shadow storage for function parameters. 547 Value *ParamTLS; 548 549 /// Thread-local origin storage for function parameters. 550 Value *ParamOriginTLS; 551 552 /// Thread-local shadow storage for function return value. 553 Value *RetvalTLS; 554 555 /// Thread-local origin storage for function return value. 556 Value *RetvalOriginTLS; 557 558 /// Thread-local shadow storage for in-register va_arg function 559 /// parameters (x86_64-specific). 560 Value *VAArgTLS; 561 562 /// Thread-local shadow storage for in-register va_arg function 563 /// parameters (x86_64-specific). 564 Value *VAArgOriginTLS; 565 566 /// Thread-local shadow storage for va_arg overflow area 567 /// (x86_64-specific). 568 Value *VAArgOverflowSizeTLS; 569 570 /// Are the instrumentation callbacks set up? 571 bool CallbacksInitialized = false; 572 573 /// The run-time callback to print a warning. 574 FunctionCallee WarningFn; 575 576 // These arrays are indexed by log2(AccessSize). 577 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 578 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 579 580 /// Run-time helper that generates a new origin value for a stack 581 /// allocation. 582 FunctionCallee MsanSetAllocaOrigin4Fn; 583 584 /// Run-time helper that poisons stack on function entry. 585 FunctionCallee MsanPoisonStackFn; 586 587 /// Run-time helper that records a store (or any event) of an 588 /// uninitialized value and returns an updated origin id encoding this info. 589 FunctionCallee MsanChainOriginFn; 590 591 /// Run-time helper that paints an origin over a region. 592 FunctionCallee MsanSetOriginFn; 593 594 /// MSan runtime replacements for memmove, memcpy and memset. 595 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 596 597 /// KMSAN callback for task-local function argument shadow. 598 StructType *MsanContextStateTy; 599 FunctionCallee MsanGetContextStateFn; 600 601 /// Functions for poisoning/unpoisoning local variables 602 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 603 604 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 605 /// pointers. 606 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 607 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 608 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 609 FunctionCallee MsanInstrumentAsmStoreFn; 610 611 /// Helper to choose between different MsanMetadataPtrXxx(). 612 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 613 614 /// Memory map parameters used in application-to-shadow calculation. 615 const MemoryMapParams *MapParams; 616 617 /// Custom memory map parameters used when -msan-shadow-base or 618 // -msan-origin-base is provided. 619 MemoryMapParams CustomMapParams; 620 621 MDNode *ColdCallWeights; 622 623 /// Branch weights for origin store. 624 MDNode *OriginStoreWeights; 625 }; 626 627 void insertModuleCtor(Module &M) { 628 getOrCreateSanitizerCtorAndInitFunctions( 629 M, kMsanModuleCtorName, kMsanInitName, 630 /*InitArgTypes=*/{}, 631 /*InitArgs=*/{}, 632 // This callback is invoked when the functions are created the first 633 // time. Hook them into the global ctors list in that case: 634 [&](Function *Ctor, FunctionCallee) { 635 if (!ClWithComdat) { 636 appendToGlobalCtors(M, Ctor, 0); 637 return; 638 } 639 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 640 Ctor->setComdat(MsanCtorComdat); 641 appendToGlobalCtors(M, Ctor, 0, Ctor); 642 }); 643 } 644 645 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 646 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 647 } 648 649 } // end anonymous namespace 650 651 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 652 bool EagerChecks) 653 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 654 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 655 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 656 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 657 658 PreservedAnalyses MemorySanitizerPass::run(Function &F, 659 FunctionAnalysisManager &FAM) { 660 MemorySanitizer Msan(*F.getParent(), Options); 661 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 662 return PreservedAnalyses::none(); 663 return PreservedAnalyses::all(); 664 } 665 666 PreservedAnalyses 667 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 668 if (Options.Kernel) 669 return PreservedAnalyses::all(); 670 insertModuleCtor(M); 671 return PreservedAnalyses::none(); 672 } 673 674 void MemorySanitizerPass::printPipeline( 675 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 676 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 677 OS, MapClassName2PassName); 678 OS << "<"; 679 if (Options.Recover) 680 OS << "recover;"; 681 if (Options.Kernel) 682 OS << "kernel;"; 683 if (Options.EagerChecks) 684 OS << "eager-checks;"; 685 OS << "track-origins=" << Options.TrackOrigins; 686 OS << ">"; 687 } 688 689 /// Create a non-const global initialized with the given string. 690 /// 691 /// Creates a writable global for Str so that we can pass it to the 692 /// run-time lib. Runtime uses first 4 bytes of the string to store the 693 /// frame ID, so the string needs to be mutable. 694 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 695 StringRef Str) { 696 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 697 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 698 GlobalValue::PrivateLinkage, StrConst, ""); 699 } 700 701 /// Create KMSAN API callbacks. 702 void MemorySanitizer::createKernelApi(Module &M) { 703 IRBuilder<> IRB(*C); 704 705 // These will be initialized in insertKmsanPrologue(). 706 RetvalTLS = nullptr; 707 RetvalOriginTLS = nullptr; 708 ParamTLS = nullptr; 709 ParamOriginTLS = nullptr; 710 VAArgTLS = nullptr; 711 VAArgOriginTLS = nullptr; 712 VAArgOverflowSizeTLS = nullptr; 713 714 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 715 IRB.getInt32Ty()); 716 // Requests the per-task context state (kmsan_context_state*) from the 717 // runtime library. 718 MsanContextStateTy = StructType::get( 719 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 720 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 721 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 722 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 723 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 724 OriginTy); 725 MsanGetContextStateFn = M.getOrInsertFunction( 726 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 727 728 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 729 PointerType::get(IRB.getInt32Ty(), 0)); 730 731 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 732 std::string name_load = 733 "__msan_metadata_ptr_for_load_" + std::to_string(size); 734 std::string name_store = 735 "__msan_metadata_ptr_for_store_" + std::to_string(size); 736 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 737 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 738 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 739 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 740 } 741 742 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 743 "__msan_metadata_ptr_for_load_n", RetTy, 744 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 745 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 746 "__msan_metadata_ptr_for_store_n", RetTy, 747 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 748 749 // Functions for poisoning and unpoisoning memory. 750 MsanPoisonAllocaFn = 751 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 752 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 753 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 754 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 755 } 756 757 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 758 return M.getOrInsertGlobal(Name, Ty, [&] { 759 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 760 nullptr, Name, nullptr, 761 GlobalVariable::InitialExecTLSModel); 762 }); 763 } 764 765 /// Insert declarations for userspace-specific functions and globals. 766 void MemorySanitizer::createUserspaceApi(Module &M) { 767 IRBuilder<> IRB(*C); 768 769 // Create the callback. 770 // FIXME: this function should have "Cold" calling conv, 771 // which is not yet implemented. 772 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 773 : "__msan_warning_with_origin_noreturn"; 774 WarningFn = 775 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 776 777 // Create the global TLS variables. 778 RetvalTLS = 779 getOrInsertGlobal(M, "__msan_retval_tls", 780 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 781 782 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 783 784 ParamTLS = 785 getOrInsertGlobal(M, "__msan_param_tls", 786 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 787 788 ParamOriginTLS = 789 getOrInsertGlobal(M, "__msan_param_origin_tls", 790 ArrayType::get(OriginTy, kParamTLSSize / 4)); 791 792 VAArgTLS = 793 getOrInsertGlobal(M, "__msan_va_arg_tls", 794 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 795 796 VAArgOriginTLS = 797 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 798 ArrayType::get(OriginTy, kParamTLSSize / 4)); 799 800 VAArgOverflowSizeTLS = 801 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 802 803 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 804 AccessSizeIndex++) { 805 unsigned AccessSize = 1 << AccessSizeIndex; 806 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 807 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 808 MaybeWarningFnAttrs.push_back(std::make_pair( 809 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 810 MaybeWarningFnAttrs.push_back(std::make_pair( 811 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 812 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 813 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 814 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 815 816 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 817 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 818 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 819 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 820 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 821 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 822 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 823 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 824 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 825 IRB.getInt32Ty()); 826 } 827 828 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 829 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 830 IRB.getInt8PtrTy(), IntptrTy); 831 MsanPoisonStackFn = 832 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 833 IRB.getInt8PtrTy(), IntptrTy); 834 } 835 836 /// Insert extern declaration of runtime-provided functions and globals. 837 void MemorySanitizer::initializeCallbacks(Module &M) { 838 // Only do this once. 839 if (CallbacksInitialized) 840 return; 841 842 IRBuilder<> IRB(*C); 843 // Initialize callbacks that are common for kernel and userspace 844 // instrumentation. 845 MsanChainOriginFn = M.getOrInsertFunction( 846 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 847 MsanSetOriginFn = 848 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 849 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 850 MemmoveFn = M.getOrInsertFunction( 851 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 852 IRB.getInt8PtrTy(), IntptrTy); 853 MemcpyFn = M.getOrInsertFunction( 854 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 855 IntptrTy); 856 MemsetFn = M.getOrInsertFunction( 857 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 858 IntptrTy); 859 860 MsanInstrumentAsmStoreFn = 861 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 862 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 863 864 if (CompileKernel) { 865 createKernelApi(M); 866 } else { 867 createUserspaceApi(M); 868 } 869 CallbacksInitialized = true; 870 } 871 872 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 873 int size) { 874 FunctionCallee *Fns = 875 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 876 switch (size) { 877 case 1: 878 return Fns[0]; 879 case 2: 880 return Fns[1]; 881 case 4: 882 return Fns[2]; 883 case 8: 884 return Fns[3]; 885 default: 886 return nullptr; 887 } 888 } 889 890 /// Module-level initialization. 891 /// 892 /// inserts a call to __msan_init to the module's constructor list. 893 void MemorySanitizer::initializeModule(Module &M) { 894 auto &DL = M.getDataLayout(); 895 896 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 897 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 898 // Check the overrides first 899 if (ShadowPassed || OriginPassed) { 900 CustomMapParams.AndMask = ClAndMask; 901 CustomMapParams.XorMask = ClXorMask; 902 CustomMapParams.ShadowBase = ClShadowBase; 903 CustomMapParams.OriginBase = ClOriginBase; 904 MapParams = &CustomMapParams; 905 } else { 906 Triple TargetTriple(M.getTargetTriple()); 907 switch (TargetTriple.getOS()) { 908 case Triple::FreeBSD: 909 switch (TargetTriple.getArch()) { 910 case Triple::aarch64: 911 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 912 break; 913 case Triple::x86_64: 914 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 915 break; 916 case Triple::x86: 917 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 918 break; 919 default: 920 report_fatal_error("unsupported architecture"); 921 } 922 break; 923 case Triple::NetBSD: 924 switch (TargetTriple.getArch()) { 925 case Triple::x86_64: 926 MapParams = NetBSD_X86_MemoryMapParams.bits64; 927 break; 928 default: 929 report_fatal_error("unsupported architecture"); 930 } 931 break; 932 case Triple::Linux: 933 switch (TargetTriple.getArch()) { 934 case Triple::x86_64: 935 MapParams = Linux_X86_MemoryMapParams.bits64; 936 break; 937 case Triple::x86: 938 MapParams = Linux_X86_MemoryMapParams.bits32; 939 break; 940 case Triple::mips64: 941 case Triple::mips64el: 942 MapParams = Linux_MIPS_MemoryMapParams.bits64; 943 break; 944 case Triple::ppc64: 945 case Triple::ppc64le: 946 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 947 break; 948 case Triple::systemz: 949 MapParams = Linux_S390_MemoryMapParams.bits64; 950 break; 951 case Triple::aarch64: 952 case Triple::aarch64_be: 953 MapParams = Linux_ARM_MemoryMapParams.bits64; 954 break; 955 default: 956 report_fatal_error("unsupported architecture"); 957 } 958 break; 959 default: 960 report_fatal_error("unsupported operating system"); 961 } 962 } 963 964 C = &(M.getContext()); 965 IRBuilder<> IRB(*C); 966 IntptrTy = IRB.getIntPtrTy(DL); 967 OriginTy = IRB.getInt32Ty(); 968 969 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 970 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 971 972 if (!CompileKernel) { 973 if (TrackOrigins) 974 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 975 return new GlobalVariable( 976 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 977 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 978 }); 979 980 if (Recover) 981 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 982 return new GlobalVariable(M, IRB.getInt32Ty(), true, 983 GlobalValue::WeakODRLinkage, 984 IRB.getInt32(Recover), "__msan_keep_going"); 985 }); 986 } 987 } 988 989 namespace { 990 991 /// A helper class that handles instrumentation of VarArg 992 /// functions on a particular platform. 993 /// 994 /// Implementations are expected to insert the instrumentation 995 /// necessary to propagate argument shadow through VarArg function 996 /// calls. Visit* methods are called during an InstVisitor pass over 997 /// the function, and should avoid creating new basic blocks. A new 998 /// instance of this class is created for each instrumented function. 999 struct VarArgHelper { 1000 virtual ~VarArgHelper() = default; 1001 1002 /// Visit a CallBase. 1003 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1004 1005 /// Visit a va_start call. 1006 virtual void visitVAStartInst(VAStartInst &I) = 0; 1007 1008 /// Visit a va_copy call. 1009 virtual void visitVACopyInst(VACopyInst &I) = 0; 1010 1011 /// Finalize function instrumentation. 1012 /// 1013 /// This method is called after visiting all interesting (see above) 1014 /// instructions in a function. 1015 virtual void finalizeInstrumentation() = 0; 1016 }; 1017 1018 struct MemorySanitizerVisitor; 1019 1020 } // end anonymous namespace 1021 1022 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1023 MemorySanitizerVisitor &Visitor); 1024 1025 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1026 if (TypeSize <= 8) return 0; 1027 return Log2_32_Ceil((TypeSize + 7) / 8); 1028 } 1029 1030 namespace { 1031 1032 /// This class does all the work for a given function. Store and Load 1033 /// instructions store and load corresponding shadow and origin 1034 /// values. Most instructions propagate shadow from arguments to their 1035 /// return values. Certain instructions (most importantly, BranchInst) 1036 /// test their argument shadow and print reports (with a runtime call) if it's 1037 /// non-zero. 1038 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1039 Function &F; 1040 MemorySanitizer &MS; 1041 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1042 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1043 std::unique_ptr<VarArgHelper> VAHelper; 1044 const TargetLibraryInfo *TLI; 1045 Instruction *FnPrologueEnd; 1046 1047 // The following flags disable parts of MSan instrumentation based on 1048 // exclusion list contents and command-line options. 1049 bool InsertChecks; 1050 bool PropagateShadow; 1051 bool PoisonStack; 1052 bool PoisonUndef; 1053 1054 struct ShadowOriginAndInsertPoint { 1055 Value *Shadow; 1056 Value *Origin; 1057 Instruction *OrigIns; 1058 1059 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1060 : Shadow(S), Origin(O), OrigIns(I) {} 1061 }; 1062 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1063 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1064 SmallSet<AllocaInst *, 16> AllocaSet; 1065 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1066 SmallVector<StoreInst *, 16> StoreList; 1067 1068 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1069 const TargetLibraryInfo &TLI) 1070 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1071 bool SanitizeFunction = 1072 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1073 InsertChecks = SanitizeFunction; 1074 PropagateShadow = SanitizeFunction; 1075 PoisonStack = SanitizeFunction && ClPoisonStack; 1076 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1077 1078 // In the presence of unreachable blocks, we may see Phi nodes with 1079 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1080 // blocks, such nodes will not have any shadow value associated with them. 1081 // It's easier to remove unreachable blocks than deal with missing shadow. 1082 removeUnreachableBlocks(F); 1083 1084 MS.initializeCallbacks(*F.getParent()); 1085 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1086 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1087 1088 if (MS.CompileKernel) { 1089 IRBuilder<> IRB(FnPrologueEnd); 1090 insertKmsanPrologue(IRB); 1091 } 1092 1093 LLVM_DEBUG(if (!InsertChecks) dbgs() 1094 << "MemorySanitizer is not inserting checks into '" 1095 << F.getName() << "'\n"); 1096 } 1097 1098 bool isInPrologue(Instruction &I) { 1099 return I.getParent() == FnPrologueEnd->getParent() && 1100 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1101 } 1102 1103 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1104 if (MS.TrackOrigins <= 1) return V; 1105 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1106 } 1107 1108 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1109 const DataLayout &DL = F.getParent()->getDataLayout(); 1110 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1111 if (IntptrSize == kOriginSize) return Origin; 1112 assert(IntptrSize == kOriginSize * 2); 1113 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1114 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1115 } 1116 1117 /// Fill memory range with the given origin value. 1118 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1119 unsigned Size, Align Alignment) { 1120 const DataLayout &DL = F.getParent()->getDataLayout(); 1121 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1122 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1123 assert(IntptrAlignment >= kMinOriginAlignment); 1124 assert(IntptrSize >= kOriginSize); 1125 1126 unsigned Ofs = 0; 1127 Align CurrentAlignment = Alignment; 1128 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1129 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1130 Value *IntptrOriginPtr = 1131 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1132 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1133 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1134 : IntptrOriginPtr; 1135 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1136 Ofs += IntptrSize / kOriginSize; 1137 CurrentAlignment = IntptrAlignment; 1138 } 1139 } 1140 1141 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1142 Value *GEP = 1143 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1144 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1145 CurrentAlignment = kMinOriginAlignment; 1146 } 1147 } 1148 1149 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1150 Value *OriginPtr, Align Alignment, bool AsCall) { 1151 const DataLayout &DL = F.getParent()->getDataLayout(); 1152 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1153 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1154 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1155 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1156 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1157 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1158 OriginAlignment); 1159 return; 1160 } 1161 1162 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1163 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1164 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1165 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1166 Value *ConvertedShadow2 = 1167 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1168 CallBase *CB = IRB.CreateCall( 1169 Fn, {ConvertedShadow2, 1170 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1171 CB->addParamAttr(0, Attribute::ZExt); 1172 CB->addParamAttr(2, Attribute::ZExt); 1173 } else { 1174 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1175 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1176 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1177 IRBuilder<> IRBNew(CheckTerm); 1178 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1179 OriginAlignment); 1180 } 1181 } 1182 1183 void materializeStores(bool InstrumentWithCalls) { 1184 for (StoreInst *SI : StoreList) { 1185 IRBuilder<> IRB(SI); 1186 Value *Val = SI->getValueOperand(); 1187 Value *Addr = SI->getPointerOperand(); 1188 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1189 Value *ShadowPtr, *OriginPtr; 1190 Type *ShadowTy = Shadow->getType(); 1191 const Align Alignment = SI->getAlign(); 1192 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1193 std::tie(ShadowPtr, OriginPtr) = 1194 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1195 1196 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1197 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1198 (void)NewSI; 1199 1200 if (SI->isAtomic()) 1201 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1202 1203 if (MS.TrackOrigins && !SI->isAtomic()) 1204 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1205 OriginAlignment, InstrumentWithCalls); 1206 } 1207 } 1208 1209 /// Helper function to insert a warning at IRB's current insert point. 1210 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1211 if (!Origin) 1212 Origin = (Value *)IRB.getInt32(0); 1213 assert(Origin->getType()->isIntegerTy()); 1214 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1215 // FIXME: Insert UnreachableInst if !MS.Recover? 1216 // This may invalidate some of the following checks and needs to be done 1217 // at the very end. 1218 } 1219 1220 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1221 bool AsCall) { 1222 IRBuilder<> IRB(OrigIns); 1223 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1224 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1225 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1226 1227 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1228 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1229 insertWarningFn(IRB, Origin); 1230 } 1231 return; 1232 } 1233 1234 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1235 1236 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1237 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1238 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1239 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1240 Value *ConvertedShadow2 = 1241 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1242 CallBase *CB = IRB.CreateCall( 1243 Fn, {ConvertedShadow2, 1244 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1245 CB->addParamAttr(0, Attribute::ZExt); 1246 CB->addParamAttr(1, Attribute::ZExt); 1247 } else { 1248 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1249 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1250 Cmp, OrigIns, 1251 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1252 1253 IRB.SetInsertPoint(CheckTerm); 1254 insertWarningFn(IRB, Origin); 1255 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1256 } 1257 } 1258 1259 void materializeChecks(bool InstrumentWithCalls) { 1260 for (const auto &ShadowData : InstrumentationList) { 1261 Instruction *OrigIns = ShadowData.OrigIns; 1262 Value *Shadow = ShadowData.Shadow; 1263 Value *Origin = ShadowData.Origin; 1264 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1265 } 1266 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1267 } 1268 1269 // Returns the last instruction in the new prologue 1270 void insertKmsanPrologue(IRBuilder<> &IRB) { 1271 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1272 Constant *Zero = IRB.getInt32(0); 1273 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1274 {Zero, IRB.getInt32(0)}, "param_shadow"); 1275 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1277 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1278 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1279 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1280 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1281 MS.VAArgOverflowSizeTLS = 1282 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1283 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1284 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1285 {Zero, IRB.getInt32(5)}, "param_origin"); 1286 MS.RetvalOriginTLS = 1287 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1288 {Zero, IRB.getInt32(6)}, "retval_origin"); 1289 } 1290 1291 /// Add MemorySanitizer instrumentation to a function. 1292 bool runOnFunction() { 1293 // Iterate all BBs in depth-first order and create shadow instructions 1294 // for all instructions (where applicable). 1295 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1296 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1297 visit(*BB); 1298 1299 // Finalize PHI nodes. 1300 for (PHINode *PN : ShadowPHINodes) { 1301 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1302 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1303 size_t NumValues = PN->getNumIncomingValues(); 1304 for (size_t v = 0; v < NumValues; v++) { 1305 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1306 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1307 } 1308 } 1309 1310 VAHelper->finalizeInstrumentation(); 1311 1312 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1313 // instrumenting only allocas. 1314 if (InstrumentLifetimeStart) { 1315 for (auto Item : LifetimeStartList) { 1316 instrumentAlloca(*Item.second, Item.first); 1317 AllocaSet.erase(Item.second); 1318 } 1319 } 1320 // Poison the allocas for which we didn't instrument the corresponding 1321 // lifetime intrinsics. 1322 for (AllocaInst *AI : AllocaSet) 1323 instrumentAlloca(*AI); 1324 1325 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1326 InstrumentationList.size() + StoreList.size() > 1327 (unsigned)ClInstrumentationWithCallThreshold; 1328 1329 // Insert shadow value checks. 1330 materializeChecks(InstrumentWithCalls); 1331 1332 // Delayed instrumentation of StoreInst. 1333 // This may not add new address checks. 1334 materializeStores(InstrumentWithCalls); 1335 1336 return true; 1337 } 1338 1339 /// Compute the shadow type that corresponds to a given Value. 1340 Type *getShadowTy(Value *V) { 1341 return getShadowTy(V->getType()); 1342 } 1343 1344 /// Compute the shadow type that corresponds to a given Type. 1345 Type *getShadowTy(Type *OrigTy) { 1346 if (!OrigTy->isSized()) { 1347 return nullptr; 1348 } 1349 // For integer type, shadow is the same as the original type. 1350 // This may return weird-sized types like i1. 1351 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1352 return IT; 1353 const DataLayout &DL = F.getParent()->getDataLayout(); 1354 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1355 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1356 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1357 cast<FixedVectorType>(VT)->getNumElements()); 1358 } 1359 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1360 return ArrayType::get(getShadowTy(AT->getElementType()), 1361 AT->getNumElements()); 1362 } 1363 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1364 SmallVector<Type*, 4> Elements; 1365 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1366 Elements.push_back(getShadowTy(ST->getElementType(i))); 1367 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1368 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1369 return Res; 1370 } 1371 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1372 return IntegerType::get(*MS.C, TypeSize); 1373 } 1374 1375 /// Flatten a vector type. 1376 Type *getShadowTyNoVec(Type *ty) { 1377 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1378 return IntegerType::get(*MS.C, 1379 vt->getPrimitiveSizeInBits().getFixedSize()); 1380 return ty; 1381 } 1382 1383 /// Extract combined shadow of struct elements as a bool 1384 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1385 IRBuilder<> &IRB) { 1386 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1387 Value *Aggregator = FalseVal; 1388 1389 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1390 // Combine by ORing together each element's bool shadow 1391 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1392 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1393 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1394 1395 if (Aggregator != FalseVal) 1396 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1397 else 1398 Aggregator = ShadowBool; 1399 } 1400 1401 return Aggregator; 1402 } 1403 1404 // Extract combined shadow of array elements 1405 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1406 IRBuilder<> &IRB) { 1407 if (!Array->getNumElements()) 1408 return IRB.getIntN(/* width */ 1, /* value */ 0); 1409 1410 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1411 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1412 1413 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1414 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1415 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1416 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1417 } 1418 return Aggregator; 1419 } 1420 1421 /// Convert a shadow value to it's flattened variant. The resulting 1422 /// shadow may not necessarily have the same bit width as the input 1423 /// value, but it will always be comparable to zero. 1424 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1425 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1426 return collapseStructShadow(Struct, V, IRB); 1427 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1428 return collapseArrayShadow(Array, V, IRB); 1429 Type *Ty = V->getType(); 1430 Type *NoVecTy = getShadowTyNoVec(Ty); 1431 if (Ty == NoVecTy) return V; 1432 return IRB.CreateBitCast(V, NoVecTy); 1433 } 1434 1435 // Convert a scalar value to an i1 by comparing with 0 1436 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1437 Type *VTy = V->getType(); 1438 assert(VTy->isIntegerTy()); 1439 if (VTy->getIntegerBitWidth() == 1) 1440 // Just converting a bool to a bool, so do nothing. 1441 return V; 1442 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1443 } 1444 1445 /// Compute the integer shadow offset that corresponds to a given 1446 /// application address. 1447 /// 1448 /// Offset = (Addr & ~AndMask) ^ XorMask 1449 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1450 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1451 1452 uint64_t AndMask = MS.MapParams->AndMask; 1453 if (AndMask) 1454 OffsetLong = 1455 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1456 1457 uint64_t XorMask = MS.MapParams->XorMask; 1458 if (XorMask) 1459 OffsetLong = 1460 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1461 return OffsetLong; 1462 } 1463 1464 /// Compute the shadow and origin addresses corresponding to a given 1465 /// application address. 1466 /// 1467 /// Shadow = ShadowBase + Offset 1468 /// Origin = (OriginBase + Offset) & ~3ULL 1469 std::pair<Value *, Value *> 1470 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1471 MaybeAlign Alignment) { 1472 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1473 Value *ShadowLong = ShadowOffset; 1474 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1475 if (ShadowBase != 0) { 1476 ShadowLong = 1477 IRB.CreateAdd(ShadowLong, 1478 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1479 } 1480 Value *ShadowPtr = 1481 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1482 Value *OriginPtr = nullptr; 1483 if (MS.TrackOrigins) { 1484 Value *OriginLong = ShadowOffset; 1485 uint64_t OriginBase = MS.MapParams->OriginBase; 1486 if (OriginBase != 0) 1487 OriginLong = IRB.CreateAdd(OriginLong, 1488 ConstantInt::get(MS.IntptrTy, OriginBase)); 1489 if (!Alignment || *Alignment < kMinOriginAlignment) { 1490 uint64_t Mask = kMinOriginAlignment.value() - 1; 1491 OriginLong = 1492 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1493 } 1494 OriginPtr = 1495 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1496 } 1497 return std::make_pair(ShadowPtr, OriginPtr); 1498 } 1499 1500 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1501 IRBuilder<> &IRB, 1502 Type *ShadowTy, 1503 bool isStore) { 1504 Value *ShadowOriginPtrs; 1505 const DataLayout &DL = F.getParent()->getDataLayout(); 1506 int Size = DL.getTypeStoreSize(ShadowTy); 1507 1508 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1509 Value *AddrCast = 1510 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1511 if (Getter) { 1512 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1513 } else { 1514 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1515 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1516 : MS.MsanMetadataPtrForLoadN, 1517 {AddrCast, SizeVal}); 1518 } 1519 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1520 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1521 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1522 1523 return std::make_pair(ShadowPtr, OriginPtr); 1524 } 1525 1526 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1527 Type *ShadowTy, 1528 MaybeAlign Alignment, 1529 bool isStore) { 1530 if (MS.CompileKernel) 1531 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1532 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1533 } 1534 1535 /// Compute the shadow address for a given function argument. 1536 /// 1537 /// Shadow = ParamTLS+ArgOffset. 1538 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1539 int ArgOffset) { 1540 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1541 if (ArgOffset) 1542 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1543 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1544 "_msarg"); 1545 } 1546 1547 /// Compute the origin address for a given function argument. 1548 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1549 int ArgOffset) { 1550 if (!MS.TrackOrigins) 1551 return nullptr; 1552 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1553 if (ArgOffset) 1554 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1555 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1556 "_msarg_o"); 1557 } 1558 1559 /// Compute the shadow address for a retval. 1560 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1561 return IRB.CreatePointerCast(MS.RetvalTLS, 1562 PointerType::get(getShadowTy(A), 0), 1563 "_msret"); 1564 } 1565 1566 /// Compute the origin address for a retval. 1567 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1568 // We keep a single origin for the entire retval. Might be too optimistic. 1569 return MS.RetvalOriginTLS; 1570 } 1571 1572 /// Set SV to be the shadow value for V. 1573 void setShadow(Value *V, Value *SV) { 1574 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1575 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1576 } 1577 1578 /// Set Origin to be the origin value for V. 1579 void setOrigin(Value *V, Value *Origin) { 1580 if (!MS.TrackOrigins) return; 1581 assert(!OriginMap.count(V) && "Values may only have one origin"); 1582 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1583 OriginMap[V] = Origin; 1584 } 1585 1586 Constant *getCleanShadow(Type *OrigTy) { 1587 Type *ShadowTy = getShadowTy(OrigTy); 1588 if (!ShadowTy) 1589 return nullptr; 1590 return Constant::getNullValue(ShadowTy); 1591 } 1592 1593 /// Create a clean shadow value for a given value. 1594 /// 1595 /// Clean shadow (all zeroes) means all bits of the value are defined 1596 /// (initialized). 1597 Constant *getCleanShadow(Value *V) { 1598 return getCleanShadow(V->getType()); 1599 } 1600 1601 /// Create a dirty shadow of a given shadow type. 1602 Constant *getPoisonedShadow(Type *ShadowTy) { 1603 assert(ShadowTy); 1604 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1605 return Constant::getAllOnesValue(ShadowTy); 1606 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1607 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1608 getPoisonedShadow(AT->getElementType())); 1609 return ConstantArray::get(AT, Vals); 1610 } 1611 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1612 SmallVector<Constant *, 4> Vals; 1613 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1614 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1615 return ConstantStruct::get(ST, Vals); 1616 } 1617 llvm_unreachable("Unexpected shadow type"); 1618 } 1619 1620 /// Create a dirty shadow for a given value. 1621 Constant *getPoisonedShadow(Value *V) { 1622 Type *ShadowTy = getShadowTy(V); 1623 if (!ShadowTy) 1624 return nullptr; 1625 return getPoisonedShadow(ShadowTy); 1626 } 1627 1628 /// Create a clean (zero) origin. 1629 Value *getCleanOrigin() { 1630 return Constant::getNullValue(MS.OriginTy); 1631 } 1632 1633 /// Get the shadow value for a given Value. 1634 /// 1635 /// This function either returns the value set earlier with setShadow, 1636 /// or extracts if from ParamTLS (for function arguments). 1637 Value *getShadow(Value *V) { 1638 if (Instruction *I = dyn_cast<Instruction>(V)) { 1639 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1640 return getCleanShadow(V); 1641 // For instructions the shadow is already stored in the map. 1642 Value *Shadow = ShadowMap[V]; 1643 if (!Shadow) { 1644 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1645 (void)I; 1646 assert(Shadow && "No shadow for a value"); 1647 } 1648 return Shadow; 1649 } 1650 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1651 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1652 : getCleanShadow(V); 1653 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1654 (void)U; 1655 return AllOnes; 1656 } 1657 if (Argument *A = dyn_cast<Argument>(V)) { 1658 // For arguments we compute the shadow on demand and store it in the map. 1659 Value *&ShadowPtr = ShadowMap[V]; 1660 if (ShadowPtr) 1661 return ShadowPtr; 1662 Function *F = A->getParent(); 1663 IRBuilder<> EntryIRB(FnPrologueEnd); 1664 unsigned ArgOffset = 0; 1665 const DataLayout &DL = F->getParent()->getDataLayout(); 1666 for (auto &FArg : F->args()) { 1667 if (!FArg.getType()->isSized()) { 1668 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1669 continue; 1670 } 1671 1672 unsigned Size = FArg.hasByValAttr() 1673 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1674 : DL.getTypeAllocSize(FArg.getType()); 1675 1676 if (A == &FArg) { 1677 bool Overflow = ArgOffset + Size > kParamTLSSize; 1678 if (FArg.hasByValAttr()) { 1679 // ByVal pointer itself has clean shadow. We copy the actual 1680 // argument shadow to the underlying memory. 1681 // Figure out maximal valid memcpy alignment. 1682 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1683 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1684 Value *CpShadowPtr, *CpOriginPtr; 1685 std::tie(CpShadowPtr, CpOriginPtr) = 1686 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1687 /*isStore*/ true); 1688 if (!PropagateShadow || Overflow) { 1689 // ParamTLS overflow. 1690 EntryIRB.CreateMemSet( 1691 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1692 Size, ArgAlign); 1693 } else { 1694 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1695 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1696 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1697 CopyAlign, Size); 1698 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1699 (void)Cpy; 1700 1701 if (MS.TrackOrigins) { 1702 Value *OriginPtr = 1703 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1704 // FIXME: OriginSize should be: 1705 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1706 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1707 EntryIRB.CreateMemCpy( 1708 CpOriginPtr, 1709 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1710 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1711 OriginSize); 1712 } 1713 } 1714 } 1715 1716 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 1717 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 1718 ShadowPtr = getCleanShadow(V); 1719 setOrigin(A, getCleanOrigin()); 1720 } else { 1721 // Shadow over TLS 1722 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1723 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1724 kShadowTLSAlignment); 1725 if (MS.TrackOrigins) { 1726 Value *OriginPtr = 1727 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1728 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1729 } 1730 } 1731 LLVM_DEBUG(dbgs() 1732 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 1733 break; 1734 } 1735 1736 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1737 } 1738 assert(ShadowPtr && "Could not find shadow for an argument"); 1739 return ShadowPtr; 1740 } 1741 // For everything else the shadow is zero. 1742 return getCleanShadow(V); 1743 } 1744 1745 /// Get the shadow for i-th argument of the instruction I. 1746 Value *getShadow(Instruction *I, int i) { 1747 return getShadow(I->getOperand(i)); 1748 } 1749 1750 /// Get the origin for a value. 1751 Value *getOrigin(Value *V) { 1752 if (!MS.TrackOrigins) return nullptr; 1753 if (!PropagateShadow) return getCleanOrigin(); 1754 if (isa<Constant>(V)) return getCleanOrigin(); 1755 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1756 "Unexpected value type in getOrigin()"); 1757 if (Instruction *I = dyn_cast<Instruction>(V)) { 1758 if (I->getMetadata(LLVMContext::MD_nosanitize)) 1759 return getCleanOrigin(); 1760 } 1761 Value *Origin = OriginMap[V]; 1762 assert(Origin && "Missing origin"); 1763 return Origin; 1764 } 1765 1766 /// Get the origin for i-th argument of the instruction I. 1767 Value *getOrigin(Instruction *I, int i) { 1768 return getOrigin(I->getOperand(i)); 1769 } 1770 1771 /// Remember the place where a shadow check should be inserted. 1772 /// 1773 /// This location will be later instrumented with a check that will print a 1774 /// UMR warning in runtime if the shadow value is not 0. 1775 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1776 assert(Shadow); 1777 if (!InsertChecks) return; 1778 #ifndef NDEBUG 1779 Type *ShadowTy = Shadow->getType(); 1780 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1781 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1782 "Can only insert checks for integer, vector, and aggregate shadow " 1783 "types"); 1784 #endif 1785 InstrumentationList.push_back( 1786 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1787 } 1788 1789 /// Remember the place where a shadow check should be inserted. 1790 /// 1791 /// This location will be later instrumented with a check that will print a 1792 /// UMR warning in runtime if the value is not fully defined. 1793 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1794 assert(Val); 1795 Value *Shadow, *Origin; 1796 if (ClCheckConstantShadow) { 1797 Shadow = getShadow(Val); 1798 if (!Shadow) return; 1799 Origin = getOrigin(Val); 1800 } else { 1801 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1802 if (!Shadow) return; 1803 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1804 } 1805 insertShadowCheck(Shadow, Origin, OrigIns); 1806 } 1807 1808 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1809 switch (a) { 1810 case AtomicOrdering::NotAtomic: 1811 return AtomicOrdering::NotAtomic; 1812 case AtomicOrdering::Unordered: 1813 case AtomicOrdering::Monotonic: 1814 case AtomicOrdering::Release: 1815 return AtomicOrdering::Release; 1816 case AtomicOrdering::Acquire: 1817 case AtomicOrdering::AcquireRelease: 1818 return AtomicOrdering::AcquireRelease; 1819 case AtomicOrdering::SequentiallyConsistent: 1820 return AtomicOrdering::SequentiallyConsistent; 1821 } 1822 llvm_unreachable("Unknown ordering"); 1823 } 1824 1825 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1826 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1827 uint32_t OrderingTable[NumOrderings] = {}; 1828 1829 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1830 OrderingTable[(int)AtomicOrderingCABI::release] = 1831 (int)AtomicOrderingCABI::release; 1832 OrderingTable[(int)AtomicOrderingCABI::consume] = 1833 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1834 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1835 (int)AtomicOrderingCABI::acq_rel; 1836 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1837 (int)AtomicOrderingCABI::seq_cst; 1838 1839 return ConstantDataVector::get(IRB.getContext(), 1840 makeArrayRef(OrderingTable, NumOrderings)); 1841 } 1842 1843 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1844 switch (a) { 1845 case AtomicOrdering::NotAtomic: 1846 return AtomicOrdering::NotAtomic; 1847 case AtomicOrdering::Unordered: 1848 case AtomicOrdering::Monotonic: 1849 case AtomicOrdering::Acquire: 1850 return AtomicOrdering::Acquire; 1851 case AtomicOrdering::Release: 1852 case AtomicOrdering::AcquireRelease: 1853 return AtomicOrdering::AcquireRelease; 1854 case AtomicOrdering::SequentiallyConsistent: 1855 return AtomicOrdering::SequentiallyConsistent; 1856 } 1857 llvm_unreachable("Unknown ordering"); 1858 } 1859 1860 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1861 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1862 uint32_t OrderingTable[NumOrderings] = {}; 1863 1864 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1865 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1866 OrderingTable[(int)AtomicOrderingCABI::consume] = 1867 (int)AtomicOrderingCABI::acquire; 1868 OrderingTable[(int)AtomicOrderingCABI::release] = 1869 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1870 (int)AtomicOrderingCABI::acq_rel; 1871 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1872 (int)AtomicOrderingCABI::seq_cst; 1873 1874 return ConstantDataVector::get(IRB.getContext(), 1875 makeArrayRef(OrderingTable, NumOrderings)); 1876 } 1877 1878 // ------------------- Visitors. 1879 using InstVisitor<MemorySanitizerVisitor>::visit; 1880 void visit(Instruction &I) { 1881 if (I.getMetadata(LLVMContext::MD_nosanitize)) 1882 return; 1883 // Don't want to visit if we're in the prologue 1884 if (isInPrologue(I)) 1885 return; 1886 InstVisitor<MemorySanitizerVisitor>::visit(I); 1887 } 1888 1889 /// Instrument LoadInst 1890 /// 1891 /// Loads the corresponding shadow and (optionally) origin. 1892 /// Optionally, checks that the load address is fully defined. 1893 void visitLoadInst(LoadInst &I) { 1894 assert(I.getType()->isSized() && "Load type must have size"); 1895 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 1896 IRBuilder<> IRB(I.getNextNode()); 1897 Type *ShadowTy = getShadowTy(&I); 1898 Value *Addr = I.getPointerOperand(); 1899 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1900 const Align Alignment = I.getAlign(); 1901 if (PropagateShadow) { 1902 std::tie(ShadowPtr, OriginPtr) = 1903 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1904 setShadow(&I, 1905 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1906 } else { 1907 setShadow(&I, getCleanShadow(&I)); 1908 } 1909 1910 if (ClCheckAccessAddress) 1911 insertShadowCheck(I.getPointerOperand(), &I); 1912 1913 if (I.isAtomic()) 1914 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1915 1916 if (MS.TrackOrigins) { 1917 if (PropagateShadow) { 1918 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1919 setOrigin( 1920 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1921 } else { 1922 setOrigin(&I, getCleanOrigin()); 1923 } 1924 } 1925 } 1926 1927 /// Instrument StoreInst 1928 /// 1929 /// Stores the corresponding shadow and (optionally) origin. 1930 /// Optionally, checks that the store address is fully defined. 1931 void visitStoreInst(StoreInst &I) { 1932 StoreList.push_back(&I); 1933 if (ClCheckAccessAddress) 1934 insertShadowCheck(I.getPointerOperand(), &I); 1935 } 1936 1937 void handleCASOrRMW(Instruction &I) { 1938 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1939 1940 IRBuilder<> IRB(&I); 1941 Value *Addr = I.getOperand(0); 1942 Value *Val = I.getOperand(1); 1943 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1944 /*isStore*/ true) 1945 .first; 1946 1947 if (ClCheckAccessAddress) 1948 insertShadowCheck(Addr, &I); 1949 1950 // Only test the conditional argument of cmpxchg instruction. 1951 // The other argument can potentially be uninitialized, but we can not 1952 // detect this situation reliably without possible false positives. 1953 if (isa<AtomicCmpXchgInst>(I)) 1954 insertShadowCheck(Val, &I); 1955 1956 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1957 1958 setShadow(&I, getCleanShadow(&I)); 1959 setOrigin(&I, getCleanOrigin()); 1960 } 1961 1962 void visitAtomicRMWInst(AtomicRMWInst &I) { 1963 handleCASOrRMW(I); 1964 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1965 } 1966 1967 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1968 handleCASOrRMW(I); 1969 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1970 } 1971 1972 // Vector manipulation. 1973 void visitExtractElementInst(ExtractElementInst &I) { 1974 insertShadowCheck(I.getOperand(1), &I); 1975 IRBuilder<> IRB(&I); 1976 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1977 "_msprop")); 1978 setOrigin(&I, getOrigin(&I, 0)); 1979 } 1980 1981 void visitInsertElementInst(InsertElementInst &I) { 1982 insertShadowCheck(I.getOperand(2), &I); 1983 IRBuilder<> IRB(&I); 1984 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1985 I.getOperand(2), "_msprop")); 1986 setOriginForNaryOp(I); 1987 } 1988 1989 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1990 IRBuilder<> IRB(&I); 1991 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1992 I.getShuffleMask(), "_msprop")); 1993 setOriginForNaryOp(I); 1994 } 1995 1996 // Casts. 1997 void visitSExtInst(SExtInst &I) { 1998 IRBuilder<> IRB(&I); 1999 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2000 setOrigin(&I, getOrigin(&I, 0)); 2001 } 2002 2003 void visitZExtInst(ZExtInst &I) { 2004 IRBuilder<> IRB(&I); 2005 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2006 setOrigin(&I, getOrigin(&I, 0)); 2007 } 2008 2009 void visitTruncInst(TruncInst &I) { 2010 IRBuilder<> IRB(&I); 2011 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2012 setOrigin(&I, getOrigin(&I, 0)); 2013 } 2014 2015 void visitBitCastInst(BitCastInst &I) { 2016 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2017 // a musttail call and a ret, don't instrument. New instructions are not 2018 // allowed after a musttail call. 2019 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2020 if (CI->isMustTailCall()) 2021 return; 2022 IRBuilder<> IRB(&I); 2023 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2024 setOrigin(&I, getOrigin(&I, 0)); 2025 } 2026 2027 void visitPtrToIntInst(PtrToIntInst &I) { 2028 IRBuilder<> IRB(&I); 2029 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2030 "_msprop_ptrtoint")); 2031 setOrigin(&I, getOrigin(&I, 0)); 2032 } 2033 2034 void visitIntToPtrInst(IntToPtrInst &I) { 2035 IRBuilder<> IRB(&I); 2036 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2037 "_msprop_inttoptr")); 2038 setOrigin(&I, getOrigin(&I, 0)); 2039 } 2040 2041 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2042 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2043 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2044 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2045 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2046 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2047 2048 /// Propagate shadow for bitwise AND. 2049 /// 2050 /// This code is exact, i.e. if, for example, a bit in the left argument 2051 /// is defined and 0, then neither the value not definedness of the 2052 /// corresponding bit in B don't affect the resulting shadow. 2053 void visitAnd(BinaryOperator &I) { 2054 IRBuilder<> IRB(&I); 2055 // "And" of 0 and a poisoned value results in unpoisoned value. 2056 // 1&1 => 1; 0&1 => 0; p&1 => p; 2057 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2058 // 1&p => p; 0&p => 0; p&p => p; 2059 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2060 Value *S1 = getShadow(&I, 0); 2061 Value *S2 = getShadow(&I, 1); 2062 Value *V1 = I.getOperand(0); 2063 Value *V2 = I.getOperand(1); 2064 if (V1->getType() != S1->getType()) { 2065 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2066 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2067 } 2068 Value *S1S2 = IRB.CreateAnd(S1, S2); 2069 Value *V1S2 = IRB.CreateAnd(V1, S2); 2070 Value *S1V2 = IRB.CreateAnd(S1, V2); 2071 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2072 setOriginForNaryOp(I); 2073 } 2074 2075 void visitOr(BinaryOperator &I) { 2076 IRBuilder<> IRB(&I); 2077 // "Or" of 1 and a poisoned value results in unpoisoned value. 2078 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2079 // 1|0 => 1; 0|0 => 0; p|0 => p; 2080 // 1|p => 1; 0|p => p; p|p => p; 2081 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2082 Value *S1 = getShadow(&I, 0); 2083 Value *S2 = getShadow(&I, 1); 2084 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2085 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2086 if (V1->getType() != S1->getType()) { 2087 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2088 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2089 } 2090 Value *S1S2 = IRB.CreateAnd(S1, S2); 2091 Value *V1S2 = IRB.CreateAnd(V1, S2); 2092 Value *S1V2 = IRB.CreateAnd(S1, V2); 2093 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2094 setOriginForNaryOp(I); 2095 } 2096 2097 /// Default propagation of shadow and/or origin. 2098 /// 2099 /// This class implements the general case of shadow propagation, used in all 2100 /// cases where we don't know and/or don't care about what the operation 2101 /// actually does. It converts all input shadow values to a common type 2102 /// (extending or truncating as necessary), and bitwise OR's them. 2103 /// 2104 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2105 /// fully initialized), and less prone to false positives. 2106 /// 2107 /// This class also implements the general case of origin propagation. For a 2108 /// Nary operation, result origin is set to the origin of an argument that is 2109 /// not entirely initialized. If there is more than one such arguments, the 2110 /// rightmost of them is picked. It does not matter which one is picked if all 2111 /// arguments are initialized. 2112 template <bool CombineShadow> 2113 class Combiner { 2114 Value *Shadow = nullptr; 2115 Value *Origin = nullptr; 2116 IRBuilder<> &IRB; 2117 MemorySanitizerVisitor *MSV; 2118 2119 public: 2120 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2121 : IRB(IRB), MSV(MSV) {} 2122 2123 /// Add a pair of shadow and origin values to the mix. 2124 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2125 if (CombineShadow) { 2126 assert(OpShadow); 2127 if (!Shadow) 2128 Shadow = OpShadow; 2129 else { 2130 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2131 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2132 } 2133 } 2134 2135 if (MSV->MS.TrackOrigins) { 2136 assert(OpOrigin); 2137 if (!Origin) { 2138 Origin = OpOrigin; 2139 } else { 2140 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2141 // No point in adding something that might result in 0 origin value. 2142 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2143 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2144 Value *Cond = 2145 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2146 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2147 } 2148 } 2149 } 2150 return *this; 2151 } 2152 2153 /// Add an application value to the mix. 2154 Combiner &Add(Value *V) { 2155 Value *OpShadow = MSV->getShadow(V); 2156 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2157 return Add(OpShadow, OpOrigin); 2158 } 2159 2160 /// Set the current combined values as the given instruction's shadow 2161 /// and origin. 2162 void Done(Instruction *I) { 2163 if (CombineShadow) { 2164 assert(Shadow); 2165 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2166 MSV->setShadow(I, Shadow); 2167 } 2168 if (MSV->MS.TrackOrigins) { 2169 assert(Origin); 2170 MSV->setOrigin(I, Origin); 2171 } 2172 } 2173 }; 2174 2175 using ShadowAndOriginCombiner = Combiner<true>; 2176 using OriginCombiner = Combiner<false>; 2177 2178 /// Propagate origin for arbitrary operation. 2179 void setOriginForNaryOp(Instruction &I) { 2180 if (!MS.TrackOrigins) return; 2181 IRBuilder<> IRB(&I); 2182 OriginCombiner OC(this, IRB); 2183 for (Use &Op : I.operands()) 2184 OC.Add(Op.get()); 2185 OC.Done(&I); 2186 } 2187 2188 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2189 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2190 "Vector of pointers is not a valid shadow type"); 2191 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2192 Ty->getScalarSizeInBits() 2193 : Ty->getPrimitiveSizeInBits(); 2194 } 2195 2196 /// Cast between two shadow types, extending or truncating as 2197 /// necessary. 2198 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2199 bool Signed = false) { 2200 Type *srcTy = V->getType(); 2201 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2202 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2203 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2204 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2205 2206 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2207 return IRB.CreateIntCast(V, dstTy, Signed); 2208 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2209 cast<FixedVectorType>(dstTy)->getNumElements() == 2210 cast<FixedVectorType>(srcTy)->getNumElements()) 2211 return IRB.CreateIntCast(V, dstTy, Signed); 2212 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2213 Value *V2 = 2214 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2215 return IRB.CreateBitCast(V2, dstTy); 2216 // TODO: handle struct types. 2217 } 2218 2219 /// Cast an application value to the type of its own shadow. 2220 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2221 Type *ShadowTy = getShadowTy(V); 2222 if (V->getType() == ShadowTy) 2223 return V; 2224 if (V->getType()->isPtrOrPtrVectorTy()) 2225 return IRB.CreatePtrToInt(V, ShadowTy); 2226 else 2227 return IRB.CreateBitCast(V, ShadowTy); 2228 } 2229 2230 /// Propagate shadow for arbitrary operation. 2231 void handleShadowOr(Instruction &I) { 2232 IRBuilder<> IRB(&I); 2233 ShadowAndOriginCombiner SC(this, IRB); 2234 for (Use &Op : I.operands()) 2235 SC.Add(Op.get()); 2236 SC.Done(&I); 2237 } 2238 2239 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2240 2241 // Handle multiplication by constant. 2242 // 2243 // Handle a special case of multiplication by constant that may have one or 2244 // more zeros in the lower bits. This makes corresponding number of lower bits 2245 // of the result zero as well. We model it by shifting the other operand 2246 // shadow left by the required number of bits. Effectively, we transform 2247 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2248 // We use multiplication by 2**N instead of shift to cover the case of 2249 // multiplication by 0, which may occur in some elements of a vector operand. 2250 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2251 Value *OtherArg) { 2252 Constant *ShadowMul; 2253 Type *Ty = ConstArg->getType(); 2254 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2255 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2256 Type *EltTy = VTy->getElementType(); 2257 SmallVector<Constant *, 16> Elements; 2258 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2259 if (ConstantInt *Elt = 2260 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2261 const APInt &V = Elt->getValue(); 2262 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2263 Elements.push_back(ConstantInt::get(EltTy, V2)); 2264 } else { 2265 Elements.push_back(ConstantInt::get(EltTy, 1)); 2266 } 2267 } 2268 ShadowMul = ConstantVector::get(Elements); 2269 } else { 2270 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2271 const APInt &V = Elt->getValue(); 2272 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2273 ShadowMul = ConstantInt::get(Ty, V2); 2274 } else { 2275 ShadowMul = ConstantInt::get(Ty, 1); 2276 } 2277 } 2278 2279 IRBuilder<> IRB(&I); 2280 setShadow(&I, 2281 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2282 setOrigin(&I, getOrigin(OtherArg)); 2283 } 2284 2285 void visitMul(BinaryOperator &I) { 2286 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2287 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2288 if (constOp0 && !constOp1) 2289 handleMulByConstant(I, constOp0, I.getOperand(1)); 2290 else if (constOp1 && !constOp0) 2291 handleMulByConstant(I, constOp1, I.getOperand(0)); 2292 else 2293 handleShadowOr(I); 2294 } 2295 2296 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2297 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2298 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2299 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2300 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2301 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2302 2303 void handleIntegerDiv(Instruction &I) { 2304 IRBuilder<> IRB(&I); 2305 // Strict on the second argument. 2306 insertShadowCheck(I.getOperand(1), &I); 2307 setShadow(&I, getShadow(&I, 0)); 2308 setOrigin(&I, getOrigin(&I, 0)); 2309 } 2310 2311 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2312 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2313 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2314 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2315 2316 // Floating point division is side-effect free. We can not require that the 2317 // divisor is fully initialized and must propagate shadow. See PR37523. 2318 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2319 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2320 2321 /// Instrument == and != comparisons. 2322 /// 2323 /// Sometimes the comparison result is known even if some of the bits of the 2324 /// arguments are not. 2325 void handleEqualityComparison(ICmpInst &I) { 2326 IRBuilder<> IRB(&I); 2327 Value *A = I.getOperand(0); 2328 Value *B = I.getOperand(1); 2329 Value *Sa = getShadow(A); 2330 Value *Sb = getShadow(B); 2331 2332 // Get rid of pointers and vectors of pointers. 2333 // For ints (and vectors of ints), types of A and Sa match, 2334 // and this is a no-op. 2335 A = IRB.CreatePointerCast(A, Sa->getType()); 2336 B = IRB.CreatePointerCast(B, Sb->getType()); 2337 2338 // A == B <==> (C = A^B) == 0 2339 // A != B <==> (C = A^B) != 0 2340 // Sc = Sa | Sb 2341 Value *C = IRB.CreateXor(A, B); 2342 Value *Sc = IRB.CreateOr(Sa, Sb); 2343 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2344 // Result is defined if one of the following is true 2345 // * there is a defined 1 bit in C 2346 // * C is fully defined 2347 // Si = !(C & ~Sc) && Sc 2348 Value *Zero = Constant::getNullValue(Sc->getType()); 2349 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2350 Value *Si = 2351 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2352 IRB.CreateICmpEQ( 2353 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2354 Si->setName("_msprop_icmp"); 2355 setShadow(&I, Si); 2356 setOriginForNaryOp(I); 2357 } 2358 2359 /// Build the lowest possible value of V, taking into account V's 2360 /// uninitialized bits. 2361 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2362 bool isSigned) { 2363 if (isSigned) { 2364 // Split shadow into sign bit and other bits. 2365 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2366 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2367 // Maximise the undefined shadow bit, minimize other undefined bits. 2368 return 2369 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2370 } else { 2371 // Minimize undefined bits. 2372 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2373 } 2374 } 2375 2376 /// Build the highest possible value of V, taking into account V's 2377 /// uninitialized bits. 2378 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2379 bool isSigned) { 2380 if (isSigned) { 2381 // Split shadow into sign bit and other bits. 2382 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2383 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2384 // Minimise the undefined shadow bit, maximise other undefined bits. 2385 return 2386 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2387 } else { 2388 // Maximize undefined bits. 2389 return IRB.CreateOr(A, Sa); 2390 } 2391 } 2392 2393 /// Instrument relational comparisons. 2394 /// 2395 /// This function does exact shadow propagation for all relational 2396 /// comparisons of integers, pointers and vectors of those. 2397 /// FIXME: output seems suboptimal when one of the operands is a constant 2398 void handleRelationalComparisonExact(ICmpInst &I) { 2399 IRBuilder<> IRB(&I); 2400 Value *A = I.getOperand(0); 2401 Value *B = I.getOperand(1); 2402 Value *Sa = getShadow(A); 2403 Value *Sb = getShadow(B); 2404 2405 // Get rid of pointers and vectors of pointers. 2406 // For ints (and vectors of ints), types of A and Sa match, 2407 // and this is a no-op. 2408 A = IRB.CreatePointerCast(A, Sa->getType()); 2409 B = IRB.CreatePointerCast(B, Sb->getType()); 2410 2411 // Let [a0, a1] be the interval of possible values of A, taking into account 2412 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2413 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2414 bool IsSigned = I.isSigned(); 2415 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2416 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2417 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2418 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2419 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2420 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2421 Value *Si = IRB.CreateXor(S1, S2); 2422 setShadow(&I, Si); 2423 setOriginForNaryOp(I); 2424 } 2425 2426 /// Instrument signed relational comparisons. 2427 /// 2428 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2429 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2430 void handleSignedRelationalComparison(ICmpInst &I) { 2431 Constant *constOp; 2432 Value *op = nullptr; 2433 CmpInst::Predicate pre; 2434 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2435 op = I.getOperand(0); 2436 pre = I.getPredicate(); 2437 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2438 op = I.getOperand(1); 2439 pre = I.getSwappedPredicate(); 2440 } else { 2441 handleShadowOr(I); 2442 return; 2443 } 2444 2445 if ((constOp->isNullValue() && 2446 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2447 (constOp->isAllOnesValue() && 2448 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2449 IRBuilder<> IRB(&I); 2450 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2451 "_msprop_icmp_s"); 2452 setShadow(&I, Shadow); 2453 setOrigin(&I, getOrigin(op)); 2454 } else { 2455 handleShadowOr(I); 2456 } 2457 } 2458 2459 void visitICmpInst(ICmpInst &I) { 2460 if (!ClHandleICmp) { 2461 handleShadowOr(I); 2462 return; 2463 } 2464 if (I.isEquality()) { 2465 handleEqualityComparison(I); 2466 return; 2467 } 2468 2469 assert(I.isRelational()); 2470 if (ClHandleICmpExact) { 2471 handleRelationalComparisonExact(I); 2472 return; 2473 } 2474 if (I.isSigned()) { 2475 handleSignedRelationalComparison(I); 2476 return; 2477 } 2478 2479 assert(I.isUnsigned()); 2480 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2481 handleRelationalComparisonExact(I); 2482 return; 2483 } 2484 2485 handleShadowOr(I); 2486 } 2487 2488 void visitFCmpInst(FCmpInst &I) { 2489 handleShadowOr(I); 2490 } 2491 2492 void handleShift(BinaryOperator &I) { 2493 IRBuilder<> IRB(&I); 2494 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2495 // Otherwise perform the same shift on S1. 2496 Value *S1 = getShadow(&I, 0); 2497 Value *S2 = getShadow(&I, 1); 2498 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2499 S2->getType()); 2500 Value *V2 = I.getOperand(1); 2501 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2502 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2503 setOriginForNaryOp(I); 2504 } 2505 2506 void visitShl(BinaryOperator &I) { handleShift(I); } 2507 void visitAShr(BinaryOperator &I) { handleShift(I); } 2508 void visitLShr(BinaryOperator &I) { handleShift(I); } 2509 2510 void handleFunnelShift(IntrinsicInst &I) { 2511 IRBuilder<> IRB(&I); 2512 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2513 // Otherwise perform the same shift on S0 and S1. 2514 Value *S0 = getShadow(&I, 0); 2515 Value *S1 = getShadow(&I, 1); 2516 Value *S2 = getShadow(&I, 2); 2517 Value *S2Conv = 2518 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2519 Value *V2 = I.getOperand(2); 2520 Function *Intrin = Intrinsic::getDeclaration( 2521 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2522 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2523 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2524 setOriginForNaryOp(I); 2525 } 2526 2527 /// Instrument llvm.memmove 2528 /// 2529 /// At this point we don't know if llvm.memmove will be inlined or not. 2530 /// If we don't instrument it and it gets inlined, 2531 /// our interceptor will not kick in and we will lose the memmove. 2532 /// If we instrument the call here, but it does not get inlined, 2533 /// we will memove the shadow twice: which is bad in case 2534 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2535 /// 2536 /// Similar situation exists for memcpy and memset. 2537 void visitMemMoveInst(MemMoveInst &I) { 2538 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2539 IRBuilder<> IRB(&I); 2540 IRB.CreateCall( 2541 MS.MemmoveFn, 2542 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2543 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2544 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2545 I.eraseFromParent(); 2546 } 2547 2548 // Similar to memmove: avoid copying shadow twice. 2549 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2550 // FIXME: consider doing manual inline for small constant sizes and proper 2551 // alignment. 2552 void visitMemCpyInst(MemCpyInst &I) { 2553 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2554 IRBuilder<> IRB(&I); 2555 IRB.CreateCall( 2556 MS.MemcpyFn, 2557 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2558 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2559 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2560 I.eraseFromParent(); 2561 } 2562 2563 // Same as memcpy. 2564 void visitMemSetInst(MemSetInst &I) { 2565 IRBuilder<> IRB(&I); 2566 IRB.CreateCall( 2567 MS.MemsetFn, 2568 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2569 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2570 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2571 I.eraseFromParent(); 2572 } 2573 2574 void visitVAStartInst(VAStartInst &I) { 2575 VAHelper->visitVAStartInst(I); 2576 } 2577 2578 void visitVACopyInst(VACopyInst &I) { 2579 VAHelper->visitVACopyInst(I); 2580 } 2581 2582 /// Handle vector store-like intrinsics. 2583 /// 2584 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2585 /// has 1 pointer argument and 1 vector argument, returns void. 2586 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2587 IRBuilder<> IRB(&I); 2588 Value* Addr = I.getArgOperand(0); 2589 Value *Shadow = getShadow(&I, 1); 2590 Value *ShadowPtr, *OriginPtr; 2591 2592 // We don't know the pointer alignment (could be unaligned SSE store!). 2593 // Have to assume to worst case. 2594 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2595 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2596 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2597 2598 if (ClCheckAccessAddress) 2599 insertShadowCheck(Addr, &I); 2600 2601 // FIXME: factor out common code from materializeStores 2602 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2603 return true; 2604 } 2605 2606 /// Handle vector load-like intrinsics. 2607 /// 2608 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2609 /// has 1 pointer argument, returns a vector. 2610 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2611 IRBuilder<> IRB(&I); 2612 Value *Addr = I.getArgOperand(0); 2613 2614 Type *ShadowTy = getShadowTy(&I); 2615 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2616 if (PropagateShadow) { 2617 // We don't know the pointer alignment (could be unaligned SSE load!). 2618 // Have to assume to worst case. 2619 const Align Alignment = Align(1); 2620 std::tie(ShadowPtr, OriginPtr) = 2621 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2622 setShadow(&I, 2623 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2624 } else { 2625 setShadow(&I, getCleanShadow(&I)); 2626 } 2627 2628 if (ClCheckAccessAddress) 2629 insertShadowCheck(Addr, &I); 2630 2631 if (MS.TrackOrigins) { 2632 if (PropagateShadow) 2633 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2634 else 2635 setOrigin(&I, getCleanOrigin()); 2636 } 2637 return true; 2638 } 2639 2640 /// Handle (SIMD arithmetic)-like intrinsics. 2641 /// 2642 /// Instrument intrinsics with any number of arguments of the same type, 2643 /// equal to the return type. The type should be simple (no aggregates or 2644 /// pointers; vectors are fine). 2645 /// Caller guarantees that this intrinsic does not access memory. 2646 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2647 Type *RetTy = I.getType(); 2648 if (!(RetTy->isIntOrIntVectorTy() || 2649 RetTy->isFPOrFPVectorTy() || 2650 RetTy->isX86_MMXTy())) 2651 return false; 2652 2653 unsigned NumArgOperands = I.arg_size(); 2654 for (unsigned i = 0; i < NumArgOperands; ++i) { 2655 Type *Ty = I.getArgOperand(i)->getType(); 2656 if (Ty != RetTy) 2657 return false; 2658 } 2659 2660 IRBuilder<> IRB(&I); 2661 ShadowAndOriginCombiner SC(this, IRB); 2662 for (unsigned i = 0; i < NumArgOperands; ++i) 2663 SC.Add(I.getArgOperand(i)); 2664 SC.Done(&I); 2665 2666 return true; 2667 } 2668 2669 /// Heuristically instrument unknown intrinsics. 2670 /// 2671 /// The main purpose of this code is to do something reasonable with all 2672 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2673 /// We recognize several classes of intrinsics by their argument types and 2674 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2675 /// sure that we know what the intrinsic does. 2676 /// 2677 /// We special-case intrinsics where this approach fails. See llvm.bswap 2678 /// handling as an example of that. 2679 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2680 unsigned NumArgOperands = I.arg_size(); 2681 if (NumArgOperands == 0) 2682 return false; 2683 2684 if (NumArgOperands == 2 && 2685 I.getArgOperand(0)->getType()->isPointerTy() && 2686 I.getArgOperand(1)->getType()->isVectorTy() && 2687 I.getType()->isVoidTy() && 2688 !I.onlyReadsMemory()) { 2689 // This looks like a vector store. 2690 return handleVectorStoreIntrinsic(I); 2691 } 2692 2693 if (NumArgOperands == 1 && 2694 I.getArgOperand(0)->getType()->isPointerTy() && 2695 I.getType()->isVectorTy() && 2696 I.onlyReadsMemory()) { 2697 // This looks like a vector load. 2698 return handleVectorLoadIntrinsic(I); 2699 } 2700 2701 if (I.doesNotAccessMemory()) 2702 if (maybeHandleSimpleNomemIntrinsic(I)) 2703 return true; 2704 2705 // FIXME: detect and handle SSE maskstore/maskload 2706 return false; 2707 } 2708 2709 void handleInvariantGroup(IntrinsicInst &I) { 2710 setShadow(&I, getShadow(&I, 0)); 2711 setOrigin(&I, getOrigin(&I, 0)); 2712 } 2713 2714 void handleLifetimeStart(IntrinsicInst &I) { 2715 if (!PoisonStack) 2716 return; 2717 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2718 if (!AI) 2719 InstrumentLifetimeStart = false; 2720 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2721 } 2722 2723 void handleBswap(IntrinsicInst &I) { 2724 IRBuilder<> IRB(&I); 2725 Value *Op = I.getArgOperand(0); 2726 Type *OpType = Op->getType(); 2727 Function *BswapFunc = Intrinsic::getDeclaration( 2728 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2729 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2730 setOrigin(&I, getOrigin(Op)); 2731 } 2732 2733 // Instrument vector convert intrinsic. 2734 // 2735 // This function instruments intrinsics like cvtsi2ss: 2736 // %Out = int_xxx_cvtyyy(%ConvertOp) 2737 // or 2738 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2739 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2740 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2741 // elements from \p CopyOp. 2742 // In most cases conversion involves floating-point value which may trigger a 2743 // hardware exception when not fully initialized. For this reason we require 2744 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2745 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2746 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2747 // return a fully initialized value. 2748 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2749 bool HasRoundingMode = false) { 2750 IRBuilder<> IRB(&I); 2751 Value *CopyOp, *ConvertOp; 2752 2753 assert((!HasRoundingMode || 2754 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2755 "Invalid rounding mode"); 2756 2757 switch (I.arg_size() - HasRoundingMode) { 2758 case 2: 2759 CopyOp = I.getArgOperand(0); 2760 ConvertOp = I.getArgOperand(1); 2761 break; 2762 case 1: 2763 ConvertOp = I.getArgOperand(0); 2764 CopyOp = nullptr; 2765 break; 2766 default: 2767 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2768 } 2769 2770 // The first *NumUsedElements* elements of ConvertOp are converted to the 2771 // same number of output elements. The rest of the output is copied from 2772 // CopyOp, or (if not available) filled with zeroes. 2773 // Combine shadow for elements of ConvertOp that are used in this operation, 2774 // and insert a check. 2775 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2776 // int->any conversion. 2777 Value *ConvertShadow = getShadow(ConvertOp); 2778 Value *AggShadow = nullptr; 2779 if (ConvertOp->getType()->isVectorTy()) { 2780 AggShadow = IRB.CreateExtractElement( 2781 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2782 for (int i = 1; i < NumUsedElements; ++i) { 2783 Value *MoreShadow = IRB.CreateExtractElement( 2784 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2785 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2786 } 2787 } else { 2788 AggShadow = ConvertShadow; 2789 } 2790 assert(AggShadow->getType()->isIntegerTy()); 2791 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2792 2793 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2794 // ConvertOp. 2795 if (CopyOp) { 2796 assert(CopyOp->getType() == I.getType()); 2797 assert(CopyOp->getType()->isVectorTy()); 2798 Value *ResultShadow = getShadow(CopyOp); 2799 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2800 for (int i = 0; i < NumUsedElements; ++i) { 2801 ResultShadow = IRB.CreateInsertElement( 2802 ResultShadow, ConstantInt::getNullValue(EltTy), 2803 ConstantInt::get(IRB.getInt32Ty(), i)); 2804 } 2805 setShadow(&I, ResultShadow); 2806 setOrigin(&I, getOrigin(CopyOp)); 2807 } else { 2808 setShadow(&I, getCleanShadow(&I)); 2809 setOrigin(&I, getCleanOrigin()); 2810 } 2811 } 2812 2813 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2814 // zeroes if it is zero, and all ones otherwise. 2815 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2816 if (S->getType()->isVectorTy()) 2817 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2818 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2819 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2820 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2821 } 2822 2823 // Given a vector, extract its first element, and return all 2824 // zeroes if it is zero, and all ones otherwise. 2825 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2826 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2827 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2828 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2829 } 2830 2831 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2832 Type *T = S->getType(); 2833 assert(T->isVectorTy()); 2834 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2835 return IRB.CreateSExt(S2, T); 2836 } 2837 2838 // Instrument vector shift intrinsic. 2839 // 2840 // This function instruments intrinsics like int_x86_avx2_psll_w. 2841 // Intrinsic shifts %In by %ShiftSize bits. 2842 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2843 // size, and the rest is ignored. Behavior is defined even if shift size is 2844 // greater than register (or field) width. 2845 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2846 assert(I.arg_size() == 2); 2847 IRBuilder<> IRB(&I); 2848 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2849 // Otherwise perform the same shift on S1. 2850 Value *S1 = getShadow(&I, 0); 2851 Value *S2 = getShadow(&I, 1); 2852 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2853 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2854 Value *V1 = I.getOperand(0); 2855 Value *V2 = I.getOperand(1); 2856 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2857 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2858 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2859 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2860 setOriginForNaryOp(I); 2861 } 2862 2863 // Get an X86_MMX-sized vector type. 2864 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2865 const unsigned X86_MMXSizeInBits = 64; 2866 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2867 "Illegal MMX vector element size"); 2868 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2869 X86_MMXSizeInBits / EltSizeInBits); 2870 } 2871 2872 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2873 // intrinsic. 2874 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2875 switch (id) { 2876 case Intrinsic::x86_sse2_packsswb_128: 2877 case Intrinsic::x86_sse2_packuswb_128: 2878 return Intrinsic::x86_sse2_packsswb_128; 2879 2880 case Intrinsic::x86_sse2_packssdw_128: 2881 case Intrinsic::x86_sse41_packusdw: 2882 return Intrinsic::x86_sse2_packssdw_128; 2883 2884 case Intrinsic::x86_avx2_packsswb: 2885 case Intrinsic::x86_avx2_packuswb: 2886 return Intrinsic::x86_avx2_packsswb; 2887 2888 case Intrinsic::x86_avx2_packssdw: 2889 case Intrinsic::x86_avx2_packusdw: 2890 return Intrinsic::x86_avx2_packssdw; 2891 2892 case Intrinsic::x86_mmx_packsswb: 2893 case Intrinsic::x86_mmx_packuswb: 2894 return Intrinsic::x86_mmx_packsswb; 2895 2896 case Intrinsic::x86_mmx_packssdw: 2897 return Intrinsic::x86_mmx_packssdw; 2898 default: 2899 llvm_unreachable("unexpected intrinsic id"); 2900 } 2901 } 2902 2903 // Instrument vector pack intrinsic. 2904 // 2905 // This function instruments intrinsics like x86_mmx_packsswb, that 2906 // packs elements of 2 input vectors into half as many bits with saturation. 2907 // Shadow is propagated with the signed variant of the same intrinsic applied 2908 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2909 // EltSizeInBits is used only for x86mmx arguments. 2910 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2911 assert(I.arg_size() == 2); 2912 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2913 IRBuilder<> IRB(&I); 2914 Value *S1 = getShadow(&I, 0); 2915 Value *S2 = getShadow(&I, 1); 2916 assert(isX86_MMX || S1->getType()->isVectorTy()); 2917 2918 // SExt and ICmpNE below must apply to individual elements of input vectors. 2919 // In case of x86mmx arguments, cast them to appropriate vector types and 2920 // back. 2921 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2922 if (isX86_MMX) { 2923 S1 = IRB.CreateBitCast(S1, T); 2924 S2 = IRB.CreateBitCast(S2, T); 2925 } 2926 Value *S1_ext = IRB.CreateSExt( 2927 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2928 Value *S2_ext = IRB.CreateSExt( 2929 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2930 if (isX86_MMX) { 2931 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2932 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2933 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2934 } 2935 2936 Function *ShadowFn = Intrinsic::getDeclaration( 2937 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2938 2939 Value *S = 2940 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2941 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2942 setShadow(&I, S); 2943 setOriginForNaryOp(I); 2944 } 2945 2946 // Instrument sum-of-absolute-differences intrinsic. 2947 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2948 const unsigned SignificantBitsPerResultElement = 16; 2949 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2950 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2951 unsigned ZeroBitsPerResultElement = 2952 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2953 2954 IRBuilder<> IRB(&I); 2955 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2956 S = IRB.CreateBitCast(S, ResTy); 2957 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2958 ResTy); 2959 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2960 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2961 setShadow(&I, S); 2962 setOriginForNaryOp(I); 2963 } 2964 2965 // Instrument multiply-add intrinsic. 2966 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2967 unsigned EltSizeInBits = 0) { 2968 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2969 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2970 IRBuilder<> IRB(&I); 2971 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2972 S = IRB.CreateBitCast(S, ResTy); 2973 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2974 ResTy); 2975 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2976 setShadow(&I, S); 2977 setOriginForNaryOp(I); 2978 } 2979 2980 // Instrument compare-packed intrinsic. 2981 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2982 // all-ones shadow. 2983 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2984 IRBuilder<> IRB(&I); 2985 Type *ResTy = getShadowTy(&I); 2986 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2987 Value *S = IRB.CreateSExt( 2988 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2989 setShadow(&I, S); 2990 setOriginForNaryOp(I); 2991 } 2992 2993 // Instrument compare-scalar intrinsic. 2994 // This handles both cmp* intrinsics which return the result in the first 2995 // element of a vector, and comi* which return the result as i32. 2996 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2997 IRBuilder<> IRB(&I); 2998 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2999 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3000 setShadow(&I, S); 3001 setOriginForNaryOp(I); 3002 } 3003 3004 // Instrument generic vector reduction intrinsics 3005 // by ORing together all their fields. 3006 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3007 IRBuilder<> IRB(&I); 3008 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3009 setShadow(&I, S); 3010 setOrigin(&I, getOrigin(&I, 0)); 3011 } 3012 3013 // Instrument vector.reduce.or intrinsic. 3014 // Valid (non-poisoned) set bits in the operand pull low the 3015 // corresponding shadow bits. 3016 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3017 IRBuilder<> IRB(&I); 3018 Value *OperandShadow = getShadow(&I, 0); 3019 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3020 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3021 // Bit N is clean if any field's bit N is 1 and unpoison 3022 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3023 // Otherwise, it is clean if every field's bit N is unpoison 3024 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3025 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3026 3027 setShadow(&I, S); 3028 setOrigin(&I, getOrigin(&I, 0)); 3029 } 3030 3031 // Instrument vector.reduce.and intrinsic. 3032 // Valid (non-poisoned) unset bits in the operand pull down the 3033 // corresponding shadow bits. 3034 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3035 IRBuilder<> IRB(&I); 3036 Value *OperandShadow = getShadow(&I, 0); 3037 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3038 // Bit N is clean if any field's bit N is 0 and unpoison 3039 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3040 // Otherwise, it is clean if every field's bit N is unpoison 3041 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3042 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3043 3044 setShadow(&I, S); 3045 setOrigin(&I, getOrigin(&I, 0)); 3046 } 3047 3048 void handleStmxcsr(IntrinsicInst &I) { 3049 IRBuilder<> IRB(&I); 3050 Value* Addr = I.getArgOperand(0); 3051 Type *Ty = IRB.getInt32Ty(); 3052 Value *ShadowPtr = 3053 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3054 3055 IRB.CreateStore(getCleanShadow(Ty), 3056 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3057 3058 if (ClCheckAccessAddress) 3059 insertShadowCheck(Addr, &I); 3060 } 3061 3062 void handleLdmxcsr(IntrinsicInst &I) { 3063 if (!InsertChecks) return; 3064 3065 IRBuilder<> IRB(&I); 3066 Value *Addr = I.getArgOperand(0); 3067 Type *Ty = IRB.getInt32Ty(); 3068 const Align Alignment = Align(1); 3069 Value *ShadowPtr, *OriginPtr; 3070 std::tie(ShadowPtr, OriginPtr) = 3071 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3072 3073 if (ClCheckAccessAddress) 3074 insertShadowCheck(Addr, &I); 3075 3076 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3077 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3078 : getCleanOrigin(); 3079 insertShadowCheck(Shadow, Origin, &I); 3080 } 3081 3082 void handleMaskedStore(IntrinsicInst &I) { 3083 IRBuilder<> IRB(&I); 3084 Value *V = I.getArgOperand(0); 3085 Value *Addr = I.getArgOperand(1); 3086 const Align Alignment( 3087 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3088 Value *Mask = I.getArgOperand(3); 3089 Value *Shadow = getShadow(V); 3090 3091 Value *ShadowPtr; 3092 Value *OriginPtr; 3093 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3094 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3095 3096 if (ClCheckAccessAddress) { 3097 insertShadowCheck(Addr, &I); 3098 // Uninitialized mask is kind of like uninitialized address, but not as 3099 // scary. 3100 insertShadowCheck(Mask, &I); 3101 } 3102 3103 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3104 3105 if (MS.TrackOrigins) { 3106 auto &DL = F.getParent()->getDataLayout(); 3107 paintOrigin(IRB, getOrigin(V), OriginPtr, 3108 DL.getTypeStoreSize(Shadow->getType()), 3109 std::max(Alignment, kMinOriginAlignment)); 3110 } 3111 } 3112 3113 bool handleMaskedLoad(IntrinsicInst &I) { 3114 IRBuilder<> IRB(&I); 3115 Value *Addr = I.getArgOperand(0); 3116 const Align Alignment( 3117 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3118 Value *Mask = I.getArgOperand(2); 3119 Value *PassThru = I.getArgOperand(3); 3120 3121 Type *ShadowTy = getShadowTy(&I); 3122 Value *ShadowPtr, *OriginPtr; 3123 if (PropagateShadow) { 3124 std::tie(ShadowPtr, OriginPtr) = 3125 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3126 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3127 getShadow(PassThru), "_msmaskedld")); 3128 } else { 3129 setShadow(&I, getCleanShadow(&I)); 3130 } 3131 3132 if (ClCheckAccessAddress) { 3133 insertShadowCheck(Addr, &I); 3134 insertShadowCheck(Mask, &I); 3135 } 3136 3137 if (MS.TrackOrigins) { 3138 if (PropagateShadow) { 3139 // Choose between PassThru's and the loaded value's origins. 3140 Value *MaskedPassThruShadow = IRB.CreateAnd( 3141 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3142 3143 Value *Acc = IRB.CreateExtractElement( 3144 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3145 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3146 ->getNumElements(); 3147 i < N; ++i) { 3148 Value *More = IRB.CreateExtractElement( 3149 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3150 Acc = IRB.CreateOr(Acc, More); 3151 } 3152 3153 Value *Origin = IRB.CreateSelect( 3154 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3155 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3156 3157 setOrigin(&I, Origin); 3158 } else { 3159 setOrigin(&I, getCleanOrigin()); 3160 } 3161 } 3162 return true; 3163 } 3164 3165 // Instrument BMI / BMI2 intrinsics. 3166 // All of these intrinsics are Z = I(X, Y) 3167 // where the types of all operands and the result match, and are either i32 or i64. 3168 // The following instrumentation happens to work for all of them: 3169 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3170 void handleBmiIntrinsic(IntrinsicInst &I) { 3171 IRBuilder<> IRB(&I); 3172 Type *ShadowTy = getShadowTy(&I); 3173 3174 // If any bit of the mask operand is poisoned, then the whole thing is. 3175 Value *SMask = getShadow(&I, 1); 3176 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3177 ShadowTy); 3178 // Apply the same intrinsic to the shadow of the first operand. 3179 Value *S = IRB.CreateCall(I.getCalledFunction(), 3180 {getShadow(&I, 0), I.getOperand(1)}); 3181 S = IRB.CreateOr(SMask, S); 3182 setShadow(&I, S); 3183 setOriginForNaryOp(I); 3184 } 3185 3186 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3187 SmallVector<int, 8> Mask; 3188 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3189 Mask.append(2, X); 3190 } 3191 return Mask; 3192 } 3193 3194 // Instrument pclmul intrinsics. 3195 // These intrinsics operate either on odd or on even elements of the input 3196 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3197 // Replace the unused elements with copies of the used ones, ex: 3198 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3199 // or 3200 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3201 // and then apply the usual shadow combining logic. 3202 void handlePclmulIntrinsic(IntrinsicInst &I) { 3203 IRBuilder<> IRB(&I); 3204 unsigned Width = 3205 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3206 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3207 "pclmul 3rd operand must be a constant"); 3208 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3209 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3210 getPclmulMask(Width, Imm & 0x01)); 3211 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3212 getPclmulMask(Width, Imm & 0x10)); 3213 ShadowAndOriginCombiner SOC(this, IRB); 3214 SOC.Add(Shuf0, getOrigin(&I, 0)); 3215 SOC.Add(Shuf1, getOrigin(&I, 1)); 3216 SOC.Done(&I); 3217 } 3218 3219 // Instrument _mm_*_sd|ss intrinsics 3220 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3221 IRBuilder<> IRB(&I); 3222 unsigned Width = 3223 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3224 Value *First = getShadow(&I, 0); 3225 Value *Second = getShadow(&I, 1); 3226 // First element of second operand, remaining elements of first operand 3227 SmallVector<int, 16> Mask; 3228 Mask.push_back(Width); 3229 for (unsigned i = 1; i < Width; i++) 3230 Mask.push_back(i); 3231 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3232 3233 setShadow(&I, Shadow); 3234 setOriginForNaryOp(I); 3235 } 3236 3237 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3238 IRBuilder<> IRB(&I); 3239 unsigned Width = 3240 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3241 Value *First = getShadow(&I, 0); 3242 Value *Second = getShadow(&I, 1); 3243 Value *OrShadow = IRB.CreateOr(First, Second); 3244 // First element of both OR'd together, remaining elements of first operand 3245 SmallVector<int, 16> Mask; 3246 Mask.push_back(Width); 3247 for (unsigned i = 1; i < Width; i++) 3248 Mask.push_back(i); 3249 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3250 3251 setShadow(&I, Shadow); 3252 setOriginForNaryOp(I); 3253 } 3254 3255 // Instrument abs intrinsic. 3256 // handleUnknownIntrinsic can't handle it because of the last 3257 // is_int_min_poison argument which does not match the result type. 3258 void handleAbsIntrinsic(IntrinsicInst &I) { 3259 assert(I.getType()->isIntOrIntVectorTy()); 3260 assert(I.getArgOperand(0)->getType() == I.getType()); 3261 3262 // FIXME: Handle is_int_min_poison. 3263 IRBuilder<> IRB(&I); 3264 setShadow(&I, getShadow(&I, 0)); 3265 setOrigin(&I, getOrigin(&I, 0)); 3266 } 3267 3268 void visitIntrinsicInst(IntrinsicInst &I) { 3269 switch (I.getIntrinsicID()) { 3270 case Intrinsic::abs: 3271 handleAbsIntrinsic(I); 3272 break; 3273 case Intrinsic::lifetime_start: 3274 handleLifetimeStart(I); 3275 break; 3276 case Intrinsic::launder_invariant_group: 3277 case Intrinsic::strip_invariant_group: 3278 handleInvariantGroup(I); 3279 break; 3280 case Intrinsic::bswap: 3281 handleBswap(I); 3282 break; 3283 case Intrinsic::masked_store: 3284 handleMaskedStore(I); 3285 break; 3286 case Intrinsic::masked_load: 3287 handleMaskedLoad(I); 3288 break; 3289 case Intrinsic::vector_reduce_and: 3290 handleVectorReduceAndIntrinsic(I); 3291 break; 3292 case Intrinsic::vector_reduce_or: 3293 handleVectorReduceOrIntrinsic(I); 3294 break; 3295 case Intrinsic::vector_reduce_add: 3296 case Intrinsic::vector_reduce_xor: 3297 case Intrinsic::vector_reduce_mul: 3298 handleVectorReduceIntrinsic(I); 3299 break; 3300 case Intrinsic::x86_sse_stmxcsr: 3301 handleStmxcsr(I); 3302 break; 3303 case Intrinsic::x86_sse_ldmxcsr: 3304 handleLdmxcsr(I); 3305 break; 3306 case Intrinsic::x86_avx512_vcvtsd2usi64: 3307 case Intrinsic::x86_avx512_vcvtsd2usi32: 3308 case Intrinsic::x86_avx512_vcvtss2usi64: 3309 case Intrinsic::x86_avx512_vcvtss2usi32: 3310 case Intrinsic::x86_avx512_cvttss2usi64: 3311 case Intrinsic::x86_avx512_cvttss2usi: 3312 case Intrinsic::x86_avx512_cvttsd2usi64: 3313 case Intrinsic::x86_avx512_cvttsd2usi: 3314 case Intrinsic::x86_avx512_cvtusi2ss: 3315 case Intrinsic::x86_avx512_cvtusi642sd: 3316 case Intrinsic::x86_avx512_cvtusi642ss: 3317 handleVectorConvertIntrinsic(I, 1, true); 3318 break; 3319 case Intrinsic::x86_sse2_cvtsd2si64: 3320 case Intrinsic::x86_sse2_cvtsd2si: 3321 case Intrinsic::x86_sse2_cvtsd2ss: 3322 case Intrinsic::x86_sse2_cvttsd2si64: 3323 case Intrinsic::x86_sse2_cvttsd2si: 3324 case Intrinsic::x86_sse_cvtss2si64: 3325 case Intrinsic::x86_sse_cvtss2si: 3326 case Intrinsic::x86_sse_cvttss2si64: 3327 case Intrinsic::x86_sse_cvttss2si: 3328 handleVectorConvertIntrinsic(I, 1); 3329 break; 3330 case Intrinsic::x86_sse_cvtps2pi: 3331 case Intrinsic::x86_sse_cvttps2pi: 3332 handleVectorConvertIntrinsic(I, 2); 3333 break; 3334 3335 case Intrinsic::x86_avx512_psll_w_512: 3336 case Intrinsic::x86_avx512_psll_d_512: 3337 case Intrinsic::x86_avx512_psll_q_512: 3338 case Intrinsic::x86_avx512_pslli_w_512: 3339 case Intrinsic::x86_avx512_pslli_d_512: 3340 case Intrinsic::x86_avx512_pslli_q_512: 3341 case Intrinsic::x86_avx512_psrl_w_512: 3342 case Intrinsic::x86_avx512_psrl_d_512: 3343 case Intrinsic::x86_avx512_psrl_q_512: 3344 case Intrinsic::x86_avx512_psra_w_512: 3345 case Intrinsic::x86_avx512_psra_d_512: 3346 case Intrinsic::x86_avx512_psra_q_512: 3347 case Intrinsic::x86_avx512_psrli_w_512: 3348 case Intrinsic::x86_avx512_psrli_d_512: 3349 case Intrinsic::x86_avx512_psrli_q_512: 3350 case Intrinsic::x86_avx512_psrai_w_512: 3351 case Intrinsic::x86_avx512_psrai_d_512: 3352 case Intrinsic::x86_avx512_psrai_q_512: 3353 case Intrinsic::x86_avx512_psra_q_256: 3354 case Intrinsic::x86_avx512_psra_q_128: 3355 case Intrinsic::x86_avx512_psrai_q_256: 3356 case Intrinsic::x86_avx512_psrai_q_128: 3357 case Intrinsic::x86_avx2_psll_w: 3358 case Intrinsic::x86_avx2_psll_d: 3359 case Intrinsic::x86_avx2_psll_q: 3360 case Intrinsic::x86_avx2_pslli_w: 3361 case Intrinsic::x86_avx2_pslli_d: 3362 case Intrinsic::x86_avx2_pslli_q: 3363 case Intrinsic::x86_avx2_psrl_w: 3364 case Intrinsic::x86_avx2_psrl_d: 3365 case Intrinsic::x86_avx2_psrl_q: 3366 case Intrinsic::x86_avx2_psra_w: 3367 case Intrinsic::x86_avx2_psra_d: 3368 case Intrinsic::x86_avx2_psrli_w: 3369 case Intrinsic::x86_avx2_psrli_d: 3370 case Intrinsic::x86_avx2_psrli_q: 3371 case Intrinsic::x86_avx2_psrai_w: 3372 case Intrinsic::x86_avx2_psrai_d: 3373 case Intrinsic::x86_sse2_psll_w: 3374 case Intrinsic::x86_sse2_psll_d: 3375 case Intrinsic::x86_sse2_psll_q: 3376 case Intrinsic::x86_sse2_pslli_w: 3377 case Intrinsic::x86_sse2_pslli_d: 3378 case Intrinsic::x86_sse2_pslli_q: 3379 case Intrinsic::x86_sse2_psrl_w: 3380 case Intrinsic::x86_sse2_psrl_d: 3381 case Intrinsic::x86_sse2_psrl_q: 3382 case Intrinsic::x86_sse2_psra_w: 3383 case Intrinsic::x86_sse2_psra_d: 3384 case Intrinsic::x86_sse2_psrli_w: 3385 case Intrinsic::x86_sse2_psrli_d: 3386 case Intrinsic::x86_sse2_psrli_q: 3387 case Intrinsic::x86_sse2_psrai_w: 3388 case Intrinsic::x86_sse2_psrai_d: 3389 case Intrinsic::x86_mmx_psll_w: 3390 case Intrinsic::x86_mmx_psll_d: 3391 case Intrinsic::x86_mmx_psll_q: 3392 case Intrinsic::x86_mmx_pslli_w: 3393 case Intrinsic::x86_mmx_pslli_d: 3394 case Intrinsic::x86_mmx_pslli_q: 3395 case Intrinsic::x86_mmx_psrl_w: 3396 case Intrinsic::x86_mmx_psrl_d: 3397 case Intrinsic::x86_mmx_psrl_q: 3398 case Intrinsic::x86_mmx_psra_w: 3399 case Intrinsic::x86_mmx_psra_d: 3400 case Intrinsic::x86_mmx_psrli_w: 3401 case Intrinsic::x86_mmx_psrli_d: 3402 case Intrinsic::x86_mmx_psrli_q: 3403 case Intrinsic::x86_mmx_psrai_w: 3404 case Intrinsic::x86_mmx_psrai_d: 3405 handleVectorShiftIntrinsic(I, /* Variable */ false); 3406 break; 3407 case Intrinsic::x86_avx2_psllv_d: 3408 case Intrinsic::x86_avx2_psllv_d_256: 3409 case Intrinsic::x86_avx512_psllv_d_512: 3410 case Intrinsic::x86_avx2_psllv_q: 3411 case Intrinsic::x86_avx2_psllv_q_256: 3412 case Intrinsic::x86_avx512_psllv_q_512: 3413 case Intrinsic::x86_avx2_psrlv_d: 3414 case Intrinsic::x86_avx2_psrlv_d_256: 3415 case Intrinsic::x86_avx512_psrlv_d_512: 3416 case Intrinsic::x86_avx2_psrlv_q: 3417 case Intrinsic::x86_avx2_psrlv_q_256: 3418 case Intrinsic::x86_avx512_psrlv_q_512: 3419 case Intrinsic::x86_avx2_psrav_d: 3420 case Intrinsic::x86_avx2_psrav_d_256: 3421 case Intrinsic::x86_avx512_psrav_d_512: 3422 case Intrinsic::x86_avx512_psrav_q_128: 3423 case Intrinsic::x86_avx512_psrav_q_256: 3424 case Intrinsic::x86_avx512_psrav_q_512: 3425 handleVectorShiftIntrinsic(I, /* Variable */ true); 3426 break; 3427 3428 case Intrinsic::x86_sse2_packsswb_128: 3429 case Intrinsic::x86_sse2_packssdw_128: 3430 case Intrinsic::x86_sse2_packuswb_128: 3431 case Intrinsic::x86_sse41_packusdw: 3432 case Intrinsic::x86_avx2_packsswb: 3433 case Intrinsic::x86_avx2_packssdw: 3434 case Intrinsic::x86_avx2_packuswb: 3435 case Intrinsic::x86_avx2_packusdw: 3436 handleVectorPackIntrinsic(I); 3437 break; 3438 3439 case Intrinsic::x86_mmx_packsswb: 3440 case Intrinsic::x86_mmx_packuswb: 3441 handleVectorPackIntrinsic(I, 16); 3442 break; 3443 3444 case Intrinsic::x86_mmx_packssdw: 3445 handleVectorPackIntrinsic(I, 32); 3446 break; 3447 3448 case Intrinsic::x86_mmx_psad_bw: 3449 case Intrinsic::x86_sse2_psad_bw: 3450 case Intrinsic::x86_avx2_psad_bw: 3451 handleVectorSadIntrinsic(I); 3452 break; 3453 3454 case Intrinsic::x86_sse2_pmadd_wd: 3455 case Intrinsic::x86_avx2_pmadd_wd: 3456 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3457 case Intrinsic::x86_avx2_pmadd_ub_sw: 3458 handleVectorPmaddIntrinsic(I); 3459 break; 3460 3461 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3462 handleVectorPmaddIntrinsic(I, 8); 3463 break; 3464 3465 case Intrinsic::x86_mmx_pmadd_wd: 3466 handleVectorPmaddIntrinsic(I, 16); 3467 break; 3468 3469 case Intrinsic::x86_sse_cmp_ss: 3470 case Intrinsic::x86_sse2_cmp_sd: 3471 case Intrinsic::x86_sse_comieq_ss: 3472 case Intrinsic::x86_sse_comilt_ss: 3473 case Intrinsic::x86_sse_comile_ss: 3474 case Intrinsic::x86_sse_comigt_ss: 3475 case Intrinsic::x86_sse_comige_ss: 3476 case Intrinsic::x86_sse_comineq_ss: 3477 case Intrinsic::x86_sse_ucomieq_ss: 3478 case Intrinsic::x86_sse_ucomilt_ss: 3479 case Intrinsic::x86_sse_ucomile_ss: 3480 case Intrinsic::x86_sse_ucomigt_ss: 3481 case Intrinsic::x86_sse_ucomige_ss: 3482 case Intrinsic::x86_sse_ucomineq_ss: 3483 case Intrinsic::x86_sse2_comieq_sd: 3484 case Intrinsic::x86_sse2_comilt_sd: 3485 case Intrinsic::x86_sse2_comile_sd: 3486 case Intrinsic::x86_sse2_comigt_sd: 3487 case Intrinsic::x86_sse2_comige_sd: 3488 case Intrinsic::x86_sse2_comineq_sd: 3489 case Intrinsic::x86_sse2_ucomieq_sd: 3490 case Intrinsic::x86_sse2_ucomilt_sd: 3491 case Intrinsic::x86_sse2_ucomile_sd: 3492 case Intrinsic::x86_sse2_ucomigt_sd: 3493 case Intrinsic::x86_sse2_ucomige_sd: 3494 case Intrinsic::x86_sse2_ucomineq_sd: 3495 handleVectorCompareScalarIntrinsic(I); 3496 break; 3497 3498 case Intrinsic::x86_sse_cmp_ps: 3499 case Intrinsic::x86_sse2_cmp_pd: 3500 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3501 // generates reasonably looking IR that fails in the backend with "Do not 3502 // know how to split the result of this operator!". 3503 handleVectorComparePackedIntrinsic(I); 3504 break; 3505 3506 case Intrinsic::x86_bmi_bextr_32: 3507 case Intrinsic::x86_bmi_bextr_64: 3508 case Intrinsic::x86_bmi_bzhi_32: 3509 case Intrinsic::x86_bmi_bzhi_64: 3510 case Intrinsic::x86_bmi_pdep_32: 3511 case Intrinsic::x86_bmi_pdep_64: 3512 case Intrinsic::x86_bmi_pext_32: 3513 case Intrinsic::x86_bmi_pext_64: 3514 handleBmiIntrinsic(I); 3515 break; 3516 3517 case Intrinsic::x86_pclmulqdq: 3518 case Intrinsic::x86_pclmulqdq_256: 3519 case Intrinsic::x86_pclmulqdq_512: 3520 handlePclmulIntrinsic(I); 3521 break; 3522 3523 case Intrinsic::x86_sse41_round_sd: 3524 case Intrinsic::x86_sse41_round_ss: 3525 handleUnarySdSsIntrinsic(I); 3526 break; 3527 case Intrinsic::x86_sse2_max_sd: 3528 case Intrinsic::x86_sse_max_ss: 3529 case Intrinsic::x86_sse2_min_sd: 3530 case Intrinsic::x86_sse_min_ss: 3531 handleBinarySdSsIntrinsic(I); 3532 break; 3533 3534 case Intrinsic::fshl: 3535 case Intrinsic::fshr: 3536 handleFunnelShift(I); 3537 break; 3538 3539 case Intrinsic::is_constant: 3540 // The result of llvm.is.constant() is always defined. 3541 setShadow(&I, getCleanShadow(&I)); 3542 setOrigin(&I, getCleanOrigin()); 3543 break; 3544 3545 default: 3546 if (!handleUnknownIntrinsic(I)) 3547 visitInstruction(I); 3548 break; 3549 } 3550 } 3551 3552 void visitLibAtomicLoad(CallBase &CB) { 3553 // Since we use getNextNode here, we can't have CB terminate the BB. 3554 assert(isa<CallInst>(CB)); 3555 3556 IRBuilder<> IRB(&CB); 3557 Value *Size = CB.getArgOperand(0); 3558 Value *SrcPtr = CB.getArgOperand(1); 3559 Value *DstPtr = CB.getArgOperand(2); 3560 Value *Ordering = CB.getArgOperand(3); 3561 // Convert the call to have at least Acquire ordering to make sure 3562 // the shadow operations aren't reordered before it. 3563 Value *NewOrdering = 3564 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3565 CB.setArgOperand(3, NewOrdering); 3566 3567 IRBuilder<> NextIRB(CB.getNextNode()); 3568 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3569 3570 Value *SrcShadowPtr, *SrcOriginPtr; 3571 std::tie(SrcShadowPtr, SrcOriginPtr) = 3572 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3573 /*isStore*/ false); 3574 Value *DstShadowPtr = 3575 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3576 /*isStore*/ true) 3577 .first; 3578 3579 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3580 if (MS.TrackOrigins) { 3581 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3582 kMinOriginAlignment); 3583 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3584 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3585 } 3586 } 3587 3588 void visitLibAtomicStore(CallBase &CB) { 3589 IRBuilder<> IRB(&CB); 3590 Value *Size = CB.getArgOperand(0); 3591 Value *DstPtr = CB.getArgOperand(2); 3592 Value *Ordering = CB.getArgOperand(3); 3593 // Convert the call to have at least Release ordering to make sure 3594 // the shadow operations aren't reordered after it. 3595 Value *NewOrdering = 3596 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3597 CB.setArgOperand(3, NewOrdering); 3598 3599 Value *DstShadowPtr = 3600 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3601 /*isStore*/ true) 3602 .first; 3603 3604 // Atomic store always paints clean shadow/origin. See file header. 3605 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3606 Align(1)); 3607 } 3608 3609 void visitCallBase(CallBase &CB) { 3610 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 3611 if (CB.isInlineAsm()) { 3612 // For inline asm (either a call to asm function, or callbr instruction), 3613 // do the usual thing: check argument shadow and mark all outputs as 3614 // clean. Note that any side effects of the inline asm that are not 3615 // immediately visible in its constraints are not handled. 3616 if (ClHandleAsmConservative && MS.CompileKernel) 3617 visitAsmInstruction(CB); 3618 else 3619 visitInstruction(CB); 3620 return; 3621 } 3622 LibFunc LF; 3623 if (TLI->getLibFunc(CB, LF)) { 3624 // libatomic.a functions need to have special handling because there isn't 3625 // a good way to intercept them or compile the library with 3626 // instrumentation. 3627 switch (LF) { 3628 case LibFunc_atomic_load: 3629 if (!isa<CallInst>(CB)) { 3630 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3631 "Ignoring!\n"; 3632 break; 3633 } 3634 visitLibAtomicLoad(CB); 3635 return; 3636 case LibFunc_atomic_store: 3637 visitLibAtomicStore(CB); 3638 return; 3639 default: 3640 break; 3641 } 3642 } 3643 3644 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3645 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3646 3647 // We are going to insert code that relies on the fact that the callee 3648 // will become a non-readonly function after it is instrumented by us. To 3649 // prevent this code from being optimized out, mark that function 3650 // non-readonly in advance. 3651 AttributeMask B; 3652 B.addAttribute(Attribute::ReadOnly) 3653 .addAttribute(Attribute::ReadNone) 3654 .addAttribute(Attribute::WriteOnly) 3655 .addAttribute(Attribute::ArgMemOnly) 3656 .addAttribute(Attribute::Speculatable); 3657 3658 Call->removeFnAttrs(B); 3659 if (Function *Func = Call->getCalledFunction()) { 3660 Func->removeFnAttrs(B); 3661 } 3662 3663 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3664 } 3665 IRBuilder<> IRB(&CB); 3666 bool MayCheckCall = MS.EagerChecks; 3667 if (Function *Func = CB.getCalledFunction()) { 3668 // __sanitizer_unaligned_{load,store} functions may be called by users 3669 // and always expects shadows in the TLS. So don't check them. 3670 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3671 } 3672 3673 unsigned ArgOffset = 0; 3674 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3675 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3676 ++ArgIt) { 3677 Value *A = *ArgIt; 3678 unsigned i = ArgIt - CB.arg_begin(); 3679 if (!A->getType()->isSized()) { 3680 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3681 continue; 3682 } 3683 unsigned Size = 0; 3684 const DataLayout &DL = F.getParent()->getDataLayout(); 3685 3686 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3687 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3688 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3689 3690 if (EagerCheck) { 3691 insertShadowCheck(A, &CB); 3692 Size = DL.getTypeAllocSize(A->getType()); 3693 } else { 3694 Value *Store = nullptr; 3695 // Compute the Shadow for arg even if it is ByVal, because 3696 // in that case getShadow() will copy the actual arg shadow to 3697 // __msan_param_tls. 3698 Value *ArgShadow = getShadow(A); 3699 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3700 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3701 << " Shadow: " << *ArgShadow << "\n"); 3702 if (ByVal) { 3703 // ByVal requires some special handling as it's too big for a single 3704 // load 3705 assert(A->getType()->isPointerTy() && 3706 "ByVal argument is not a pointer!"); 3707 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3708 if (ArgOffset + Size > kParamTLSSize) 3709 break; 3710 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3711 MaybeAlign Alignment = llvm::None; 3712 if (ParamAlignment) 3713 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3714 Value *AShadowPtr, *AOriginPtr; 3715 std::tie(AShadowPtr, AOriginPtr) = 3716 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3717 /*isStore*/ false); 3718 if (!PropagateShadow) { 3719 Store = IRB.CreateMemSet(ArgShadowBase, 3720 Constant::getNullValue(IRB.getInt8Ty()), 3721 Size, Alignment); 3722 } else { 3723 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3724 Alignment, Size); 3725 if (MS.TrackOrigins) { 3726 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 3727 // FIXME: OriginSize should be: 3728 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 3729 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 3730 IRB.CreateMemCpy( 3731 ArgOriginBase, 3732 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 3733 AOriginPtr, 3734 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 3735 } 3736 } 3737 } else { 3738 // Any other parameters mean we need bit-grained tracking of uninit 3739 // data 3740 Size = DL.getTypeAllocSize(A->getType()); 3741 if (ArgOffset + Size > kParamTLSSize) 3742 break; 3743 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3744 kShadowTLSAlignment); 3745 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3746 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 3747 IRB.CreateStore(getOrigin(A), 3748 getOriginPtrForArgument(A, IRB, ArgOffset)); 3749 } 3750 } 3751 (void)Store; 3752 assert(Store != nullptr); 3753 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3754 } 3755 assert(Size != 0); 3756 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3757 } 3758 LLVM_DEBUG(dbgs() << " done with call args\n"); 3759 3760 FunctionType *FT = CB.getFunctionType(); 3761 if (FT->isVarArg()) { 3762 VAHelper->visitCallBase(CB, IRB); 3763 } 3764 3765 // Now, get the shadow for the RetVal. 3766 if (!CB.getType()->isSized()) 3767 return; 3768 // Don't emit the epilogue for musttail call returns. 3769 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3770 return; 3771 3772 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3773 setShadow(&CB, getCleanShadow(&CB)); 3774 setOrigin(&CB, getCleanOrigin()); 3775 return; 3776 } 3777 3778 IRBuilder<> IRBBefore(&CB); 3779 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3780 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3781 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3782 kShadowTLSAlignment); 3783 BasicBlock::iterator NextInsn; 3784 if (isa<CallInst>(CB)) { 3785 NextInsn = ++CB.getIterator(); 3786 assert(NextInsn != CB.getParent()->end()); 3787 } else { 3788 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3789 if (!NormalDest->getSinglePredecessor()) { 3790 // FIXME: this case is tricky, so we are just conservative here. 3791 // Perhaps we need to split the edge between this BB and NormalDest, 3792 // but a naive attempt to use SplitEdge leads to a crash. 3793 setShadow(&CB, getCleanShadow(&CB)); 3794 setOrigin(&CB, getCleanOrigin()); 3795 return; 3796 } 3797 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3798 // Anything inserted there will be instrumented by MSan later! 3799 NextInsn = NormalDest->getFirstInsertionPt(); 3800 assert(NextInsn != NormalDest->end() && 3801 "Could not find insertion point for retval shadow load"); 3802 } 3803 IRBuilder<> IRBAfter(&*NextInsn); 3804 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3805 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3806 kShadowTLSAlignment, "_msret"); 3807 setShadow(&CB, RetvalShadow); 3808 if (MS.TrackOrigins) 3809 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3810 getOriginPtrForRetval(IRBAfter))); 3811 } 3812 3813 bool isAMustTailRetVal(Value *RetVal) { 3814 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3815 RetVal = I->getOperand(0); 3816 } 3817 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3818 return I->isMustTailCall(); 3819 } 3820 return false; 3821 } 3822 3823 void visitReturnInst(ReturnInst &I) { 3824 IRBuilder<> IRB(&I); 3825 Value *RetVal = I.getReturnValue(); 3826 if (!RetVal) return; 3827 // Don't emit the epilogue for musttail call returns. 3828 if (isAMustTailRetVal(RetVal)) return; 3829 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3830 bool HasNoUndef = 3831 F.hasRetAttribute(Attribute::NoUndef); 3832 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 3833 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3834 // must always return fully initialized values. For now, we hardcode "main". 3835 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 3836 3837 Value *Shadow = getShadow(RetVal); 3838 bool StoreOrigin = true; 3839 if (EagerCheck) { 3840 insertShadowCheck(RetVal, &I); 3841 Shadow = getCleanShadow(RetVal); 3842 StoreOrigin = false; 3843 } 3844 3845 // The caller may still expect information passed over TLS if we pass our 3846 // check 3847 if (StoreShadow) { 3848 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3849 if (MS.TrackOrigins && StoreOrigin) 3850 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3851 } 3852 } 3853 3854 void visitPHINode(PHINode &I) { 3855 IRBuilder<> IRB(&I); 3856 if (!PropagateShadow) { 3857 setShadow(&I, getCleanShadow(&I)); 3858 setOrigin(&I, getCleanOrigin()); 3859 return; 3860 } 3861 3862 ShadowPHINodes.push_back(&I); 3863 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3864 "_msphi_s")); 3865 if (MS.TrackOrigins) 3866 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3867 "_msphi_o")); 3868 } 3869 3870 Value *getLocalVarDescription(AllocaInst &I) { 3871 SmallString<2048> StackDescriptionStorage; 3872 raw_svector_ostream StackDescription(StackDescriptionStorage); 3873 // We create a string with a description of the stack allocation and 3874 // pass it into __msan_set_alloca_origin. 3875 // It will be printed by the run-time if stack-originated UMR is found. 3876 // The first 4 bytes of the string are set to '----' and will be replaced 3877 // by __msan_va_arg_overflow_size_tls at the first call. 3878 StackDescription << "----" << I.getName() << "@" << F.getName(); 3879 return createPrivateNonConstGlobalForString(*F.getParent(), 3880 StackDescription.str()); 3881 } 3882 3883 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3884 if (PoisonStack && ClPoisonStackWithCall) { 3885 IRB.CreateCall(MS.MsanPoisonStackFn, 3886 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3887 } else { 3888 Value *ShadowBase, *OriginBase; 3889 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3890 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3891 3892 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3893 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 3894 } 3895 3896 if (PoisonStack && MS.TrackOrigins) { 3897 Value *Descr = getLocalVarDescription(I); 3898 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3899 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3900 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3901 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3902 } 3903 } 3904 3905 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3906 Value *Descr = getLocalVarDescription(I); 3907 if (PoisonStack) { 3908 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3909 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3910 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3911 } else { 3912 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3913 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3914 } 3915 } 3916 3917 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3918 if (!InsPoint) 3919 InsPoint = &I; 3920 IRBuilder<> IRB(InsPoint->getNextNode()); 3921 const DataLayout &DL = F.getParent()->getDataLayout(); 3922 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3923 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3924 if (I.isArrayAllocation()) 3925 Len = IRB.CreateMul(Len, I.getArraySize()); 3926 3927 if (MS.CompileKernel) 3928 poisonAllocaKmsan(I, IRB, Len); 3929 else 3930 poisonAllocaUserspace(I, IRB, Len); 3931 } 3932 3933 void visitAllocaInst(AllocaInst &I) { 3934 setShadow(&I, getCleanShadow(&I)); 3935 setOrigin(&I, getCleanOrigin()); 3936 // We'll get to this alloca later unless it's poisoned at the corresponding 3937 // llvm.lifetime.start. 3938 AllocaSet.insert(&I); 3939 } 3940 3941 void visitSelectInst(SelectInst& I) { 3942 IRBuilder<> IRB(&I); 3943 // a = select b, c, d 3944 Value *B = I.getCondition(); 3945 Value *C = I.getTrueValue(); 3946 Value *D = I.getFalseValue(); 3947 Value *Sb = getShadow(B); 3948 Value *Sc = getShadow(C); 3949 Value *Sd = getShadow(D); 3950 3951 // Result shadow if condition shadow is 0. 3952 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3953 Value *Sa1; 3954 if (I.getType()->isAggregateType()) { 3955 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3956 // an extra "select". This results in much more compact IR. 3957 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3958 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3959 } else { 3960 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3961 // If Sb (condition is poisoned), look for bits in c and d that are equal 3962 // and both unpoisoned. 3963 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3964 3965 // Cast arguments to shadow-compatible type. 3966 C = CreateAppToShadowCast(IRB, C); 3967 D = CreateAppToShadowCast(IRB, D); 3968 3969 // Result shadow if condition shadow is 1. 3970 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3971 } 3972 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3973 setShadow(&I, Sa); 3974 if (MS.TrackOrigins) { 3975 // Origins are always i32, so any vector conditions must be flattened. 3976 // FIXME: consider tracking vector origins for app vectors? 3977 if (B->getType()->isVectorTy()) { 3978 Type *FlatTy = getShadowTyNoVec(B->getType()); 3979 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3980 ConstantInt::getNullValue(FlatTy)); 3981 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3982 ConstantInt::getNullValue(FlatTy)); 3983 } 3984 // a = select b, c, d 3985 // Oa = Sb ? Ob : (b ? Oc : Od) 3986 setOrigin( 3987 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3988 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3989 getOrigin(I.getFalseValue())))); 3990 } 3991 } 3992 3993 void visitLandingPadInst(LandingPadInst &I) { 3994 // Do nothing. 3995 // See https://github.com/google/sanitizers/issues/504 3996 setShadow(&I, getCleanShadow(&I)); 3997 setOrigin(&I, getCleanOrigin()); 3998 } 3999 4000 void visitCatchSwitchInst(CatchSwitchInst &I) { 4001 setShadow(&I, getCleanShadow(&I)); 4002 setOrigin(&I, getCleanOrigin()); 4003 } 4004 4005 void visitFuncletPadInst(FuncletPadInst &I) { 4006 setShadow(&I, getCleanShadow(&I)); 4007 setOrigin(&I, getCleanOrigin()); 4008 } 4009 4010 void visitGetElementPtrInst(GetElementPtrInst &I) { 4011 handleShadowOr(I); 4012 } 4013 4014 void visitExtractValueInst(ExtractValueInst &I) { 4015 IRBuilder<> IRB(&I); 4016 Value *Agg = I.getAggregateOperand(); 4017 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4018 Value *AggShadow = getShadow(Agg); 4019 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4020 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4021 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4022 setShadow(&I, ResShadow); 4023 setOriginForNaryOp(I); 4024 } 4025 4026 void visitInsertValueInst(InsertValueInst &I) { 4027 IRBuilder<> IRB(&I); 4028 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4029 Value *AggShadow = getShadow(I.getAggregateOperand()); 4030 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4031 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4032 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4033 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4034 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4035 setShadow(&I, Res); 4036 setOriginForNaryOp(I); 4037 } 4038 4039 void dumpInst(Instruction &I) { 4040 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4041 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4042 } else { 4043 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4044 } 4045 errs() << "QQQ " << I << "\n"; 4046 } 4047 4048 void visitResumeInst(ResumeInst &I) { 4049 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4050 // Nothing to do here. 4051 } 4052 4053 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4054 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4055 // Nothing to do here. 4056 } 4057 4058 void visitCatchReturnInst(CatchReturnInst &CRI) { 4059 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4060 // Nothing to do here. 4061 } 4062 4063 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4064 IRBuilder<> &IRB, const DataLayout &DL, 4065 bool isOutput) { 4066 // For each assembly argument, we check its value for being initialized. 4067 // If the argument is a pointer, we assume it points to a single element 4068 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4069 // Each such pointer is instrumented with a call to the runtime library. 4070 Type *OpType = Operand->getType(); 4071 // Check the operand value itself. 4072 insertShadowCheck(Operand, &I); 4073 if (!OpType->isPointerTy() || !isOutput) { 4074 assert(!isOutput); 4075 return; 4076 } 4077 if (!ElemTy->isSized()) 4078 return; 4079 int Size = DL.getTypeStoreSize(ElemTy); 4080 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4081 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4082 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4083 } 4084 4085 /// Get the number of output arguments returned by pointers. 4086 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4087 int NumRetOutputs = 0; 4088 int NumOutputs = 0; 4089 Type *RetTy = cast<Value>(CB)->getType(); 4090 if (!RetTy->isVoidTy()) { 4091 // Register outputs are returned via the CallInst return value. 4092 auto *ST = dyn_cast<StructType>(RetTy); 4093 if (ST) 4094 NumRetOutputs = ST->getNumElements(); 4095 else 4096 NumRetOutputs = 1; 4097 } 4098 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4099 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4100 switch (Info.Type) { 4101 case InlineAsm::isOutput: 4102 NumOutputs++; 4103 break; 4104 default: 4105 break; 4106 } 4107 } 4108 return NumOutputs - NumRetOutputs; 4109 } 4110 4111 void visitAsmInstruction(Instruction &I) { 4112 // Conservative inline assembly handling: check for poisoned shadow of 4113 // asm() arguments, then unpoison the result and all the memory locations 4114 // pointed to by those arguments. 4115 // An inline asm() statement in C++ contains lists of input and output 4116 // arguments used by the assembly code. These are mapped to operands of the 4117 // CallInst as follows: 4118 // - nR register outputs ("=r) are returned by value in a single structure 4119 // (SSA value of the CallInst); 4120 // - nO other outputs ("=m" and others) are returned by pointer as first 4121 // nO operands of the CallInst; 4122 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4123 // remaining nI operands. 4124 // The total number of asm() arguments in the source is nR+nO+nI, and the 4125 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4126 // function to be called). 4127 const DataLayout &DL = F.getParent()->getDataLayout(); 4128 CallBase *CB = cast<CallBase>(&I); 4129 IRBuilder<> IRB(&I); 4130 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4131 int OutputArgs = getNumOutputArgs(IA, CB); 4132 // The last operand of a CallInst is the function itself. 4133 int NumOperands = CB->getNumOperands() - 1; 4134 4135 // Check input arguments. Doing so before unpoisoning output arguments, so 4136 // that we won't overwrite uninit values before checking them. 4137 for (int i = OutputArgs; i < NumOperands; i++) { 4138 Value *Operand = CB->getOperand(i); 4139 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4140 /*isOutput*/ false); 4141 } 4142 // Unpoison output arguments. This must happen before the actual InlineAsm 4143 // call, so that the shadow for memory published in the asm() statement 4144 // remains valid. 4145 for (int i = 0; i < OutputArgs; i++) { 4146 Value *Operand = CB->getOperand(i); 4147 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4148 /*isOutput*/ true); 4149 } 4150 4151 setShadow(&I, getCleanShadow(&I)); 4152 setOrigin(&I, getCleanOrigin()); 4153 } 4154 4155 void visitFreezeInst(FreezeInst &I) { 4156 // Freeze always returns a fully defined value. 4157 setShadow(&I, getCleanShadow(&I)); 4158 setOrigin(&I, getCleanOrigin()); 4159 } 4160 4161 void visitInstruction(Instruction &I) { 4162 // Everything else: stop propagating and check for poisoned shadow. 4163 if (ClDumpStrictInstructions) 4164 dumpInst(I); 4165 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4166 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4167 Value *Operand = I.getOperand(i); 4168 if (Operand->getType()->isSized()) 4169 insertShadowCheck(Operand, &I); 4170 } 4171 setShadow(&I, getCleanShadow(&I)); 4172 setOrigin(&I, getCleanOrigin()); 4173 } 4174 }; 4175 4176 /// AMD64-specific implementation of VarArgHelper. 4177 struct VarArgAMD64Helper : public VarArgHelper { 4178 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4179 // See a comment in visitCallBase for more details. 4180 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4181 static const unsigned AMD64FpEndOffsetSSE = 176; 4182 // If SSE is disabled, fp_offset in va_list is zero. 4183 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4184 4185 unsigned AMD64FpEndOffset; 4186 Function &F; 4187 MemorySanitizer &MS; 4188 MemorySanitizerVisitor &MSV; 4189 Value *VAArgTLSCopy = nullptr; 4190 Value *VAArgTLSOriginCopy = nullptr; 4191 Value *VAArgOverflowSize = nullptr; 4192 4193 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4194 4195 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4196 4197 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4198 MemorySanitizerVisitor &MSV) 4199 : F(F), MS(MS), MSV(MSV) { 4200 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4201 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4202 if (Attr.isStringAttribute() && 4203 (Attr.getKindAsString() == "target-features")) { 4204 if (Attr.getValueAsString().contains("-sse")) 4205 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4206 break; 4207 } 4208 } 4209 } 4210 4211 ArgKind classifyArgument(Value* arg) { 4212 // A very rough approximation of X86_64 argument classification rules. 4213 Type *T = arg->getType(); 4214 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4215 return AK_FloatingPoint; 4216 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4217 return AK_GeneralPurpose; 4218 if (T->isPointerTy()) 4219 return AK_GeneralPurpose; 4220 return AK_Memory; 4221 } 4222 4223 // For VarArg functions, store the argument shadow in an ABI-specific format 4224 // that corresponds to va_list layout. 4225 // We do this because Clang lowers va_arg in the frontend, and this pass 4226 // only sees the low level code that deals with va_list internals. 4227 // A much easier alternative (provided that Clang emits va_arg instructions) 4228 // would have been to associate each live instance of va_list with a copy of 4229 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4230 // order. 4231 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4232 unsigned GpOffset = 0; 4233 unsigned FpOffset = AMD64GpEndOffset; 4234 unsigned OverflowOffset = AMD64FpEndOffset; 4235 const DataLayout &DL = F.getParent()->getDataLayout(); 4236 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4237 ++ArgIt) { 4238 Value *A = *ArgIt; 4239 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4240 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4241 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4242 if (IsByVal) { 4243 // ByVal arguments always go to the overflow area. 4244 // Fixed arguments passed through the overflow area will be stepped 4245 // over by va_start, so don't count them towards the offset. 4246 if (IsFixed) 4247 continue; 4248 assert(A->getType()->isPointerTy()); 4249 Type *RealTy = CB.getParamByValType(ArgNo); 4250 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4251 Value *ShadowBase = getShadowPtrForVAArgument( 4252 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4253 Value *OriginBase = nullptr; 4254 if (MS.TrackOrigins) 4255 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4256 OverflowOffset += alignTo(ArgSize, 8); 4257 if (!ShadowBase) 4258 continue; 4259 Value *ShadowPtr, *OriginPtr; 4260 std::tie(ShadowPtr, OriginPtr) = 4261 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4262 /*isStore*/ false); 4263 4264 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4265 kShadowTLSAlignment, ArgSize); 4266 if (MS.TrackOrigins) 4267 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4268 kShadowTLSAlignment, ArgSize); 4269 } else { 4270 ArgKind AK = classifyArgument(A); 4271 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4272 AK = AK_Memory; 4273 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4274 AK = AK_Memory; 4275 Value *ShadowBase, *OriginBase = nullptr; 4276 switch (AK) { 4277 case AK_GeneralPurpose: 4278 ShadowBase = 4279 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4280 if (MS.TrackOrigins) 4281 OriginBase = 4282 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4283 GpOffset += 8; 4284 break; 4285 case AK_FloatingPoint: 4286 ShadowBase = 4287 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4288 if (MS.TrackOrigins) 4289 OriginBase = 4290 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4291 FpOffset += 16; 4292 break; 4293 case AK_Memory: 4294 if (IsFixed) 4295 continue; 4296 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4297 ShadowBase = 4298 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4299 if (MS.TrackOrigins) 4300 OriginBase = 4301 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4302 OverflowOffset += alignTo(ArgSize, 8); 4303 } 4304 // Take fixed arguments into account for GpOffset and FpOffset, 4305 // but don't actually store shadows for them. 4306 // TODO(glider): don't call get*PtrForVAArgument() for them. 4307 if (IsFixed) 4308 continue; 4309 if (!ShadowBase) 4310 continue; 4311 Value *Shadow = MSV.getShadow(A); 4312 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4313 if (MS.TrackOrigins) { 4314 Value *Origin = MSV.getOrigin(A); 4315 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4316 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4317 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4318 } 4319 } 4320 } 4321 Constant *OverflowSize = 4322 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4323 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4324 } 4325 4326 /// Compute the shadow address for a given va_arg. 4327 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4328 unsigned ArgOffset, unsigned ArgSize) { 4329 // Make sure we don't overflow __msan_va_arg_tls. 4330 if (ArgOffset + ArgSize > kParamTLSSize) 4331 return nullptr; 4332 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4333 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4334 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4335 "_msarg_va_s"); 4336 } 4337 4338 /// Compute the origin address for a given va_arg. 4339 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4340 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4341 // getOriginPtrForVAArgument() is always called after 4342 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4343 // overflow. 4344 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4345 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4346 "_msarg_va_o"); 4347 } 4348 4349 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4350 IRBuilder<> IRB(&I); 4351 Value *VAListTag = I.getArgOperand(0); 4352 Value *ShadowPtr, *OriginPtr; 4353 const Align Alignment = Align(8); 4354 std::tie(ShadowPtr, OriginPtr) = 4355 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4356 /*isStore*/ true); 4357 4358 // Unpoison the whole __va_list_tag. 4359 // FIXME: magic ABI constants. 4360 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4361 /* size */ 24, Alignment, false); 4362 // We shouldn't need to zero out the origins, as they're only checked for 4363 // nonzero shadow. 4364 } 4365 4366 void visitVAStartInst(VAStartInst &I) override { 4367 if (F.getCallingConv() == CallingConv::Win64) 4368 return; 4369 VAStartInstrumentationList.push_back(&I); 4370 unpoisonVAListTagForInst(I); 4371 } 4372 4373 void visitVACopyInst(VACopyInst &I) override { 4374 if (F.getCallingConv() == CallingConv::Win64) return; 4375 unpoisonVAListTagForInst(I); 4376 } 4377 4378 void finalizeInstrumentation() override { 4379 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4380 "finalizeInstrumentation called twice"); 4381 if (!VAStartInstrumentationList.empty()) { 4382 // If there is a va_start in this function, make a backup copy of 4383 // va_arg_tls somewhere in the function entry block. 4384 IRBuilder<> IRB(MSV.FnPrologueEnd); 4385 VAArgOverflowSize = 4386 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4387 Value *CopySize = 4388 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4389 VAArgOverflowSize); 4390 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4391 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4392 if (MS.TrackOrigins) { 4393 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4394 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4395 Align(8), CopySize); 4396 } 4397 } 4398 4399 // Instrument va_start. 4400 // Copy va_list shadow from the backup copy of the TLS contents. 4401 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4402 CallInst *OrigInst = VAStartInstrumentationList[i]; 4403 IRBuilder<> IRB(OrigInst->getNextNode()); 4404 Value *VAListTag = OrigInst->getArgOperand(0); 4405 4406 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4407 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4408 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4409 ConstantInt::get(MS.IntptrTy, 16)), 4410 PointerType::get(RegSaveAreaPtrTy, 0)); 4411 Value *RegSaveAreaPtr = 4412 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4413 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4414 const Align Alignment = Align(16); 4415 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4416 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4417 Alignment, /*isStore*/ true); 4418 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4419 AMD64FpEndOffset); 4420 if (MS.TrackOrigins) 4421 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4422 Alignment, AMD64FpEndOffset); 4423 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4424 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4425 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4426 ConstantInt::get(MS.IntptrTy, 8)), 4427 PointerType::get(OverflowArgAreaPtrTy, 0)); 4428 Value *OverflowArgAreaPtr = 4429 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4430 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4431 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4432 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4433 Alignment, /*isStore*/ true); 4434 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4435 AMD64FpEndOffset); 4436 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4437 VAArgOverflowSize); 4438 if (MS.TrackOrigins) { 4439 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4440 AMD64FpEndOffset); 4441 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4442 VAArgOverflowSize); 4443 } 4444 } 4445 } 4446 }; 4447 4448 /// MIPS64-specific implementation of VarArgHelper. 4449 struct VarArgMIPS64Helper : public VarArgHelper { 4450 Function &F; 4451 MemorySanitizer &MS; 4452 MemorySanitizerVisitor &MSV; 4453 Value *VAArgTLSCopy = nullptr; 4454 Value *VAArgSize = nullptr; 4455 4456 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4457 4458 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4459 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4460 4461 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4462 unsigned VAArgOffset = 0; 4463 const DataLayout &DL = F.getParent()->getDataLayout(); 4464 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4465 End = CB.arg_end(); 4466 ArgIt != End; ++ArgIt) { 4467 Triple TargetTriple(F.getParent()->getTargetTriple()); 4468 Value *A = *ArgIt; 4469 Value *Base; 4470 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4471 if (TargetTriple.getArch() == Triple::mips64) { 4472 // Adjusting the shadow for argument with size < 8 to match the placement 4473 // of bits in big endian system 4474 if (ArgSize < 8) 4475 VAArgOffset += (8 - ArgSize); 4476 } 4477 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4478 VAArgOffset += ArgSize; 4479 VAArgOffset = alignTo(VAArgOffset, 8); 4480 if (!Base) 4481 continue; 4482 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4483 } 4484 4485 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4486 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4487 // a new class member i.e. it is the total size of all VarArgs. 4488 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4489 } 4490 4491 /// Compute the shadow address for a given va_arg. 4492 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4493 unsigned ArgOffset, unsigned ArgSize) { 4494 // Make sure we don't overflow __msan_va_arg_tls. 4495 if (ArgOffset + ArgSize > kParamTLSSize) 4496 return nullptr; 4497 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4498 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4499 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4500 "_msarg"); 4501 } 4502 4503 void visitVAStartInst(VAStartInst &I) override { 4504 IRBuilder<> IRB(&I); 4505 VAStartInstrumentationList.push_back(&I); 4506 Value *VAListTag = I.getArgOperand(0); 4507 Value *ShadowPtr, *OriginPtr; 4508 const Align Alignment = Align(8); 4509 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4510 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4511 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4512 /* size */ 8, Alignment, false); 4513 } 4514 4515 void visitVACopyInst(VACopyInst &I) override { 4516 IRBuilder<> IRB(&I); 4517 VAStartInstrumentationList.push_back(&I); 4518 Value *VAListTag = I.getArgOperand(0); 4519 Value *ShadowPtr, *OriginPtr; 4520 const Align Alignment = Align(8); 4521 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4522 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4523 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4524 /* size */ 8, Alignment, false); 4525 } 4526 4527 void finalizeInstrumentation() override { 4528 assert(!VAArgSize && !VAArgTLSCopy && 4529 "finalizeInstrumentation called twice"); 4530 IRBuilder<> IRB(MSV.FnPrologueEnd); 4531 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4532 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4533 VAArgSize); 4534 4535 if (!VAStartInstrumentationList.empty()) { 4536 // If there is a va_start in this function, make a backup copy of 4537 // va_arg_tls somewhere in the function entry block. 4538 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4539 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4540 } 4541 4542 // Instrument va_start. 4543 // Copy va_list shadow from the backup copy of the TLS contents. 4544 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4545 CallInst *OrigInst = VAStartInstrumentationList[i]; 4546 IRBuilder<> IRB(OrigInst->getNextNode()); 4547 Value *VAListTag = OrigInst->getArgOperand(0); 4548 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4549 Value *RegSaveAreaPtrPtr = 4550 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4551 PointerType::get(RegSaveAreaPtrTy, 0)); 4552 Value *RegSaveAreaPtr = 4553 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4554 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4555 const Align Alignment = Align(8); 4556 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4557 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4558 Alignment, /*isStore*/ true); 4559 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4560 CopySize); 4561 } 4562 } 4563 }; 4564 4565 /// AArch64-specific implementation of VarArgHelper. 4566 struct VarArgAArch64Helper : public VarArgHelper { 4567 static const unsigned kAArch64GrArgSize = 64; 4568 static const unsigned kAArch64VrArgSize = 128; 4569 4570 static const unsigned AArch64GrBegOffset = 0; 4571 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4572 // Make VR space aligned to 16 bytes. 4573 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4574 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4575 + kAArch64VrArgSize; 4576 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4577 4578 Function &F; 4579 MemorySanitizer &MS; 4580 MemorySanitizerVisitor &MSV; 4581 Value *VAArgTLSCopy = nullptr; 4582 Value *VAArgOverflowSize = nullptr; 4583 4584 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4585 4586 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4587 4588 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4589 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4590 4591 ArgKind classifyArgument(Value* arg) { 4592 Type *T = arg->getType(); 4593 if (T->isFPOrFPVectorTy()) 4594 return AK_FloatingPoint; 4595 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4596 || (T->isPointerTy())) 4597 return AK_GeneralPurpose; 4598 return AK_Memory; 4599 } 4600 4601 // The instrumentation stores the argument shadow in a non ABI-specific 4602 // format because it does not know which argument is named (since Clang, 4603 // like x86_64 case, lowers the va_args in the frontend and this pass only 4604 // sees the low level code that deals with va_list internals). 4605 // The first seven GR registers are saved in the first 56 bytes of the 4606 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4607 // the remaining arguments. 4608 // Using constant offset within the va_arg TLS array allows fast copy 4609 // in the finalize instrumentation. 4610 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4611 unsigned GrOffset = AArch64GrBegOffset; 4612 unsigned VrOffset = AArch64VrBegOffset; 4613 unsigned OverflowOffset = AArch64VAEndOffset; 4614 4615 const DataLayout &DL = F.getParent()->getDataLayout(); 4616 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4617 ++ArgIt) { 4618 Value *A = *ArgIt; 4619 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4620 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4621 ArgKind AK = classifyArgument(A); 4622 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4623 AK = AK_Memory; 4624 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4625 AK = AK_Memory; 4626 Value *Base; 4627 switch (AK) { 4628 case AK_GeneralPurpose: 4629 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4630 GrOffset += 8; 4631 break; 4632 case AK_FloatingPoint: 4633 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4634 VrOffset += 16; 4635 break; 4636 case AK_Memory: 4637 // Don't count fixed arguments in the overflow area - va_start will 4638 // skip right over them. 4639 if (IsFixed) 4640 continue; 4641 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4642 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4643 alignTo(ArgSize, 8)); 4644 OverflowOffset += alignTo(ArgSize, 8); 4645 break; 4646 } 4647 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4648 // bother to actually store a shadow. 4649 if (IsFixed) 4650 continue; 4651 if (!Base) 4652 continue; 4653 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4654 } 4655 Constant *OverflowSize = 4656 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4657 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4658 } 4659 4660 /// Compute the shadow address for a given va_arg. 4661 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4662 unsigned ArgOffset, unsigned ArgSize) { 4663 // Make sure we don't overflow __msan_va_arg_tls. 4664 if (ArgOffset + ArgSize > kParamTLSSize) 4665 return nullptr; 4666 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4667 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4668 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4669 "_msarg"); 4670 } 4671 4672 void visitVAStartInst(VAStartInst &I) override { 4673 IRBuilder<> IRB(&I); 4674 VAStartInstrumentationList.push_back(&I); 4675 Value *VAListTag = I.getArgOperand(0); 4676 Value *ShadowPtr, *OriginPtr; 4677 const Align Alignment = Align(8); 4678 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4679 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4680 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4681 /* size */ 32, Alignment, false); 4682 } 4683 4684 void visitVACopyInst(VACopyInst &I) override { 4685 IRBuilder<> IRB(&I); 4686 VAStartInstrumentationList.push_back(&I); 4687 Value *VAListTag = I.getArgOperand(0); 4688 Value *ShadowPtr, *OriginPtr; 4689 const Align Alignment = Align(8); 4690 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4691 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4692 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4693 /* size */ 32, Alignment, false); 4694 } 4695 4696 // Retrieve a va_list field of 'void*' size. 4697 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4698 Value *SaveAreaPtrPtr = 4699 IRB.CreateIntToPtr( 4700 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4701 ConstantInt::get(MS.IntptrTy, offset)), 4702 Type::getInt64PtrTy(*MS.C)); 4703 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4704 } 4705 4706 // Retrieve a va_list field of 'int' size. 4707 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4708 Value *SaveAreaPtr = 4709 IRB.CreateIntToPtr( 4710 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4711 ConstantInt::get(MS.IntptrTy, offset)), 4712 Type::getInt32PtrTy(*MS.C)); 4713 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4714 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4715 } 4716 4717 void finalizeInstrumentation() override { 4718 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4719 "finalizeInstrumentation called twice"); 4720 if (!VAStartInstrumentationList.empty()) { 4721 // If there is a va_start in this function, make a backup copy of 4722 // va_arg_tls somewhere in the function entry block. 4723 IRBuilder<> IRB(MSV.FnPrologueEnd); 4724 VAArgOverflowSize = 4725 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4726 Value *CopySize = 4727 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4728 VAArgOverflowSize); 4729 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4730 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4731 } 4732 4733 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4734 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4735 4736 // Instrument va_start, copy va_list shadow from the backup copy of 4737 // the TLS contents. 4738 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4739 CallInst *OrigInst = VAStartInstrumentationList[i]; 4740 IRBuilder<> IRB(OrigInst->getNextNode()); 4741 4742 Value *VAListTag = OrigInst->getArgOperand(0); 4743 4744 // The variadic ABI for AArch64 creates two areas to save the incoming 4745 // argument registers (one for 64-bit general register xn-x7 and another 4746 // for 128-bit FP/SIMD vn-v7). 4747 // We need then to propagate the shadow arguments on both regions 4748 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4749 // The remaining arguments are saved on shadow for 'va::stack'. 4750 // One caveat is it requires only to propagate the non-named arguments, 4751 // however on the call site instrumentation 'all' the arguments are 4752 // saved. So to copy the shadow values from the va_arg TLS array 4753 // we need to adjust the offset for both GR and VR fields based on 4754 // the __{gr,vr}_offs value (since they are stores based on incoming 4755 // named arguments). 4756 4757 // Read the stack pointer from the va_list. 4758 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4759 4760 // Read both the __gr_top and __gr_off and add them up. 4761 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4762 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4763 4764 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4765 4766 // Read both the __vr_top and __vr_off and add them up. 4767 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4768 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4769 4770 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4771 4772 // It does not know how many named arguments is being used and, on the 4773 // callsite all the arguments were saved. Since __gr_off is defined as 4774 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4775 // argument by ignoring the bytes of shadow from named arguments. 4776 Value *GrRegSaveAreaShadowPtrOff = 4777 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4778 4779 Value *GrRegSaveAreaShadowPtr = 4780 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4781 Align(8), /*isStore*/ true) 4782 .first; 4783 4784 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4785 GrRegSaveAreaShadowPtrOff); 4786 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4787 4788 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4789 GrCopySize); 4790 4791 // Again, but for FP/SIMD values. 4792 Value *VrRegSaveAreaShadowPtrOff = 4793 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4794 4795 Value *VrRegSaveAreaShadowPtr = 4796 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4797 Align(8), /*isStore*/ true) 4798 .first; 4799 4800 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4801 IRB.getInt8Ty(), 4802 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4803 IRB.getInt32(AArch64VrBegOffset)), 4804 VrRegSaveAreaShadowPtrOff); 4805 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4806 4807 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4808 VrCopySize); 4809 4810 // And finally for remaining arguments. 4811 Value *StackSaveAreaShadowPtr = 4812 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4813 Align(16), /*isStore*/ true) 4814 .first; 4815 4816 Value *StackSrcPtr = 4817 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4818 IRB.getInt32(AArch64VAEndOffset)); 4819 4820 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4821 Align(16), VAArgOverflowSize); 4822 } 4823 } 4824 }; 4825 4826 /// PowerPC64-specific implementation of VarArgHelper. 4827 struct VarArgPowerPC64Helper : public VarArgHelper { 4828 Function &F; 4829 MemorySanitizer &MS; 4830 MemorySanitizerVisitor &MSV; 4831 Value *VAArgTLSCopy = nullptr; 4832 Value *VAArgSize = nullptr; 4833 4834 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4835 4836 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4837 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4838 4839 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4840 // For PowerPC, we need to deal with alignment of stack arguments - 4841 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4842 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4843 // For that reason, we compute current offset from stack pointer (which is 4844 // always properly aligned), and offset for the first vararg, then subtract 4845 // them. 4846 unsigned VAArgBase; 4847 Triple TargetTriple(F.getParent()->getTargetTriple()); 4848 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4849 // and 32 bytes for ABIv2. This is usually determined by target 4850 // endianness, but in theory could be overridden by function attribute. 4851 if (TargetTriple.getArch() == Triple::ppc64) 4852 VAArgBase = 48; 4853 else 4854 VAArgBase = 32; 4855 unsigned VAArgOffset = VAArgBase; 4856 const DataLayout &DL = F.getParent()->getDataLayout(); 4857 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4858 ++ArgIt) { 4859 Value *A = *ArgIt; 4860 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4861 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4862 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4863 if (IsByVal) { 4864 assert(A->getType()->isPointerTy()); 4865 Type *RealTy = CB.getParamByValType(ArgNo); 4866 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4867 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 4868 if (ArgAlign < 8) 4869 ArgAlign = Align(8); 4870 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4871 if (!IsFixed) { 4872 Value *Base = getShadowPtrForVAArgument( 4873 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4874 if (Base) { 4875 Value *AShadowPtr, *AOriginPtr; 4876 std::tie(AShadowPtr, AOriginPtr) = 4877 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4878 kShadowTLSAlignment, /*isStore*/ false); 4879 4880 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4881 kShadowTLSAlignment, ArgSize); 4882 } 4883 } 4884 VAArgOffset += alignTo(ArgSize, Align(8)); 4885 } else { 4886 Value *Base; 4887 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4888 Align ArgAlign = Align(8); 4889 if (A->getType()->isArrayTy()) { 4890 // Arrays are aligned to element size, except for long double 4891 // arrays, which are aligned to 8 bytes. 4892 Type *ElementTy = A->getType()->getArrayElementType(); 4893 if (!ElementTy->isPPC_FP128Ty()) 4894 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 4895 } else if (A->getType()->isVectorTy()) { 4896 // Vectors are naturally aligned. 4897 ArgAlign = Align(ArgSize); 4898 } 4899 if (ArgAlign < 8) 4900 ArgAlign = Align(8); 4901 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4902 if (DL.isBigEndian()) { 4903 // Adjusting the shadow for argument with size < 8 to match the 4904 // placement of bits in big endian system 4905 if (ArgSize < 8) 4906 VAArgOffset += (8 - ArgSize); 4907 } 4908 if (!IsFixed) { 4909 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4910 VAArgOffset - VAArgBase, ArgSize); 4911 if (Base) 4912 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4913 } 4914 VAArgOffset += ArgSize; 4915 VAArgOffset = alignTo(VAArgOffset, Align(8)); 4916 } 4917 if (IsFixed) 4918 VAArgBase = VAArgOffset; 4919 } 4920 4921 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4922 VAArgOffset - VAArgBase); 4923 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4924 // a new class member i.e. it is the total size of all VarArgs. 4925 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4926 } 4927 4928 /// Compute the shadow address for a given va_arg. 4929 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4930 unsigned ArgOffset, unsigned ArgSize) { 4931 // Make sure we don't overflow __msan_va_arg_tls. 4932 if (ArgOffset + ArgSize > kParamTLSSize) 4933 return nullptr; 4934 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4935 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4936 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4937 "_msarg"); 4938 } 4939 4940 void visitVAStartInst(VAStartInst &I) override { 4941 IRBuilder<> IRB(&I); 4942 VAStartInstrumentationList.push_back(&I); 4943 Value *VAListTag = I.getArgOperand(0); 4944 Value *ShadowPtr, *OriginPtr; 4945 const Align Alignment = Align(8); 4946 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4947 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4948 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4949 /* size */ 8, Alignment, false); 4950 } 4951 4952 void visitVACopyInst(VACopyInst &I) override { 4953 IRBuilder<> IRB(&I); 4954 Value *VAListTag = I.getArgOperand(0); 4955 Value *ShadowPtr, *OriginPtr; 4956 const Align Alignment = Align(8); 4957 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4958 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4959 // Unpoison the whole __va_list_tag. 4960 // FIXME: magic ABI constants. 4961 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4962 /* size */ 8, Alignment, false); 4963 } 4964 4965 void finalizeInstrumentation() override { 4966 assert(!VAArgSize && !VAArgTLSCopy && 4967 "finalizeInstrumentation called twice"); 4968 IRBuilder<> IRB(MSV.FnPrologueEnd); 4969 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4970 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4971 VAArgSize); 4972 4973 if (!VAStartInstrumentationList.empty()) { 4974 // If there is a va_start in this function, make a backup copy of 4975 // va_arg_tls somewhere in the function entry block. 4976 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4977 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4978 } 4979 4980 // Instrument va_start. 4981 // Copy va_list shadow from the backup copy of the TLS contents. 4982 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4983 CallInst *OrigInst = VAStartInstrumentationList[i]; 4984 IRBuilder<> IRB(OrigInst->getNextNode()); 4985 Value *VAListTag = OrigInst->getArgOperand(0); 4986 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4987 Value *RegSaveAreaPtrPtr = 4988 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4989 PointerType::get(RegSaveAreaPtrTy, 0)); 4990 Value *RegSaveAreaPtr = 4991 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4992 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4993 const Align Alignment = Align(8); 4994 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4995 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4996 Alignment, /*isStore*/ true); 4997 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4998 CopySize); 4999 } 5000 } 5001 }; 5002 5003 /// SystemZ-specific implementation of VarArgHelper. 5004 struct VarArgSystemZHelper : public VarArgHelper { 5005 static const unsigned SystemZGpOffset = 16; 5006 static const unsigned SystemZGpEndOffset = 56; 5007 static const unsigned SystemZFpOffset = 128; 5008 static const unsigned SystemZFpEndOffset = 160; 5009 static const unsigned SystemZMaxVrArgs = 8; 5010 static const unsigned SystemZRegSaveAreaSize = 160; 5011 static const unsigned SystemZOverflowOffset = 160; 5012 static const unsigned SystemZVAListTagSize = 32; 5013 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5014 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5015 5016 Function &F; 5017 MemorySanitizer &MS; 5018 MemorySanitizerVisitor &MSV; 5019 Value *VAArgTLSCopy = nullptr; 5020 Value *VAArgTLSOriginCopy = nullptr; 5021 Value *VAArgOverflowSize = nullptr; 5022 5023 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5024 5025 enum class ArgKind { 5026 GeneralPurpose, 5027 FloatingPoint, 5028 Vector, 5029 Memory, 5030 Indirect, 5031 }; 5032 5033 enum class ShadowExtension { None, Zero, Sign }; 5034 5035 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5036 MemorySanitizerVisitor &MSV) 5037 : F(F), MS(MS), MSV(MSV) {} 5038 5039 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5040 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5041 // only a few possibilities of what it can be. In particular, enums, single 5042 // element structs and large types have already been taken care of. 5043 5044 // Some i128 and fp128 arguments are converted to pointers only in the 5045 // back end. 5046 if (T->isIntegerTy(128) || T->isFP128Ty()) 5047 return ArgKind::Indirect; 5048 if (T->isFloatingPointTy()) 5049 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5050 if (T->isIntegerTy() || T->isPointerTy()) 5051 return ArgKind::GeneralPurpose; 5052 if (T->isVectorTy()) 5053 return ArgKind::Vector; 5054 return ArgKind::Memory; 5055 } 5056 5057 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5058 // ABI says: "One of the simple integer types no more than 64 bits wide. 5059 // ... If such an argument is shorter than 64 bits, replace it by a full 5060 // 64-bit integer representing the same number, using sign or zero 5061 // extension". Shadow for an integer argument has the same type as the 5062 // argument itself, so it can be sign or zero extended as well. 5063 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5064 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5065 if (ZExt) { 5066 assert(!SExt); 5067 return ShadowExtension::Zero; 5068 } 5069 if (SExt) { 5070 assert(!ZExt); 5071 return ShadowExtension::Sign; 5072 } 5073 return ShadowExtension::None; 5074 } 5075 5076 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5077 bool IsSoftFloatABI = CB.getCalledFunction() 5078 ->getFnAttribute("use-soft-float") 5079 .getValueAsBool(); 5080 unsigned GpOffset = SystemZGpOffset; 5081 unsigned FpOffset = SystemZFpOffset; 5082 unsigned VrIndex = 0; 5083 unsigned OverflowOffset = SystemZOverflowOffset; 5084 const DataLayout &DL = F.getParent()->getDataLayout(); 5085 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5086 ++ArgIt) { 5087 Value *A = *ArgIt; 5088 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5089 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5090 // SystemZABIInfo does not produce ByVal parameters. 5091 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5092 Type *T = A->getType(); 5093 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5094 if (AK == ArgKind::Indirect) { 5095 T = PointerType::get(T, 0); 5096 AK = ArgKind::GeneralPurpose; 5097 } 5098 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5099 AK = ArgKind::Memory; 5100 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5101 AK = ArgKind::Memory; 5102 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5103 AK = ArgKind::Memory; 5104 Value *ShadowBase = nullptr; 5105 Value *OriginBase = nullptr; 5106 ShadowExtension SE = ShadowExtension::None; 5107 switch (AK) { 5108 case ArgKind::GeneralPurpose: { 5109 // Always keep track of GpOffset, but store shadow only for varargs. 5110 uint64_t ArgSize = 8; 5111 if (GpOffset + ArgSize <= kParamTLSSize) { 5112 if (!IsFixed) { 5113 SE = getShadowExtension(CB, ArgNo); 5114 uint64_t GapSize = 0; 5115 if (SE == ShadowExtension::None) { 5116 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5117 assert(ArgAllocSize <= ArgSize); 5118 GapSize = ArgSize - ArgAllocSize; 5119 } 5120 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5121 if (MS.TrackOrigins) 5122 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5123 } 5124 GpOffset += ArgSize; 5125 } else { 5126 GpOffset = kParamTLSSize; 5127 } 5128 break; 5129 } 5130 case ArgKind::FloatingPoint: { 5131 // Always keep track of FpOffset, but store shadow only for varargs. 5132 uint64_t ArgSize = 8; 5133 if (FpOffset + ArgSize <= kParamTLSSize) { 5134 if (!IsFixed) { 5135 // PoP says: "A short floating-point datum requires only the 5136 // left-most 32 bit positions of a floating-point register". 5137 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5138 // don't extend shadow and don't mind the gap. 5139 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5140 if (MS.TrackOrigins) 5141 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5142 } 5143 FpOffset += ArgSize; 5144 } else { 5145 FpOffset = kParamTLSSize; 5146 } 5147 break; 5148 } 5149 case ArgKind::Vector: { 5150 // Keep track of VrIndex. No need to store shadow, since vector varargs 5151 // go through AK_Memory. 5152 assert(IsFixed); 5153 VrIndex++; 5154 break; 5155 } 5156 case ArgKind::Memory: { 5157 // Keep track of OverflowOffset and store shadow only for varargs. 5158 // Ignore fixed args, since we need to copy only the vararg portion of 5159 // the overflow area shadow. 5160 if (!IsFixed) { 5161 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5162 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5163 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5164 SE = getShadowExtension(CB, ArgNo); 5165 uint64_t GapSize = 5166 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5167 ShadowBase = 5168 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5169 if (MS.TrackOrigins) 5170 OriginBase = 5171 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5172 OverflowOffset += ArgSize; 5173 } else { 5174 OverflowOffset = kParamTLSSize; 5175 } 5176 } 5177 break; 5178 } 5179 case ArgKind::Indirect: 5180 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5181 } 5182 if (ShadowBase == nullptr) 5183 continue; 5184 Value *Shadow = MSV.getShadow(A); 5185 if (SE != ShadowExtension::None) 5186 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5187 /*Signed*/ SE == ShadowExtension::Sign); 5188 ShadowBase = IRB.CreateIntToPtr( 5189 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5190 IRB.CreateStore(Shadow, ShadowBase); 5191 if (MS.TrackOrigins) { 5192 Value *Origin = MSV.getOrigin(A); 5193 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5194 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5195 kMinOriginAlignment); 5196 } 5197 } 5198 Constant *OverflowSize = ConstantInt::get( 5199 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5200 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5201 } 5202 5203 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5204 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5205 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5206 } 5207 5208 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5209 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5210 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5211 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5212 "_msarg_va_o"); 5213 } 5214 5215 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5216 IRBuilder<> IRB(&I); 5217 Value *VAListTag = I.getArgOperand(0); 5218 Value *ShadowPtr, *OriginPtr; 5219 const Align Alignment = Align(8); 5220 std::tie(ShadowPtr, OriginPtr) = 5221 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5222 /*isStore*/ true); 5223 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5224 SystemZVAListTagSize, Alignment, false); 5225 } 5226 5227 void visitVAStartInst(VAStartInst &I) override { 5228 VAStartInstrumentationList.push_back(&I); 5229 unpoisonVAListTagForInst(I); 5230 } 5231 5232 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5233 5234 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5235 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5236 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5237 IRB.CreateAdd( 5238 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5239 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5240 PointerType::get(RegSaveAreaPtrTy, 0)); 5241 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5242 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5243 const Align Alignment = Align(8); 5244 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5245 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5246 /*isStore*/ true); 5247 // TODO(iii): copy only fragments filled by visitCallBase() 5248 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5249 SystemZRegSaveAreaSize); 5250 if (MS.TrackOrigins) 5251 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5252 Alignment, SystemZRegSaveAreaSize); 5253 } 5254 5255 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5256 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5257 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5258 IRB.CreateAdd( 5259 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5260 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5261 PointerType::get(OverflowArgAreaPtrTy, 0)); 5262 Value *OverflowArgAreaPtr = 5263 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5264 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5265 const Align Alignment = Align(8); 5266 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5267 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5268 Alignment, /*isStore*/ true); 5269 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5270 SystemZOverflowOffset); 5271 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5272 VAArgOverflowSize); 5273 if (MS.TrackOrigins) { 5274 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5275 SystemZOverflowOffset); 5276 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5277 VAArgOverflowSize); 5278 } 5279 } 5280 5281 void finalizeInstrumentation() override { 5282 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5283 "finalizeInstrumentation called twice"); 5284 if (!VAStartInstrumentationList.empty()) { 5285 // If there is a va_start in this function, make a backup copy of 5286 // va_arg_tls somewhere in the function entry block. 5287 IRBuilder<> IRB(MSV.FnPrologueEnd); 5288 VAArgOverflowSize = 5289 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5290 Value *CopySize = 5291 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5292 VAArgOverflowSize); 5293 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5294 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5295 if (MS.TrackOrigins) { 5296 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5297 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5298 Align(8), CopySize); 5299 } 5300 } 5301 5302 // Instrument va_start. 5303 // Copy va_list shadow from the backup copy of the TLS contents. 5304 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5305 VaStartNo < VaStartNum; VaStartNo++) { 5306 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5307 IRBuilder<> IRB(OrigInst->getNextNode()); 5308 Value *VAListTag = OrigInst->getArgOperand(0); 5309 copyRegSaveArea(IRB, VAListTag); 5310 copyOverflowArea(IRB, VAListTag); 5311 } 5312 } 5313 }; 5314 5315 /// A no-op implementation of VarArgHelper. 5316 struct VarArgNoOpHelper : public VarArgHelper { 5317 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5318 MemorySanitizerVisitor &MSV) {} 5319 5320 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5321 5322 void visitVAStartInst(VAStartInst &I) override {} 5323 5324 void visitVACopyInst(VACopyInst &I) override {} 5325 5326 void finalizeInstrumentation() override {} 5327 }; 5328 5329 } // end anonymous namespace 5330 5331 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5332 MemorySanitizerVisitor &Visitor) { 5333 // VarArg handling is only implemented on AMD64. False positives are possible 5334 // on other platforms. 5335 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5336 if (TargetTriple.getArch() == Triple::x86_64) 5337 return new VarArgAMD64Helper(Func, Msan, Visitor); 5338 else if (TargetTriple.isMIPS64()) 5339 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5340 else if (TargetTriple.getArch() == Triple::aarch64) 5341 return new VarArgAArch64Helper(Func, Msan, Visitor); 5342 else if (TargetTriple.getArch() == Triple::ppc64 || 5343 TargetTriple.getArch() == Triple::ppc64le) 5344 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5345 else if (TargetTriple.getArch() == Triple::systemz) 5346 return new VarArgSystemZHelper(Func, Msan, Visitor); 5347 else 5348 return new VarArgNoOpHelper(Func, Msan, Visitor); 5349 } 5350 5351 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5352 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5353 return false; 5354 5355 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5356 return false; 5357 5358 MemorySanitizerVisitor Visitor(F, *this, TLI); 5359 5360 // Clear out readonly/readnone attributes. 5361 AttributeMask B; 5362 B.addAttribute(Attribute::ReadOnly) 5363 .addAttribute(Attribute::ReadNone) 5364 .addAttribute(Attribute::WriteOnly) 5365 .addAttribute(Attribute::ArgMemOnly) 5366 .addAttribute(Attribute::Speculatable); 5367 F.removeFnAttrs(B); 5368 5369 return Visitor.runOnFunction(); 5370 } 5371